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1 problem 1
3.41 in text: A periodic disturbance consists of a sequence of exponentially pulse re-

peated at intervals 𝑇, such that 𝑄(𝑡) = 𝐹𝑒
−𝜆𝑡
𝑇 for 0 < 𝑡 < 𝑇, and 𝑄(𝑡 ± 𝑇) = 𝑄(𝑡). The

parameter 𝜆 is nondimensional. Determine the complex Fourier series representing the
force. Evaluate the first 5 coefficients when 𝜆 = 0.1, 1, 10. What does this reveal regarding
the influence of 𝜆 on the frequency spectrum?

Let 𝑄̃(𝑡) be the Fourier series approximation to 𝑄(𝑡) given by

𝑄̃(𝑡) =
1
2

∞
�
𝑛=−∞

𝐹𝑛𝑒
𝑖𝑛 2𝜋

𝑇 𝑡 (1)

Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑄(𝑡)𝑒−𝑖𝑛
2𝜋
𝑇 𝑡𝑑𝑡

=
2
𝑇

𝑇

�
0

𝐹𝑒
−𝜆𝑡
𝑇 𝑒−𝑖𝑛

2𝜋
𝑇 𝑡𝑑𝑡 =

2𝐹
𝑇

𝑇

�
0

𝑒
−𝑡�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 �𝑑𝑡 =

2𝐹
𝑇

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒
−𝑡�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 �

𝑖𝑛2𝜋
𝑇 − 𝜆

𝑇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

0

=
2𝐹

𝑖𝑛2𝜋 − 𝜆�
𝑒
−𝑇�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 � − 1�

=
2𝐹

𝑖𝑛2𝜋 − 𝜆
�𝑒−𝑖𝑛2𝜋𝑒−𝜆 − 1�

But 𝑒−𝑖𝑛2𝜋 = 1, hence
𝐹𝑛 =

2𝐹
𝑖𝑛2𝜋 − 𝜆

�𝑒−𝜆 − 1�

Hence Eq 1 becomes

𝑄̃(𝑡) =
1
2

∞
�
𝑛=−∞

2𝐹
𝑖𝑛2𝜋 − 𝜆

�𝑒−𝜆 − 1�𝑒𝑖𝑛
2𝜋
𝑇 𝑡

= 𝐹
∞
�
𝑛=−∞

�𝑒−𝜆 − 1�
𝑖𝑛2𝜋 − 𝜆

𝑒𝑖𝑛
2𝜋
𝑇 𝑡

= 𝐹
∞
�
𝑛=−∞

1 − 𝑒−𝜆

𝜆 + 𝑖𝑛2𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡

For 𝑛 = −2, −1, 0, 1, 2we obtain

𝑄̃(𝑡) = 𝐹
2
�
𝑛=−2

1 − 𝑒−𝜆

𝜆 + 𝑖𝑛2𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡

= 𝐹�
1 − 𝑒−𝜆

𝜆 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆
+
1 − 𝑒−𝜆

𝜆 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

For 𝜆 = 0.1

𝑄̃(𝑡) = 𝐹�
1 − 𝑒−0.1

0.1 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1
+
1 − 𝑒−0.1

0.1 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{�6.026 × 10−5 + 7.572 × 10−3𝑖�𝑒−𝑖
4𝜋
𝑇 𝑡

+ �2.41 × 10−4 + 1.514 × 10−2𝑖�𝑒−𝑖
2𝜋
𝑇 𝑡

+ 0.952

+ �2.4099 × 10−4 − 1.5142 × 10−2𝑖�𝑒𝑖
2𝜋
𝑇 𝑡

+ �6.026 × 10−5 − 7.572 × 10−3𝑖�𝑒𝑖
4𝜋
𝑇 𝑡}
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For 𝜆 = 1

𝑄̃(𝑡) = 𝐹�
1 − 𝑒−1

1 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−1

1 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−1

1
+
1 − 𝑒−1

1 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−1

1 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{(0.00398 + 0.05𝑖)𝑒−𝑖
4𝜋
𝑇 𝑡 + (0.016 + 0.098𝑖)𝑒−𝑖

2𝜋
𝑇 𝑡 + 0.632 + (0.016 + 0.098𝑖)𝑒𝑖

2𝜋
𝑇 𝑡 + (0.00398 + 0.05𝑖)𝑒𝑖

4𝜋
𝑇 𝑡}

For 𝜆 = 10

𝑄̃(𝑡) = 𝐹�
1 − 𝑒−10

10 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−10

10 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−10

10
+
1 − 𝑒−10

10 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−10

10 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{�3.877 × 10−2 + 4.872 × 10−2𝑖�𝑒−𝑖
4𝜋
𝑇 𝑡

+ �7.169 × 10−2 + 4.505 × 10−2𝑖�𝑒−𝑖
2𝜋
𝑇 𝑡

+ 0.1

+ �7.169 × 10−2 − 4.505 × 10−2𝑖�𝑒𝑖
2𝜋
𝑇 𝑡

+ �3.877 × 10−2 − 4.872 × 10−2𝑖�𝑒𝑖
4𝜋
𝑇 𝑡}

We notice that as 𝜆 became larger, the DC term became smaller. Since the 𝐷𝐶 term
represents average value of the whole signal, then we can say that as 𝜆 gets larger, then
the average becomes smaller. This means the energy of the signal becomes smaller as 𝜆
becomes larger.

1.1 Verification using Matlab ffteasy.m
From above, we found for 𝜆 = 1

𝐹𝑛 =
2𝐹

𝑖𝑛2𝜋 − 𝜆
�𝑒−𝜆 − 1�

=
2𝐹

𝑖𝑛2𝜋 − 1
�𝑒−1 − 1�

and the first 5 found to be

𝑛 𝐹𝑛
−2 0.00398 + 0.05𝑖
−1 0.016 + 0.098𝑖
0 0.632
1 0.016 − 0.098𝑖
2 0.00398 − 0.05𝑖

To verify the result with ffteasy.musing 𝜆 = 1, Using 𝐹 = 1, and using 𝑇 = 1. This below
shows the result for 𝐹0, 𝐹1, 𝐹2 and we see that the DC term 𝐹0 agrees, and that complex
component of 𝐹1, 𝐹2 also agrees. The real parts are little larger thanwhat I obtained using
the above. This might be a scaling issue, and I was not able to determine the reason for
it at this time.

EDU>> T=1; del=0.01; t=0:del:T; lambda=1; xt=exp(-lambda*t/T);
EDU>> (1/length(t))*fft_easy(xt,t)

ans =

0.6326 + 0.0000i
0.0190 - 0.0986i
0.0072 - 0.0502i
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2 problem 2

We are given that 𝑚 = 1200 kg, 𝑓 = 5 Hz, 𝜁 = 0.4 and

𝑧(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 − 5𝑥2 0 < 𝑥 < 0.2
0 0.2 < 𝑥 < 4

A plot of 𝑧(𝑥) for first 20meters is

z[x_] := Piecewise[{{x - 5 x^2, 0 <= x < 0.2}, {0, 0.2 <= x <= 4}}]
z[x_] /; x > 4 := z[Mod[x, 4]];
Table[{x, z[x]}, {x, 0, 21, .1}];
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ListLinePlot[%, PlotRange -> {All, {0, .07}}, Frame -> True,
FrameLabel -> {{"z(x) hight or road (mm)", None}, {"meter",

"bumps on road"}}]

We need to be able to express 𝑧(𝑡) as Re�𝑍𝑒𝑖
2𝜋
𝑇 𝑡�where 𝑇 is the period of the function 𝑧(𝑡).

Hence we need to represent 𝑧(𝑥) as Fourier series approximation then replace 𝑥 = 𝑣𝑡 and
use the result.

The period 𝑇 = 4meter. Let 𝑧̃(𝑥) be the Fourier series approximation to 𝑧(𝑥), hence

𝑧̃(𝑥) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑧(𝑥)𝑒−𝑖𝑛
2𝜋
𝑇 𝑥𝑑𝑥 =

1
2

2/10

�
0

�𝑥 − 5𝑥2�𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

1
2

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 −

5
2

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
2 𝑥 then
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𝑣 = ∫ 𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 = 𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

hence

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 = 𝑥

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥

𝑛𝜋
2

�

2
10

0

−
2/10

�
0

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥

𝑛𝜋
2

𝑑𝑥

=
2
10
𝑖𝑒−𝑖𝑛

𝜋
2

2
10

𝑛𝜋
2

−
2
𝑛𝜋

2/10

�
0

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
−
𝑖2
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎝
𝑒−𝑖𝑛

𝜋
2 𝑥

−𝑖𝑛𝜋
2

⎞
⎟⎟⎟⎟⎟⎠

2
10

0

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
+

4
𝑛2𝜋2 �𝑒

−𝑖𝑛𝜋
2 𝑥�

2
10

0

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
+

4
𝑛2𝜋2 �𝑒

−𝑖𝑛𝜋
2

2
10 − 1�

=
4𝑖

10𝑛𝜋
𝑒−𝑖𝑛

𝜋
10 +

4
𝑛2𝜋2 𝑒

−𝑖𝑛 𝜋
10 −

4
𝑛2𝜋2

= 𝑒−𝑖𝑛
𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2

Now we do the second integral
2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥.

Integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑥2 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
2 𝑥 then 𝑣 = 𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

hence

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

⎡
⎢⎢⎢⎢⎢⎣𝑥

2 𝑖𝑒
−𝑖𝑛𝜋

2 𝑥

𝑛𝜋
2

⎤
⎥⎥⎥⎥⎥⎦

2
10

0

−
2/10

�
0

2𝑥
𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

𝑑𝑥

=
8
100

𝑖𝑒−𝑖𝑛
𝜋
10

𝑛𝜋
−
4𝑖
𝑛𝜋

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

But
2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥was solved before and its results is Eq 2.1, hence

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

4
100

𝑖𝑒−𝑖𝑛
𝜋
10

𝑛𝜋
2

−
4𝑖
𝑛𝜋�

𝑒−𝑖𝑛
𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2 �

=
8𝑖

100𝑛𝜋
𝑒−𝑖𝑛

𝜋
10 − 𝑒−𝑖𝑛

𝜋
10 �

16𝑖
𝑛3𝜋3 −

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

8𝑖
100𝑛𝜋

−
16𝑖
𝑛3𝜋3 +

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3
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Putting all the above together, we obtain 𝐹𝑛 as

𝐹𝑛 =
1
2

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 −

5
2

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

=
1
2�
𝑒−𝑖𝑛

𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2 � −
5
2�
𝑒−𝑖𝑛

𝜋
10 �

8𝑖
100𝑛𝜋

−
16𝑖
𝑛3𝜋3 +

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3 �

= 𝑒−𝑖𝑛
𝜋
10 �

2
𝑛2𝜋2 +

𝑖
5𝑛𝜋�

−
2

𝑛2𝜋2 − 𝑒
−𝑖𝑛 𝜋

10 �
20𝑖

100𝑛𝜋
−
40𝑖
𝑛3𝜋3 +

20
5𝑛2𝜋2 � −

40𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

2
𝑛2𝜋2 +

𝑖
5𝑛𝜋

−
20𝑖

100𝑛𝜋
+

40𝑖
𝑛3𝜋3 −

4
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3

Now

𝐹0 =
2
𝑇

𝑇

�
0

𝑧(𝑥)𝑑𝑥 =
1
2

2/10

�
0

�𝑥 − 5𝑥2�𝑑𝑥 =
1
300

Hence

𝑧̃(𝑥) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

=
1
600

+ Re�
𝑁
�
𝑛=1
�𝑒−𝑖𝑛

𝜋
10 �

40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3 �𝑒

𝑖𝑛𝜋
2 𝑥�

=
1
600

+ Re�
𝑁
�
𝑛=1
𝑒𝑖�

𝑛𝜋
2 𝑥− 𝑛𝜋

10 ��
40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � − 𝑒

𝑖𝑛𝜋
2 𝑥�

2
𝑛2𝜋2 +

40𝑖
𝑛3𝜋3 ��

=
1
600

+ Re�
𝑁
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋
2 𝑥− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋2 𝑥− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋

2 𝑥 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋
2 𝑥�

But 𝑥 = 𝑣𝑡, hence

𝑧̃(𝑡) =
1
600

+ Re�
𝑁
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋𝑣
2 𝑡− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋𝑣2 𝑡− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋𝑣

2 𝑡 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋𝑣
2 𝑡�

Therefore the forcing frequency is 𝑛𝜛1 = 𝑛
𝜋𝑣
2 or from 2𝜋𝑓1 =

𝜋𝑣
2 , hence 𝑓1 =

𝑣
4Hz.The

above can be written as

𝑧̃(𝑡) =
1
600

+
𝑁
�
𝑛=1

Re�
−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋𝑣
2 𝑡− 𝑛𝜋

10 �� −
𝑁
�
𝑛=1

Re�
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋𝑣2 𝑡− 𝑛𝜋

10 ��

−
𝑁
�
𝑛=1

Re�
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋𝑣

2 𝑡� +
𝑁
�
𝑛=1

Re�
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋𝑣
2 𝑡�

=
1
600

+
𝑁
�
𝑛=1

−40
𝑛3𝜋3 sin�𝑛𝜛1𝑡 −

𝑛𝜋
10
� −

𝑁
�
𝑛=1

2
𝑛2𝜋2 cos�𝑛𝜛1𝑡 −

𝑛𝜋
10
�

−
𝑁
�
𝑛=1

2
𝑛2𝜋2 cos(𝑛𝜛1𝑡) +

𝑁
�
𝑛=1

40
𝑛3𝜋3 sin(𝑛𝜛1𝑡)

=
1
600

−
40
𝜋3

𝑁
�
𝑛=1

1
𝑛3

sin�𝑛𝜛1𝑡 −
𝑛𝜋
10
� −

2
𝜋2

𝑁
�
𝑛=1

1
𝑛2

cos�𝑛𝜛1𝑡 −
𝑛𝜋
10
�

−
2
𝜋2

𝑁
�
𝑛=1

1
𝑛2

cos(𝑛𝜛1𝑡) +
40
𝜋3

𝑁
�
𝑛=1

1
𝑛3

sin(𝑛𝜛1𝑡)

Where 𝜛1 =
𝜋𝑣
2
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To verify the above, here is a plot for different number of fourier series terms showing
that approximation improves as 𝑁 increases. This was done for 𝑣 = 5𝑚/𝑠 and for 5
seconds.

2.1 Part(a)
The equation of motion is

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧 (2.1)

From earlier, we found that fourier series approximation to 𝑧(𝑡) is

𝑧(𝑡) =
1
600

+ Re�
∞
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�𝑛𝜛𝑡−

𝑛𝜋
10 � −

2
𝑛2𝜋2 𝑒

𝑖�𝑛𝜛𝑡− 𝑛𝜋
10 � −

2
𝑛2𝜋2 𝑒

𝑖𝑛𝜛𝑡 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛𝜛𝑡�

=
1
600

+ Re�
∞
�
𝑛=1

−40
𝑛3𝜋3 𝑒

−𝑖 𝑛𝜋10
1
𝑖
𝑒𝑖𝑛𝜛𝑡 −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 𝑒𝑖𝑛𝜛𝑡 −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜛𝑡 +

40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛𝜛𝑡�

=
1
600

+ Re�
∞
�
𝑛=1
𝑒𝑖𝑛𝜛𝑡�

−40
𝑛3𝜋3 𝑒

−𝑖� 𝑛𝜋10 +
𝜋
2 � −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 −
2

𝑛2𝜋2 +
40
𝑛3𝜋3 𝑒

−𝑖𝜋2 ��

Let
𝑍𝑛 =

−40
𝑛3𝜋3 𝑒

−𝑖� 𝑛𝜋10 +
𝜋
2 � −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 −
2

𝑛2𝜋2 +
40
𝑛3𝜋3 𝑒

−𝑖𝜋2

Then above can be simplified to

𝑧(𝑡) =
1
600

+ Re�
∞
�
𝑛=1
𝑒𝑖𝑛𝜛𝑡𝑍𝑛�
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Where 𝜛 = 𝜋𝑣
2 , hence

𝑧′(𝑡) = Re�
∞
�
𝑛=1
𝑖𝑛𝜛𝑒𝑖𝑛𝜛𝑡𝑍𝑛�

Hence, let
𝑦𝑠𝑠(𝑡) = Re

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡

Hence Eq 2.1 becomes
∞
�
𝑛=1

− 𝑚𝑛2𝜛2𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +
∞
�
𝑛=1
𝑖𝑐𝑛𝜛𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +

∞
�
𝑛=1
𝑘𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

∞
�
𝑛=1
𝑖𝑐𝑛𝜛𝑒𝑖𝑛𝜛𝑡𝑍𝑛 +

𝑘
600

+
∞
�
𝑛=1
𝑘𝑒𝑖𝑛𝜛𝑡𝑍𝑛

∞
�
𝑛=1
�−𝑚𝑛2𝜛2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

∞
�
𝑛=1
(𝑖𝑐𝑛𝜛 + 𝑘)𝑍𝑛𝑒𝑖𝑛𝜛𝑡 +

𝑘
600

∞
�
𝑛=1
�−𝑚𝑛2𝜛2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

𝑘
600

+
∞
�
𝑛=1
(𝑖𝑐𝑛𝜛 + 𝑘)𝑍𝑛𝑒𝑖𝑛𝜛𝑡

Hence

𝑌𝑛 =
(𝑖𝑐𝑛𝜛 + 𝑘)

−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘
𝑍𝑛 (2)

Let

𝐷(𝑟𝑛, 𝜁) =
𝑖𝑐𝑛𝜛 + 𝑘

−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘

=
𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝑛𝜛 + 𝜔2

𝑛𝑎𝑡𝑚
−𝑚(𝑛𝜛)2 + 𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝑛𝜛 + 𝜔2

𝑛𝑎𝑡𝑚

=
𝑖2𝜁𝑛 𝜛

𝜔𝑛𝑎𝑡
+ 1

−�𝑛 𝜛
𝜔𝑛𝑎𝑡

�
2
+ 𝑖2𝜁𝑛 𝜛

𝜔𝑛𝑎𝑡
+ 1

=
1 + 𝑖2𝜁𝑟𝑛

�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

Where in the above 𝑟𝑛 =
𝑛𝜛
𝜔𝑛𝑎𝑡

where 𝜛 is 2𝜋
𝑇 which means it is the fundamental frequency

of the forcing function and 𝜔𝑛𝑎𝑡 is the natural frequency.

Then Eq 2 becomes
𝑌𝑛 = 𝐷(𝑟𝑛, 𝜁)𝑍𝑛

And the steady state solution 𝑦𝑠𝑠(𝑡) becomes

𝑦𝑠𝑠(𝑡) =
𝑘
600

+ Re�
∞
�
𝑛=1
𝐷(𝑟𝑛, 𝜁)𝑍𝑛𝑒𝑖𝑛𝜛𝑡�

Now we can answer the question. When 𝑐 = 0 then 𝐷(𝑟𝑛, 𝜁) reduces to 𝑘
−𝑚(𝑛𝜛)2+𝑘

=
1

1−�𝑛 𝜛
𝜔𝑛𝑎𝑡

�
2 =

1
1−𝑟2𝑛

, hence

𝑦𝑠𝑠(𝑡) =
𝑘
600

+ Re�
∞
�
𝑛=1

1
1 − 𝑟2𝑛

𝑍𝑛𝑒𝑖𝑛𝜛𝑡�

So the displacement 𝑦𝑠𝑠(𝑡)will be resonant when 𝑟𝑛 = 1 or
𝑛𝜋𝑣
2𝜔𝑛𝑎𝑡

= 1 or 𝑣 = 2𝜔𝑛𝑎𝑡
𝑛𝜋

Hence
𝑣 =

2(2𝜋5)
𝑛𝜋

=
20
𝑛
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Hence 𝑣 = 20, 10, 5, 2.5, 1.25,⋯meter/sec will each cause resonance. To verify, here is a
plot of 𝑦𝑠𝑠(𝑡)with no damper for speed near resonance 𝑣 = 19.99 and comparing this for
speeds away from resonance speed. This plot shows that when speed 𝑣 is close to any
of the above speeds, then the displacement 𝑦𝑠𝑠(𝑡) becomes very large. Once the speed is
away from those values, then 𝑦𝑠𝑠(𝑡) quickly comes down to steady state 𝐹/𝑘 value.

3 problem 3
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The function is periodic with period 𝑇 = 2𝜏

𝑓(𝑡) =
𝑃
𝜏 𝑡 0 < 𝑡 < 𝜏

0 𝜏 < 𝑡 < 2𝜏

and 𝑓(𝑡 ± 𝑇) = 𝑓(𝑡). Let ̃𝑓(𝑡) be the Fourier series approximation to 𝑓(𝑡), hence

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥� (3)

Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑓(𝑡)𝑒−𝑖𝑛
2𝜋
𝑇 𝑡𝑑𝑡

=
2
2𝜏

𝜏

�
0

𝑃
𝜏
𝑡𝑒−𝑖𝑛

𝜋
𝜏 𝑡𝑑𝑡

=
𝑃
𝜏2

𝜏

�
0

𝑡𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑡 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
𝜏 𝑡 then 𝑣 =
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∫ 𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡 = 𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝑡

𝑛𝜋
𝜏

hence

𝐹𝑛 =
𝑃
𝜏2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝𝑡
𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝑡

𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠

𝜏

0

−
𝑖
𝑛𝜋
𝜏

𝜏

�
0

𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡

⎤
⎥⎥⎥⎥⎥⎥⎦

=
𝑃
𝜏2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝𝜏
𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝜏

𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠ −

𝑖
𝑛𝜋
𝜏

⎛
⎜⎜⎜⎜⎜⎝
𝑒−𝑖𝑛

𝜋
𝜏 𝑡

−𝑖𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠

𝜏

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
𝑃
𝜏2 ��

𝜏2
𝑖𝑒−𝑖𝑛𝜋

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �𝑒
−𝑖𝑛𝜋

𝜏 𝑡�
𝜏

0
�

=
𝑃
𝜏2 ��

𝜏2
𝑖𝑒−𝑖𝑛𝜋

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �𝑒
−𝑖𝑛𝜋 − 1��

𝑒−𝑖𝑛𝜋 = cos(𝑛𝜋) = (−1)𝑛, hence

𝐹𝑛 =
𝑃
𝜏2 ��

𝜏2
𝑖(−1)𝑛

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �(−1)
𝑛 − 1��

Hence for even 𝑛

𝐹𝑛 =
𝑃
𝜏2 ��

𝜏2
𝑖
𝑛𝜋��

= 𝑃
𝑖
𝑛𝜋

and for odd 𝑛

𝐹𝑛 =
𝑃
𝜏2 ��

−𝜏2
𝑖
𝑛𝜋�

− 2
𝜏2

𝑛2𝜋2 �

= −
𝑃
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�

𝐹0 =
𝑃
𝜏2

𝜏

�
0

𝑡𝑑𝑡

=
𝑃
𝜏2 �

𝑡2

2 �
𝜏

0
=
𝑃
𝜏2 �

𝜏2

2 �

=
𝑃
2

Now Eq 3 becomes

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

=
1
2
𝐹0 + Re� �

𝑒𝑣𝑒𝑛 𝑛
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑡 + �

𝑜𝑑𝑑 𝑛
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑡�

=
𝑝
4
+ Re� �

𝑒𝑣𝑒𝑛 𝑛
𝑃
𝑖
𝑛𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 + �

𝑜𝑑𝑑 𝑛
−
𝑃
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�𝑒𝑖𝑛
2𝜋
𝑇 𝑡�

=
𝑝
4
+ Re�

𝑃
𝜋
�

𝑒𝑣𝑒𝑛 𝑛

𝑖
𝑛
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 −

𝑃
𝜋
�
𝑜𝑑𝑑 𝑛

1
𝑛�

2
𝑛𝜋

+ 𝑖�𝑒𝑖𝑛
2𝜋
𝑇 𝑡�

=
𝑃
4
+ Re�

𝑃
𝜋
�

𝑒𝑣𝑒𝑛 𝑛

𝑖
𝑛
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 −

𝑃
𝜋
�
𝑜𝑑𝑑 𝑛

�
2
𝑛2𝜋

+
𝑖
𝑛�
𝑒𝑖𝑛

2𝜋
𝑇 𝑡�

To verify, here is a plot of the above, using 𝑃 = 1 and 𝜏 = 0.5 sec for 𝑡 = 0⋯2 seconds.
This shows as more terms are added, the approximation becomes very close to the
function. At 𝑁 = 40 the approximation appears very good.
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Now we need to write 𝑓(𝑡) as sum of exponential to answer the question.

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

where 𝜛 is the fundamental frequency of the force given by 2𝜋
𝑇 = 2𝜋

2𝜏 =
𝜋
𝜏

Hence, let 𝑦𝑠𝑠 =
∞
�
𝑛=−∞

𝑌𝑛𝑒𝑖𝑛𝜛𝑡, then

Re�𝑚
∞
�
𝑛=−∞

− (𝑛𝜛)2𝑌𝑛𝑒𝑖𝑛𝜛𝑡 + 𝑐
∞
�
𝑛=−∞

𝑖𝑛𝜛𝑌𝑛𝑒𝑖𝑛𝜛𝑡 + 𝑘
∞
�
𝑛=−∞

𝑌𝑛𝑒𝑖𝑛𝜛𝑡� =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

∞
�
𝑛=−∞

�−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

Hence

𝑌𝑛 =
𝐹𝑛
𝑘

1

�1 − �𝑛
𝜛

𝜔𝑛𝑎𝑡
�
2
� + 𝑖2𝜁𝑛

𝜛
𝜔𝑛𝑎𝑡

=
𝐹𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

Hence
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Finding 𝑌𝑛 for 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

where 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 𝜋
3𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 3,
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therefore

𝑌𝑛 =
𝐹𝑛
𝑘

1
�1 − (3𝑛)2� + 𝑖6(0.04)𝑛

=
𝐹𝑛
𝑘

1
�1 − 9𝑛2� + 𝑖0.24𝑛

The largest 𝑌𝑛 will occur when the denominator of the above is smallest. Plotting the

modulus of the denominator ��1 − 9𝑛
2�

2
+ (0.24𝑛)2 for different 𝑛 values shows that

𝑛 = 1 is the values which makes it minimum.

This happens since for any 𝑛 > 1 the denominator will become larger due to 𝑛2 and
hence 𝑌𝑛 will become smaller. So 𝑛 = 1 will be used.

For 𝑛 = 1, we obtain
𝑌1 =

𝐹1
𝑘

1
(1 − 9) + 𝑖6(0.04)

But 𝐹1 = −
𝑃
𝜋
� 2
𝜋 + 𝑖�, hence

𝑌1 =
−𝑃
𝜋
� 2
𝜋 + 𝑖�

𝑘
1

(1 − 9) + 𝑖6(0.04)
=
−𝑃
𝜋𝑘

� 2
𝜋 + 𝑖�

−8 + 𝑖0.24

=
𝑃
𝜋𝑘

2
𝜋 + 𝑖

8 − 𝑖0.24
=
𝑃
𝜋𝑘

� 2
𝜋 + 𝑖�(8 + 𝑖0.24)

(8 − 𝑖0.24)(8 + 𝑖0.24)

=
𝑃
𝜋𝑘
(0.075759 + 0.12727𝑖)

Therefore
𝑌1 =

𝑃
𝑘
(0.024115 + 0.0405𝑖)

Here is a list of 𝑌𝑛 for 𝑛 = 1⋯10 with the phase and magnitude of each (this was done
for 𝑝

𝑘 = 1)
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From the above we see that most of the energy in the response will be contained in
𝑌1 and adding more terms will not have large effect on the response shape. This is
confirmed by the plot that follows.

Plot for the steady state

Since
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Where now 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 𝜋
3𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡

therefore 𝑟 = 3

𝑦𝑠𝑠 =
𝑝
4
+ Re

⎛
⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯
𝑌𝑛𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎠

=
𝑝
4
+ Re

⎛
⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯

𝐹𝑛𝑜𝑑𝑑
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡 +
∞
�

𝑛=2,4,6⋯

𝐹𝑛𝑒𝑣𝑒𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡
⎞
⎟⎟⎟⎟⎠

=
𝑝
4
+ Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯

− 𝑃
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

𝑘
1

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑃 𝑖
𝑛𝜋
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝑝
4
+
𝑝
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−

1
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now let 𝑟 = 3, 𝜁 = 0.04. Normalizing the equation for 𝜛 = 1 which implies 𝜏 = 𝜋 and
𝑘 = 1 and 𝑝 = 1, then the above becomes

𝑦𝑠𝑠 =
1
4
+ Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−

1
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

�1 − (3𝑛)2� + 𝑖2(0.04)3𝑛
𝑒𝑖𝑛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

�1 − (3𝑛)2� + 𝑖2(0.04)3𝑛
𝑒𝑖𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here is a plot of the above for 𝑡 = 0⋯20 seconds for different values of 𝑛



16

We see from the above plot, that 𝑦𝑠𝑠(𝑡) does not change too much as more terms are
added, since when 𝑟 = 3, then 𝑌𝑛 for 𝑛 = 1 contains most of the energy, hence adding
more terms did not have an effect.

Repeating the calculations for 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡

𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 3𝜋
𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 1

3 , therefore

𝑌𝑛 =
𝐹𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

=
𝐹𝑛
𝑘

1

�1 − �
1
3𝑛�

2
� + 𝑖

2
3
(0.04)𝑛

=
𝐹𝑛
𝑘

1

�1 − 𝑛2

9
� + 𝑖0.0267𝑛

The largest 𝑌𝑛 will occur when the denominator of the above is smallest. Similar to
above, we can either find 𝑛 which minimizes the denominator (by taking derivative
and setting it to zero and solve for 𝑛) or we can make a plot and see how the function
behaves. Making a plot shows this
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From the above we see that the smallest value of the denominator happens when 𝑛 = 3.

so using 𝑛 = 3 we find

𝑌3 =
𝐹3
𝑘

1
�1 − (3𝑟)2� + 𝑖2𝜁3𝑟

=
𝐹3
𝑘

1

�1 − �3
1
3
�
2
� + 𝑖2(0.04)3

1
3

=
𝐹3
𝑘

1
𝑖0.08

But 𝐹𝑛 = −
𝑃
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�, hence

𝐹3 = −
𝑃
3𝜋�

2
3𝜋

+ 𝑖�

Therefore

𝑌3 =
− 𝑃
3𝜋
� 2
3𝜋 + 𝑖�

𝑘
1

𝑖0.08

Hence
𝑌3 =

𝑝
𝑘
(−1.3263 + 0.28145𝑖)

Here is a list of 𝑌𝑛 for 𝑛 = 1⋯10 with the phase and magnitude of each (this was done
for 𝑝

𝑘 = 1)
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We see from the above that �𝑌3� is the largest harmonic.

Plot for the steady state

Since
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Where now 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 3𝜋
𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 1

3 ,

therefore from above

𝑦𝑠𝑠 =
𝑝
4
+
𝑝
𝑘
Re
⎛
⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−
1
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�
1

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡
⎞
⎟⎟⎟⎟⎠

Now let 𝑟 = 1
3 , 𝜁 = 0.04, and assuming 𝜏 = 0.5 then 𝜛 = 2𝜋

2𝜏 =
𝜋
0.5 , and assuming 𝑘 = 1,

then the above becomes

𝑦𝑠𝑠 =
1
4
+
1
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−
1
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�
1

�1 − �𝑛
1
3
�
2
� + 𝑖2(0.04)

1
3𝑛
𝑒𝑖𝑛

𝜋
0.5 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

1

�1 − �𝑛
1
3
�
2
� + 𝑖2(0.04)

1
3𝑛
𝑒𝑖𝑛

𝜋
0.5 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here is a plot of the above for 𝑡 = 0⋯20 seconds for different values of 𝑛
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We see now that after 𝑛 = 3 that the response did not change much by adding more
terms, this is because more of the energy are contained in the first 3 harmonics with 𝑌𝑛
being the the largest.
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