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Assuming zero initial conditions. The input to the system is made up of two inputs. We
tind the response to the first input, then add this response to the response due to the
second input. The first input is
uy(t) = Foh(t) — Foh(t = T)
= Fo(h(t) = h(t = T))

Which is a rectangular pulse of width T starting at ¢ = 0. For example for T = 10 sec. and
FO =1
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Assuming the response to unit step is g;(f) then the response to u;(t) is

§1(6) = Fo[gs(D(t) = gs(t = Tt = )




From appending B, g,(t) = #(l — cos(w,t)), hence the above becomes

1

mw?3

(1 — cos(w,,t))h(t) -

81(t) = Fo (1 = cos(w,(t = T)))h(t - T)

mw3

Looking at the second input given by u,(t) = Foe P*Dh(t — T)

sacoqed inpst

1.2
1.0F
0.8 F h
n&lL "
0.6 "
: 4 -

: -
02t e

= -\--\_\__-_
0.0 —

—0.2
1] 1 20 30 40 5l
tims=

From appendix B, the response to an exponential Foe P'h(t) is

Fo (e-ﬁf - (cos(a)nt) _F Sin(a)nf)))h(t)
) w

m(w% + ﬁz n

Therefore the response to u;(t) is

() = Fo )(e‘ﬁ(t‘T) - (cos(a)n(t -T)) - a)ﬁ sin(w,,(t - T))))h(t -T)

m(a),% + ﬁz n

Adding Eqs[I]and 2| results in the final response

g(t) = g1(t) +&1(%)

= FO( ! 5 (1 = cos(w,H)h(t) - (1 = cos(w,,(t = T)))h(t - T))+
mw?

p

m(rﬁ(t—n — (COS(a)n(t -T) - o, sin(w,(t - T))))h(t -7

mw?3

(1)

For illustration, the following plot shows the response using some values. Using m =1

kg, w, =1rad/sec,T =10sec,f =1,F, =1 Volt.
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2 Problem 2

Problem 2: (30 pts. each part below 1s worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 em. m = 3 grams and « = 20 N/rad.
The damping ratio for the system 1s £ = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

1 5 - -
EmL'lS‘ +ef+x6=T(1)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude Fg and
duration T as shown below. where Fy is the static torque required to displace the bar 30
degrees.

F(1)

F,

(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with
T = 2.5%T4. where Tg is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45™ function together with a suitably modified version of
eom 2 12.m. which is available on the class website.

(b) Assuming an underdamped response. write down a closed-form solution for the
response in terms of Heaviside-step functions. and unit step responses. qs(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T=3%Tg and T=
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

2.1 part(a)

The differential equation is
1
5MLZQ"(;&) +cO'(t) + kO(t) = Fy(h(t) — h(t — T)) (3)

The initial conditions are not given, and assumed to be zero, therefore 6(0) = 0° and
0’(0) = 0 rad/sec. The system is underdamped, hence

wy = w, V1 - 2



Let T;, be the damped period of oscillation given by
27 27

Wi 1=

To obtain an expression for w,, Eq[3|is changed to a standard form 0”(t) + 2w, 0’(t) +

T;=

w26(t) = M
5ML2
2Cwy, ﬁ)ji
3¢ 3k Fo(h(t) - h(t - T))
67+ —=6'() + o(t 4
O+ 30O + 300 = 2 4)
3
Therefore
, 3k
Y= M2
Using k = 20 N/rad, L = 0.02 meter, M = 0.003 kg
3(20
(0.003)(0.02)
or
= V5.0 x107 =| 7071 rad/sec
and
T, = 21 | 0.8888 ms
d= = .
7071.1V1 - 0.022
Therefore

T =25T; =25x%0.88857 =| 2.221 ms
To find F it is assumed the head was initially at rest. Therefore
Fo=k6,
- 20(%) —| 10.472 N-meter

Eq[]becomes
Fo(h(t) - h(t - 2.5T}))
lMLZ
3x20(% )(h(t) h(t - 2.5T,))

(0.003)(0.02)
0" (t) + 2830’ (t) + 5 x 1070(t) = 2.618 x 107 (h(t) — h(t — 0.0022219))

0" (t) + 2Cw, 0’ (t) + w20(t) =

0" () + 2(0.02)(7071)6" () + (5 x 107)0(t) =

This is solved numerically for 0 < ¢ < 10T with the initial conditions 6(0) = 0° and
0’(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.
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A computational software was used to numerically solve the above differential equation
for the solution 6(t).

params = {m + 0.003, L ->0.02, £->0.02, k + 20};

3k b 2m
wy, = — cwg=w,Y1-F ;E0=k—;Td=—;T=2.5Td;
m L 6 g

£
(UnitStep[t] - Unititep[t -2.5Td])
(3=17)

eq=6'"[t] +2Lu. 8" [t] + (u,)" B[t] = input;
s0l = 8[t] /. First@NDSolve[{eq /. params, €'[0] == 0, 8[0] == 0}, &[t], {t, O, 10«T /. params}]:

input =

= Grid[{
{Plot[=ol, {t, 0, 10«T /. params}, Frame + True, GridlLines » Automatic,
GridlinesStyle » [Dashed, LightGray},
FramelLabel -+
{{Hone, Honel,
{"time in sec", Bow[{"numerical solution &(t) Ts = ", (Td /. params) «1000, " ms"}]1}},
ImageSize -+ 300] ,
Plot[input /. params, {t, 0, 10«T /. params}, Frame + True, Gridlines -+ Antomatic,
GridlinesStyle » [Dashed, LightGray}, PlotRange -+ {All, 3.3»10~7},
FramelLabel -
{{None, Nonel, {Row[{"time in sec"}],
Bow[{"input torgque F(t) (H meter), T = ", (T /. params) «1000, " ms"1]1}}, ImageSize + 300]
1
}, Spacings + {1, 1}, Frame —+ All, FrameStyle -+ LightGray]

2.2 Part(b)

From appendix B the response to underdamped second order system to a unit step u(f) is

1—etwnt

h(t)

) =
qs(t) M2



Hence the response U(t) due to (h(t) = h(t - T)) is given by

Fy
B
L) = (i)(qsa)h(t) (=T 1)
3

F
Notice the factor 1—02 This was used since appendix B solution on based on equation

3
of motion 6”(t) + 2Cw,0'(t) + w Q(t) = = whlle in thls case, the equation of motion is
0" (t) + 2Cw,0'(t) + w20(t) = T hence a factor of T, I8 needed to scale the solution.

3
Therefore the analytical solution is

Ut) = 3;’({) L; (1 —e f( ))h(t)
_ SRy (1 — e~twn(t=2T) (cos(a)d(t - n T))))h(t -T)

Maw?

To compare this solution with the numerical solution found in part(a), the two solutions
are plotted side-by-side for the case T = 2.5T
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We see that solutions are in good approximate. Here is a plot of the difference. The error
is in the order of 1077



Plot[sol - analyticalSolution /. params, {C, 0, 10«T /. params}, Frame + True, Gridlines +» Automatic,
GridlLinesStyle -+ {Dashed, LightGray},
FrameLabel -+ {{None, None}, {"time in sec", "difference between exact and numerical solution &(t)"}},

ImageSize - 500, PlotStyle - Red]
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2.3 Part(c)
The analytical solutions for T = 2.5T; and T = 3.0T} are

analytical selution, T=2.5 Ty znalytical solution, T =3 Tz
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We see when the step load duration is T = 2.5T}, the disk head will vibrate with larger
amplitudes than when the step duration was T = 3T.

To understand the reason for this, analysis was done on the undamped version of the
solution for part b

From appendix B the response to undamped second order system to a unit step u(t) is

qs(t) = 77— (1 = cos(w,t))h(t)

M 2

3Fy/L2

Therefore the solution for 0 < t < T is ? (1 — cos(w,t)). This means at t = T which is
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3Fy/L2
Mw,%

2
(1 - cos(w, T)) and O'(T) = —3% (w,, sin(w, T)).

when the step load is removed, O(T) =

For t > T, the load is not present any more and we have free vibration response but with
the above initial conditions obtained at the end of the T. The solution to free vibration of
an undamped system for f = t = T > 0 is given by

~ 0T - -
Q(t) = af ) sinw,t + 6(T) cos w,,t
n
3Fy/L? .
- Moa)z (C‘)n Sln(a)nT)) _ 3F0/L2 -
= i sinw,f + (1 - cos(w, T)) cos wy,t
wy, Maw3
3F,/L? _ (3Fy/L?> 3Fy/L? -
= - MOC{),% sin(w, T) sin w,f + ( Moc{),% - Moc{)% cos(a)nT)) COS Wyt
3F,/L? . 3Fy/L? . 3Fy/L? -
= —MO—C{)% sin(w, T) sin w, t — MO—C{)% cos(w,,T) cos w,t + MO—C{)% Cos wy,t
3F,/L? -  3F/L? -
= - ]\/Ioc/u,% (sin(wnT) sin w,,t + cos(w,,T) cos a)nt) + Moc{),% COS W)t (5)

We have obtained a solution for the time after the step load was removed. We now inves-
tigate the result observed. We see that when T is close to an integer multiple of the period
of the system, where we call the period of the system T to differentiate it from T, then

. = . [21 - .
sm(a)nnT) = sm(FnT) = sin(n2m) =0

Also
~ 21 ~
cos(a)nnT) = cos(?nT) = cos(n2m) =1

Hence the response given by equation [ becomes

o 3F/L? -~ 3Fy/L? -
Q(t) = - o 5 COS Wyt + o 5~ COS Wyt
w5 w5
=0 (6)

But if T occurs at multiple of halves of the period of the system (for example, T =
0.5T,1.5T,2.5T, etc...) then now

) T (2n( T )
sm(a)n(ni)) — sm(?(ni)) — sin(nm) — 0

However

T 2n T
cos a)nnz — COS ?nz — cos(nm) — -1
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We notice that the sign is now negative. This means equation 5 becomes

o 3F/L? . 3Fy/L? -
G(t) = _0_/2 cos w,t — o 5 COS Wyt
a)n a)i’l
6F/L? 5
= - Mo cos wy,t (7)

Comparing Equandwe see that| when T is an integer multiple of the period of the system

4

then the response after T is minimal (zero for the case on undamped)

While| when T occurs at multiple of halves of the period of the system |the response is

large beyond the time T.

The above analysis was done for undamped system, but the same idea carries to the
underdamped case. This explains why the response dies out quickly when T' = 3T; while
it was large when T = 2.5T}
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3 Problem 3

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg.
=11 kN/m and ¢=660 N-s/m. The car is released from rest at =0

T 1) with z(0)=—0.10m. Itis possible to bring the car exactly to rest by
exerting an impulsive force f{f)=F5(1-T) at some instant 1=T. (e.g.
m hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant. T. at which it should be
applied such the bouncing of the car stops completely after at least
2 k' 2.0 seconds have elapsed but before 5.0 seconds have elapsed.

4 8

First lets look at the free vibration response (zero input response, called u,;). The damping

.o _ o _ 660 _ 2 _\/Z_ 10000
ratloC—Cr—ZM—zm—9.9499X10 = 0.1 |and w,, = ~ = —moohnce

w, = 3.162rad/sec, and w; = w, V1 — (¢ = 3.1623V1 - 0.12. Hence | w,; = 3.146 rad/sec |

i isT, = & = 2 _
The damped period of the system is T; = on = 3146 = 1.997 |seconds and the natural
periodis T, = Z—n = 321% = 1.987 |seconds.

Hence the system is underdamped and the solution is

Uy = Re(Ae(iwd‘Cwn)t)

Where A = a + ib is the complex amplitude. At t = 0 we have

a = u,(0) =-0.1
and u/;,(0) = uj = Re((iwy — Cw,)(a + ib)) = —bw,; — alw,, therefore b = chwn Since car
was dropped from rest, then we take 1 = 0 which leads to b = —(_0'1)3(2% = 01

Hence, since a = u((0) = ug and

—ug — aCw,

b= =01

wy
then
uy(t) = Re((ﬂ — ib)e(iwd—Cwn)t)

= Rele nt|ug — i Up + aCwy elwat
Wgq

0+
= e‘Cwﬂt(uo(O) cos wyt + (blgw—aCa)n) sin a)dt) (8)
d
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For the numerical values gives, we now can plot this solution

() = e 01616240 1 cos 3.146¢ + 0.1 sin 3.146¢)

Frez vibration mezponss

.:._1;:.- I|"-h"|
]
§
|
0.05f— il .u"r Yy
_ || |I II| l|II ,.""-\.l. -
- ¥ oo +—+—— .’If X LE N —
| | ||I || II|II I.' \ \‘\,_.-' —
| | \ g ]
| i
—0.05 [ l II | ok
05 '|
1 )
d \/ _
_o10ll 4
0 2 4 6 B 10

The phase is given by tan‘l(S) = tan‘l(%) = 2.356 rad = 135°, In complex plane, u(t) is

Zero input (free vibration A
put ( ) |A| - Ja2 1 p2?

solution vector at time t

AR
Se

%{‘ \\\
COdt \| \\ \

Ui = Re(Agleatont)

Now we add the zero initial conditions response, also called zero state response u, for
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an input which is an impulse using appendix B.

F
u(t) = e-Cwnf( 0 sina)dt)h(t)

mwg;
Hence u,, for an impulse that occurs at time T is

U(t) = e‘cf"ﬂ(t‘T)(i sin wy(t - T))h(t -T) 9)
mawg

Hence the solution is found by combining Eq.[8|and Eq[9]

u(t) = Uzt Uy

r F
= e—Cwnf(uO(O) cos wyt + (”O—an") sin a)dt)h(t) + e—Cwn(l‘—n(  sin wy(t - T))h(t -T)
wgq Mmay

We need now to solve for T and F; in order to meet the requirements that u(t) should
become zero between for 2 < t < 5. To do this in the complex plane, we draw the zero
state response as a vector

F
Uy = e‘c“’n(f‘ﬂ(—o sin w,;(t — T))h(t -7
mawg
—Cawy(t-T)
= Re Foe—leiwd(t—T) h(t-T)
mawg; i

—Cwy(t=-T) . b
= Re[F0 iwat=D-5) s -
mwy

Foe—cﬁ)n (t-T)

and phase | wyt — wyT — = |Now to solve the

Hence u,, vector has| magnitude 5

mawy

problem of finding T and Fj: To make the response become zero we need the magnitude
of u,, to be equal but opposite in sign to the magnitude of u,; so that the projection on
the x-axis cancel out (the projection on the x-axis of the vector is the real part which is
the solution). Therefore, for the projection of u,; to be the same as the projection of u,;
but of different sign, the following diagram shows all the possible T values that allows
this. We will pick the first T value which is larger than 2 seconds to use.
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This vector represents the response
to the impulse for zero initial

Zero input (free vibration) cond.itions shown here at one
solution vector at time 0 possible value for T
I
Magnitude of /P Magnitude of
this vector is : this vector is
|A|esent | Foe <on®D

: Mag

I

I

I

I

Thi
o S ang/e is
) R aT 4 =
2
We want these 2 values to
be the same for the total
response to be zero
2n-2-Z §7'(
From the above diagram, we need w,;T + T =2n-Z% hence T = # =4 =15

seconds. Hence this value of T is not acceptable We now look for the next posmble T.
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This vector represents the response
to the impulse for zero initial

Zero input (free vibration) cond.itions shown here at one
solution vector at time 0 possible value for T
wdtﬂ\
|
Magnitude of /k Magnitude of
this vector is : \ this vector is
|A | glont : w4t FoetentD)

: Mg

I 450

I 450

|

I 450
|
[
|
| w, 1. gk s
| al + z

~— |
|

We want these 2 values to
be the same for the total
response to be zero
27_[ Tt T
From the above diagram we see it will be w;T + E =21+ “hence T = —%+-2 =175

seconds. Hence this is still too early to apply the impulse. We look at the next poss1ble
case. We see that now we must rotate the vector all the way it was in the first diagram
above to get the projection on the x-axis canceling the projection of the free vibration
vector. Hence now the relation to solve for is

Tt Tt
a)dT+E:47T—Z

Where in the above we added full 27 to the first case we considered above. This gives

47t —

PPI:I
NI:I

T = = 3.25 sec

e
.We have found T which brings the system to halt after at least 2 seconds has elapsed.
Now we find Fj This is done by equating the amplitudes of the vectors as follows

Foe cwn(t=T) .
0 — e—Cwnt|A|
mawg,



Now fort = T = 3.25 second, plug-in numerical values

Fo — e—(O.l)(3.162)(3.25)\/0‘12 +0.12

1000(3.146)
Fo 50607102
3146.0
Fo = 159.21

To verify, here is a plot of the response when the impulse hit with

Fy =159.21 N at t = 3.25 seconds

Response showing effect of impulse
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4 Problem 4

Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis. let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force 1s applied at 1ts
center. The damping ratio of the system 1s observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force fit}=(1000 N)cos(wt) where @ can be between 0 and 8xn rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 em? What frequency should they jump at to minimize the
number of students required? (Don’t worry. the actual bridge 1s stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

4.1 First part

Let A be the area of the cross section and p the mass density and L the length, then actual
mass is

Myctyal = LAP
— 50(18 x 0.0254)(4 x 0.3048)(7800)
= 217393 kg

Hence we will use
. 217393

= 72464 kg

The actual stiffness for a simply supported mean with loading at the center is %fl where
I is the area moment of inertia. Hence

wh® (4 x 0.3048)(18 x 0.0254)°
12 12

I= = 0.00971 m*
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Therefore the stiffness of the beam is

48EI

T
48(210 x 10°)(0.00971)

= =05 = 783014 N/m
The natural frequency is
/ /783014 — 3.087rad)
T rad/sec

=0. 523 Hz

Therefore, assuming the loading is given by F, cos(@t) where @ is the forcing frequency.
The dynamic response at any time is given by

Fo/k

J-r) + oy

Where r = wﬂ We start by drawing |X | vs. @ for the load of 1000 N by changing @ from 0
to 81, Hence for a single student the displacement vs. forcing frequency is

A

parms = {£f + 1000, k—» 783014, wn—» 3.287, z—»0.01};
f/k

\/(1_ (%}2)2 B (22%}2 ;

Plot[y[w] /. parms, {w, 0, 8Pi}, PlotRange » {{0, 8}, All},
GridLines » Automatic, Frame —+ True,

ylw_] :=

FrameLabel -+ {{"|X|", None}, {"w (rad/sec)", "displacement wvs. frecquency"}}]

displacement vs. frequency

0.06 |

w (rad/sec)
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Hence we see that for one student, the maximum displacement is around 6 cm when the
student is jumping at resonance frequency.

To answer the question of how many students are needed to cause |X] to be 50 cm then
that will depend on what forcing frequency is used. Now we will find the minimum
number of students needed.

The minimum number will be when they all jump at the resonance frequency which is
found from solving for @,esonance iN

Wresonance m

W, B
Wresonance = Wn 1- 262
= 3.287/1 — 2(0.01)?
= 3.28667 rad/sec

Therefore, at this forcing frequency, we now solve for F; to determine the number of
students

. Fok

- 2
@ 2 o 2
1- (M) + (ZC VESOmmce)
Wy Wy
@ 2)? o 2
Fo = k[X| (1 - (M) ] + (QCM)
Wy Wy,

2
3.28667\° 3.28667)\>
= (783014)(0'5)“1_( 3287 ) ) +(2(O'Ol) 3.287 )

=7829.75 N

Therefore we need at least| 8 students |all jumping at 3.287 rad/sec to cause a displace-

ment of at least 50 cm.

5 Extra part

. . @
To make the structure avoid resonance, we need to make sure the ratio — stays away
n

from one. This is the ratio of the forcing frequency to the natural frequency. One way is to
make w, much larger than any expected @ that can occur is typical use of this structure.

But to make w,, = \/g large, means either making m small or making k large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be a
better solution.
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The bridge can be made more stiff in many ways, such as by adding additional truss
structure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence w,, = 1/;—1( = 1/2(775224) = 4.649rad /sec.

Therefore NOW @,psonance = W V1 —20% = 4.649+/1 — 2(0.01)* = 4.65 rad/sec. Now the
same number of students (8) as before, jumping at same frequency of 3.28667 will cause
displacement of

A 8F,/k
X| = -

5)\2 )2

Y- () )

B 8000/783014

1 _ (328667 2\? 20 01)3.28667 2
| 2649 + 4649
= 0.02 meter

Therefore by making the bridge twice as stiff, now the same 8 students at @ = 3.287 will
cause only 2 cm displacement instead of 50 cm.

6 Problem 5

A radar display is to be tested by mounting it on spring-dashpot suspension and subject-
ing it to harmonic force Q = F cos(@t). The mounted mass is 8 kg and C = 0.25. A free
vibration shows that damped natural frequency f; = 5hz.It is observed that when the
force is applied at very low frequency the displacement amplitude is 2 mm. The test is to
be performed at 5.2 Hz. What will be the steady state response?

We are given are the following
m = 8 kg
=025

wy = w, V1 — % =27n(5) rad/sec
Fo/k = 0.002 meter
@ = 27(5.2) rad/sec

cud _ 27'[(5)
V1-¢2 V1-0.252

Hence w, = = 32.446 rad/sec. The steady state response is given by

Ugs = Re(f(ei@ t)



where X = |X|ei9. Hence

N Fo/k
X| = o
5\ 2 2
()] +fecs)
~ 0.002
27622\ 2n(52)\?
(1 B (32.446) ) * (2(0'25) 32.446)
= 0.00397
and
2Cr
P |
0 = tan (1 — rz)
_ e [2025)
0
tan~1(co0)
Since 0 < O < « then the phase is
T
0=—
2
Hence
u= Re(f(e"“_’t)
- Re(0.00397eigei@t)

— 0.00397 cos(a’)t + g)
— —0.00397 sin(@?)

22
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= Plot[-0.00397 8in[2+Pix5.2%t], {t, 0, 1}, Frame » True, GridLines » Automatic,

FrameLabel - {{"u,;(t)", None}, {t, "setady state responsem}}]

setady state response

0.004 F7

0.002 i — — — —

tigy (1)

0.000 [ T T T ] l T T | | | 1

—0.002

—0004k, ¥

7 Problem 6

A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1
khz is subjected to a harmonic excitation 1.2 sin @t kN. The steady state amplitude when
@ =1 khz is observed to be 2.4 mm. Determine the steady state response at @ = 0.95 khz

and @ = 1.05 khz.

We are given

m =10 kg
w, = 271(1000) rad/sec
Fy=1200 N

IX| = 2.4 x 1073 meter when @ = w,,

Since w? = E, hence k = w2m = (27'((1000))2(10), therefore
m

k =3.949 x 108 N/m

Now when @ = w,, we have

2l Fo/k
@ 2 2 @ 2
(1 (%) ) #(2c)
1200/(3.949 x 10°)
24x107 =
(20)°
~3.039%x10°°

2C
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Hence
3.039 x 1076
- (2 X 24 % 10—3)
= 0.000633

7.1 Part (1)

when | @ =2m1(950) | now r = wi < 1 hence dynamic magnification factor is positive.

Therefore loading and displacement will be in phase with each others. (i.e. displacement
is in same direction as force). Since the force is sin then the response will be sin with
same frequency but different phase and amplitude. Hence let

Uy, = Xsin(wt — 0)

Where
Eq/k
X = o/
@ 2 2 @ 2
(1‘(:)) +(2c)
1200/(3.949 X 108)
_ (e ) 2(0.000633) 22 |
27(1000) ) 27(1000)
= 3.116 X 10™° meter
and
2Cr
6 = tan™!
an (1)
271(950)
| 2(0.000633) ;-
= tan

1— 271(950) 2
271(1000)
= tan™! (1.234 X 10—2)

= (0.01235 radians
=0.71°

Hence steady state response is

Uy = 3.116 X 107° sin(@t — 0.71°)

Hence we see that the displacement is lagging the load by 0.71°. On complex plane it
looks as follows
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Im When r<1 the displacement
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7.2 Part (2)
When | @ = 27(1050) | now r = (Z_) > 1 hence dynamic magnification factor is negative.

Therefore loading and displacement will be out of phase with loading. (i.e .displacement
is in opposite direction to force). Doing the same calculations are done as above

ug = Xsin(@t — 0)
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where X
. Fo/k
0] 2 2 @ 2
(1 -(2) ) +(2¢)
1200/(3.949 x 10°)
1— 27(1050) 2\? " 2(0 000633)2n(1050) 2
27t(1000) ) 271(1000)
= 2.964 x 10~ meter
and

2Cr
0 = tan™!
an (1 )
27(1050)

2(0.000633) 27(1000)
3 (271(1050))2

= tan™!

27(1000)
0.0013293
-0.1025 )
= 3.12862 radians
=179.257°

—_

=tan™

Hence steady state response is

U = 2.964 X 107° sin(@t — 179.257°)

On complex plane it looks as follows
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d% We see that when r>1 then as load
6\ increases in one direction, the displacement
/\ is increasing but in opposite direction
displacement \{A
i ©
%,\O Im
_J I::> Load increasing

[
| load )‘;
I _ h—
Q)
[
[

| Re

o)) |
[
: When r>1 the displacement
Displacement increasing Oty moves with load, but lags
<:| disp | behind it by
'
2
2
@\
/

load

Here is a plot by hand for the above 2 cases. First, the period that the loading is using

=2 1 _10526%x103sec
@ 950
T =1.053 ms
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