
Homework #7 
EMA 545, Spring 2013 

 
Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation 
system to the turbulent flight profile in  “FlightAccel.mat” on the course website.  (To do 
this, you will have to assume that the aircraft experiences this exact same flight profile 
over and over again.) 

a.) Provide at least one plot comparing the response of the aircraft to the (hopefully 
improved) response on the vibration isolator. 

b.) Report on the values of mass, stiffness and damping that you used and how they 
would be realized in practice (e.g. if you use a beam as a leaf spring, what would 
its dimensions be?). 

 
Problem 2: (20 pts) Do Problem 3.60 as given in the text.  Comment on how you 
selected adequate values for N (number of samples in the time history) and the length of 
the time window (in seconds). 
 
Problem 3: Exercise 1.11 from Ginsberg.  (For the proof described in (b), set m2=0 and 
see what your equation of motion reduces to.) 
 

 
 

Matt Allen
Sticky Note
Answers for this one vary - no solution provided.



Problem 3.60.
A SDOF system is subjected to a pulse excitation of the form:
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We are told that m = 0.5 kg and that the natural frequency is 100Hz; i.e., the undamped period of
vibration is 1/100 = 0.01 sec.  Since the pulse-duration is said to be equal to an undamped period, T
= 0.01 sec. We are to find the response of the system for the case of (a) ζ  = 0.2 and (b) ζ  = 0.002.

(a)  For ζ  = 0.2, the time-constant of the system is 1/ζ ωn= 1/(0.2*2*π*100) = 0.007958 sec. Four
time constants would be about 0.032, so choosing a maximum time of Tmax = 0.05 sec will ensure
that we allow enough time for the transient response to die down to an acceptably small value. The
next parameter that we need to choose is N. Let's choose N = 256 and then check that our Nyquist
critical frequency is high enough relative to the natural frequency of the system and the bandwidth
of the input spectrum.  Figure 1 shows the FFT of the input spectrum, the FFT of the output
spectrum, and the system transfer function as a function of frequency ratio for Tmax = 0.05 sec and
N = 256. Each curve is scaled so that its maximum value is unity. Although difficult to see whether
there are enough points in the vicinity of the resonant peak, it is clearly the case that our Nyquist
frequency is high enough.  Figure 2 shows the displacement response of the system for Tmax = 0.05
sec and using 2 different values of N. Below N = 64, the errors in the response become much more
noticeable. Note that the response is very small at t = 0.05 sec, indicating that "wraparound errors"
are negligable.
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Figure 2.

Figure 3 shows the effect of varying Tmax, keeping N = 256.  It is seen that as Tmax is
reduced, the solution begins to degrade. In particular, examining the curve for Tmax = 0.02 sec, it is
seen that the response no longer appears to begin with zero initial conditions. Thus, using a Tmax
which is twice the duration of the pulse is inadequate in this case to avoid warparound errors.
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(b) For ζ  = 0.002, the time-constant of the system is 1/ζ ωn= 1/(0.2*2*π*100) = 0.7958 sec. Four
time constants would be about 3.2, so choosing a maximum time of Tmax = 5 sec should ensure
that we allow enough time for the transient response to die down to an acceptably small value. As
before, we will choose a value for N (4096) and then check that our Nyquist critical frequency is
high enough relative to the natural frequency of the system and the bandwidth of the input spectrum.
Figure 4 shows the FFT of the input spectrum, the FFT of the output spectrum, and the system
transfer function as a function of frequency ratio for Tmax = 5 sec and N = 4096. As before, each
curve is scaled so that its maximum value is unity. We observe that there appear to be enough points
in the vicinity of the resonant peak and that the Nyquist frequency appears to be high enough.
Figure 5 shows the displacement response of the system for Tmax = 5 sec and N = 4096. The result
was checked using ode45 and found to be very close to the values produced using the FFT analysis.
Figure 6 shows the first 0.01 seconds of response from Figure 5 on a larger scale. The fact that the
response begins with nearly zero displacement and velocity shows that wraparound error has been
avoided.
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Figure 5. Tmax = 5 sec, N = 4096 points.
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Figure 6. Tmax = 5 sec, N = 4096. Same result as shown in Figure 5, but over a smaller time range.

The Matlab code used to generate these results is shown below:

% ME6442, Spring 2002
% Dr. Ferri
% Problem 3.60

% Q is a short-pulse parabolic input. The system is
% a damped SDOF system with m = 0.5kg, and fn = 100 Hz. The duration of
% the pulse is Tn, an undamped period of motion.

m = 0.5 ; %kg
zeta = 0.2;  % or zeta = 0.002 for part (b)
wn = 100*2*pi; % rad/s
timeconstant = 1/(zeta*wn)
T = 2*pi/wn; % duration of pulse
Tmax = input('Enter Tmax...  ');
N = input('Enter N...  ');
w1 = 2*pi/Tmax;
delt = Tmax/N;
t = 0:delt:(N-1)*delt;

% Define input pulse

Q = zeros(1,N);
for k = 1:N;
    if t(k) > T; break; end



    Q(k) = 2000*t(k).*(T-t(k))/T^2;
end

plot(t,Q);
xlabel('Time (sec)')
ylabel('Q')
title(['N = ',num2str(N),' , \zeta = ',num2str(zeta)])
grid
pause

Q_trans = fft(Q);

r = (0:(N/2))*w1/wn;
D = 1./(1 - r.^2 + i*2*zeta*r);
Xhalf = Q_trans(1:(N/2+1)).*D/(m*wn^2);
rev_index = (N/2):-1:2;
X = [Xhalf conj(Xhalf(rev_index))];

% Plot input fft, output fft, and TF on same plot.

Qplot = Q_trans(1:(N/2+1))/max(abs(Q_trans(1:(N/2+1))));
Dplot = D/max(abs(D));
Xplot = Xhalf/max(abs(Xhalf));
plot(r,abs(Qplot),'o--',r,abs(Dplot),'k-',r,abs(Xplot),'*--')
xlabel('Frequency Ratio')
ylabel('Input, TF, Output')
title(['\zeta = ',num2str(zeta)]);
grid
legend('Input','Transfer Function','Output')
pause

xifft = ifft(X);

% Check that the ifft is "mostly real-valued." The quantity
% imag_check is the ratio of the norms of the imaginary and
% reak parts. This term should be very small (<1e-5).

imag_check = norm(imag(xifft))/norm(real(xifft))

% Assuming that imag_check is small, discard the imaginary part
% of xifft:

xifft=real(xifft);

plot(t,xifft);
xlabel('Time');
ylabel('x');
title(['N = ',num2str(N),' , \zeta = ',num2str(zeta)])
grid
zoom on

Matt Allen
Note
Using FFT_easy, all of this could be replaced with just:[Q_trans,ws]=fft_easy(Q,t)r = ...D = ...Xhalf = ...xifft = ifft_easy(Xhalf,ws);The _easy versions of these functions were meant to avoid having to think about the complex conjugate second half of the vector that one obtains from the standard FFT.



Exercise 3.60
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First case ζ 0.20
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Second case ζ 0.0020
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