
Homework #4 
EMA 545, Spring 2013 

 
Problem 1: Exercise 2.54 from Ginsberg. 
 
Problem 2: (30 pts, each part below is worth 10 pts). 
The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a 
torsional spring at its base as shown below with L = 2 cm, m = 3 grams and  = 20 N/rad.  
The damping ratio for the system is  = 0.02.  The equation of motion for this system is: 
(later we will discuss how to find the EOM for a system like this) 
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A certain read operation involves applying a step torque Γ(t) = F(t) with amplitude F0 and 
duration T as shown below, where F0 is the static torque required to displace the bar 30 
degrees. 
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(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with 

T = 2.5*Td, where Td is the damped period of the system.  Use a numerical procedure, 
preferably Matlab's “ode45” function together with a suitably modified version of 
eom_2_12.m, which is available on the class website. 

(b) Assuming an underdamped response, write down a closed-form solution for the 
response in terms of Heaviside-step functions, and unit step responses, qs(t).  
Compare this with the response that you found numerically. 

(c) Plot the displacement as a function of time for the case where T = 3*Td  and T = 
2.5*Td.  What do you observe?  Why is the residual vibration larger in the latter case?  
(Hint –an undamped version of your analysis in (b) may make this easier to see.) 

 
Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg, 

k=11 kN/m and c=660 N-s/m.  The car is released from rest at t=0 
with z(0)= –0.10m.   It is possible to bring the car exactly to rest by 
exerting an impulsive force f(t)=F0(t-T) at some instant t=T. (e.g. 
hitting it with a very large hammer at just the right instant).  Find the 
magnitude of the impulse and the instant, T, at which it should be 
applied such the bouncing of the car stops completely after at least 
2.0 seconds have elapsed but before 5.0 seconds have elapsed. 
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be 
modeled as a simply-supported beam with length L=50 m.  To simplify the analysis, let’s 
assume that the beam has rectangular cross section with height 18 inches, width 4 feet 
and that it is constructed from steel with =7800 kg/m^3 and E=210 GPa.  (Note that the 
stiffness for various beam configurations is given in Figure 1.1 in the text.)  Model this 
bridge as a SDOF system with an effective mass that is one third of the total mass of the 
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its 
center.  The damping ratio of the system is observed to be =0.01. 
 Suppose that a single student jumping up and down on the bridge can exert a 
force f(t)=(1000 N)cos(ωt) where  can be between 0 and 8 rad/s depending on how 
quickly he jumps up and down.  How many students must jump on the bridge to cause a 
displacement amplitude of 50 cm?  What frequency should they jump at to minimize the 
number of students required?  (Don’t worry, the actual bridge is stiffer and lighter than 
that given in the problem statement.  Extra Credit: What would be more reasonable 
values for its mass and natural frequency? How does this change the solution?) 
 
 

 
Problem 5: 3.2 from Ginsberg.  Note that you are approximating the radar display as a 
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.  
 
Problem 6: 3.5 from Ginsberg.  Also, please sketch the force and the response of the 
system (by hand) over one or two cycles, taking care to properly represent the amplitude 
and phase difference.  Do this for both cases, 0.95 kHz and 1.05 kHz. 
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HW#6, Problem 2e-01, Hard Disk Drive 
SOLUTION 

MSA – Mar. 2009 
 

Response with T = 3*Td 
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The transient response due to the step up is in phase with that of the transient response 
due to the step down, so the two almost cancel.  They do not quite cancel because the 
response has damped somewhat, so the second step is larger than what would be needed 
to cancel the residual vibration from the first step. 
 
 
Response with T = 2.5*Td 
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Matlab code: 
% Solution to HW 2e-01 Hard Disk Drive Head 
  
clear all; close all 
  
% Parameter values 
L = 0.02; % m 
k = 20; % N/rad (torsional) 
m = 0.003; % 
M = (1/3)*m*L^2; K = k; % SDOF parameters 
wn = sqrt(K/M) 
zt = 0.02 
  
F0 = 30*pi/180*k; 
q_0 = 0; q_dot_0 = 0; 
Td = 2*pi/wn; 
Tc = 1/(zt*wn); % time constant of the system 
  
T = 3*Td 
% T = 2.5*Td; 
  
global S 
vns = whos; % put into a global variable 
for k = 1:length(vns); 
    eval(['S.',vns(k).name, ' = ',vns(k).name,';']); 
end 



  
% Time Vector 
ts = [0:Td/10:10*T]; % 4*Tctime vector, sample 10x per period and over 
4 time constants. 
  
% Forcing - sum of step and ramp 
% note h(t) written as (t>0) in Matlab 
F = F0*(ts>0) - F0.*(ts-T>0); 
  
% Analytical Solution 
  
% Unit step and ramp responses from Ginsberg - includes particular and  
% complimentary solutions 
qs = inline(['(1/(M*wn^2))*(1-exp(-zt*wn*t)*(cos(wn*sqrt(1-
zt^2)*t)+',... 
    '(zt/sqrt(1-zt^2))*sin(wn*sqrt(1-
zt^2)*t)))*(t>0)'],'t','M','wn','zt'); 
  
% Response is a sum of step and ramp responses 
q = zeros(size(ts)); 
for k = 1:length(ts) 
    q(k) = F0*qs(ts(k),M,wn,zt) - F0*qs(ts(k)-T,M,wn,zt); 
end 
  
figure(1) 
subplot(2,1,1) 
plot(ts*1e3,F); grid on; 
title('Forcing F(t)'); 
subplot(2,1,2); 
plot(ts*1e3,q*180/pi); grid on; 
title('Response q(t)'); 
xlabel('time (ms)'); ylabel('\theta (^o)'); 
  
% Solution using ODE45 
  
% Define equations of motion in eom_2_12.m 
% Note - ode45 requires only the time span, not the whole time vector 
tic 
[tout,yout] = ode45('eom_2e_1',[ts(1),ts(end)],[q_0; q_dot_0]); 
t_ode = toc 
  
q_ode = yout(:,1); % the first of the y variables is q(t), the second 
is q_dot(t) 
  
% Add red dots to plot above 
hold on; plot(tout*1e3,q_ode*180/pi,'r.'); hold off; 
legend('Analytical','ODE45'); 
 
%%% Equations of Motion: 
function [xdot] = eom_2e_1(t,x) 
  
global S % bring in parameters 
  
% Forcing - sum of step and ramp 



F = S.F0*(t>0) - S.F0.*(t-S.T>0); 
  
% Equations of Motion 
xdot(1,1) = x(2); 
xdot(2,1) = -S.wn^2*x(1)-2*S.zt*S.wn*x(2) + F/S.M; 







% Solution to HW e2-03, Car impulse 
  
m=1000; 
wn=sqrt(11000/1000) 
zt=660/1000/2/wn 
wd=wn*sqrt(1-zt^2); 
lam=-zt*wn+1i*wd; 
  
A=-0.1+1i*0.1*zt*wn/(wn*sqrt(1-zt^2)) 
  
gam=pi-angle(A) 
  
T=(3*pi/2+gam+1*2*pi)/wd 
  
F0=m*wd*abs(A)*exp(-zt*wn*T) 
% Notice, the value of F0 seems rather small.  Remember that it is an 
% impulse, so to get realistic units we need to integrate over the 
impulse. 
% For example, if the impulse were a constant force, Fc, that is 
0.001sec long, 
% then the integral of Fc*0.001 would equal F0, or in other words, 
  
Fc=F0/0.001 % N 
% Maybe that still seems a little small but it seems to be correct. 
  
B=(-1i*F0/(m*wd)) 
  
% Check to see if this works: 
dt=(2*pi/wd)/20; % 20 samples per period 
ts=[0:dt:7]; 
z_IC=real(A*exp(lam*ts)); 
z_F=real(B*exp(lam*(ts-T))).*(ts>T); 
  
figure(1); 
plot(ts,z_IC, ts,z_F, ts, z_IC+z_F,'--'); grid on; 
legend('z_{IC}','z_F','z_{total}'); 
set(get(gca,'Children'),'LineWidth',2); 
xlabel('time (s)'); ylabel('Displacement (m)'); 
 
Command Window Output: 
wn = 
       3.3166 
zt = 
     0.099499 
A = 
         -0.1 +  0.0099995i 
gam = 
     0.099664 
T = 
        3.362 
F0 = 
       109.36 
Fc = 



   1.0936e+05 
B = 
            0 -   0.033138i 
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Matt Allen
Note
A qualitative sketch such as this showing the MAGNITUDE and PHASE difference between the signals is adequate to receive full credit.




