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1 problem 1

Assuming zero initial conditions. The input to the system is made up of two inputs. We
find the response to the first input, then add this response to the response due to the
second input. The first input is

𝑢1(𝑡) = 𝐹0ℎ(𝑡) − 𝐹0ℎ(𝑡 − 𝑇)
= 𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

Which is a rectangular pulse of width 𝑇 starting at 𝑡 = 0. For example for 𝑇 = 10 sec. and
𝐹0 = 1

Assuming the response to unit step is 𝑔𝑠(𝑡) then the response to 𝑢1(𝑡) is

𝑔1(𝑡) = 𝐹0����������𝑔𝑠(𝑡)ℎ(𝑡) −���������������������𝑔𝑠(𝑡 − 𝑇)ℎ(𝑡 − 𝑇)�
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From appending B, 𝑔𝑠(𝑡) =
1

𝑚𝜔2𝑛
(1 − cos(𝜔𝑛𝑡)), hence the above becomes

𝑔1(𝑡) = 𝐹0

⎛
⎜⎜⎜⎜⎜⎝
�����������������������������1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡) −

�������������������������������������������1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛(𝑡 − 𝑇)))ℎ(𝑡 − 𝑇)

⎞
⎟⎟⎟⎟⎟⎠ (1)

Looking at the second input given by 𝑢2(𝑡) = 𝐹0𝑒−𝛽(𝑡−𝑇)ℎ(𝑡 − 𝑇)

From appendix B, the response to an exponential 𝐹0𝑒−𝛽𝑡ℎ(𝑡) is

𝐹0
𝑚�𝜔2

𝑛 + 𝛽2�
�𝑒−𝛽𝑡 − �cos(𝜔𝑛𝑡) −

𝛽
𝜔𝑛

sin(𝜔𝑛𝑡)��ℎ(𝑡)

Therefore the response to 𝑢2(𝑡) is

𝑔2(𝑡) =
𝐹0

𝑚�𝜔2
𝑛 + 𝛽2�

�𝑒−𝛽(𝑡−𝑇) − �cos(𝜔𝑛(𝑡 − 𝑇)) −
𝛽
𝜔𝑛

sin(𝜔𝑛(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇) (2)

Adding Eqs 1 and 2 results in the final response

𝑔(𝑡) = 𝑔1(𝑡) + 𝑔1(𝑡)

= 𝐹0�
1

𝑚𝜔2
𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡) −

1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛(𝑡 − 𝑇)))ℎ(𝑡 − 𝑇)�+

𝐹0
𝑚�𝜔2

𝑛 + 𝛽2�
�𝑒−𝛽(𝑡−𝑇) − �cos(𝜔𝑛(𝑡 − 𝑇)) −

𝛽
𝜔𝑛

sin(𝜔𝑛(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇)

For illustration, the following plot shows the response using some values. Using 𝑚 = 1
kg, 𝜔𝑛 = 1 rad/sec, 𝑇 = 10 sec, 𝛽 = 1, 𝐹0 = 1 Volt.
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2 Problem 2

2.1 part(a)
The differential equation is

1
3
𝑀𝐿2𝜃′′(𝑡) + 𝑐𝜃′(𝑡) + 𝑘𝜃(𝑡) = 𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇)) (3)

The initial conditions are not given, and assumed to be zero, therefore 𝜃(0) = 0∘ and
𝜃′(0) = 0 rad/sec. The system is underdamped, hence

𝜔𝑑 = 𝜔𝑛�1 − 𝜁2
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Let 𝑇𝑑, be the damped period of oscillation given by

𝑇𝑑 =
2𝜋
𝜔𝑑

=
2𝜋

𝜔𝑛√1 − 𝜁2

To obtain an expression for 𝜔𝑛, Eq 3 is changed to a standard form 𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) +
𝜔2
𝑛𝜃(𝑡) =

𝐹0(ℎ(𝑡)−ℎ(𝑡−𝑇))
1
3𝑀𝐿2

𝜃′′(𝑡) +

2𝜁𝜔𝑛
�3𝑐
𝑀𝐿2

𝜃′(𝑡) +

𝜔2
𝑛

�3𝑘
𝑀𝐿2

𝜃(𝑡) =
𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

1
3𝑀𝐿

2
(4)

Therefore
𝜔2
𝑛 =

3𝑘
𝑀𝐿2

Using 𝑘 = 20 N/rad, 𝐿 = 0.02meter,𝑀 = 0.003 kg

𝜔2
𝑛 =

3(20)
(0.003)(0.02)2

= 5.0 × 107

or
𝜔𝑛 = √5.0 × 107 = 7071 rad/sec

and
𝑇𝑑 =

2𝜋
7071.1√1 − 0.022

= 0.8888ms

Therefore
𝑇 = 2.5𝑇𝑑 = 2.5 × 0.88857 = 2.221ms

To find 𝐹0 it is assumed the head was initially at rest. Therefore

𝐹0 = 𝑘𝜃0

= 20�
𝜋
6
� = 10.472 N-meter

Eq 4 becomes

𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

𝐹0(ℎ(𝑡) − ℎ(𝑡 − 2.5𝑇𝑑))
1
3𝑀𝐿

2

𝜃′′(𝑡) + 2(0.02)(7071)𝜃′(𝑡) + �5 × 107�𝜃(𝑡) =
3 × 20�𝜋6 �(ℎ(𝑡) − ℎ(𝑡 − 2.5𝑇𝑑))

(0.003)(0.02)2

𝜃′′(𝑡) + 283𝜃′(𝑡) + 5 × 107𝜃(𝑡) = 2.618 × 107(ℎ(𝑡) − ℎ(𝑡 − 0.0022219))

This is solved numerically for 0 < 𝑡 < 10𝑇 with the initial conditions 𝜃(0) = 0∘ and
𝜃′(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.
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A computational software was used to numerically solve the above differential equation
for the solution 𝜃(𝑡).

2.2 Part(b)
From appendix B the response to underdamped second order system to a unit step 𝑢(𝑡) is

𝑞𝑠(𝑡) =
1

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛𝑡�cos(𝜔𝑑𝑡) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑𝑡)��ℎ(𝑡)
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Hence the response 𝑈(𝑡) due to 𝐹0
� 13𝑚𝐿

2�
(ℎ(𝑡) − ℎ(𝑡 − 𝑇)) is given by

𝑈(𝑡) =
𝐹0

�1
3𝐿

2�
����������𝑞𝑠(𝑡)ℎ(𝑡) −���������������������𝑞𝑠(𝑡 − 𝑇)ℎ(𝑡 − 𝑇)�

Notice the factor 𝐹0
1
3𝐿

2
. This was used since appendix B solution on based on equation

of motion 𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

1
𝑚 while in this case, the equation of motion is

𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

𝐹0
1
3𝑚𝐿

2
, hence a factor of 𝐹0

1
3𝐿

2
is needed to scale the solution.

Therefore the analytical solution is

𝑈(𝑡) =
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛𝑡�cos(𝜔𝑑𝑡) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑𝑡)��ℎ(𝑡)

−
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛(𝑡−2𝑇)�cos(𝜔𝑑(𝑡 − 𝑇)) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇)

To compare this solution with the numerical solution found in part(a), the two solutions
are plotted side-by-side for the case 𝑇 = 2.5𝑇𝑑

We see that solutions are in good approximate. Here is a plot of the difference. The error
is in the order of 10−7
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2.3 Part(c)
The analytical solutions for 𝑇 = 2.5𝑇𝑑 and 𝑇 = 3.0𝑇𝑑 are

We see when the step load duration is 𝑇 = 2.5𝑇𝑑, the disk head will vibrate with larger
amplitudes than when the step duration was 𝑇 = 3𝑇𝑑.

To understand the reason for this, analysis was done on the undamped version of the
solution for part 𝑏

From appendix B the response to undamped second order system to a unit step 𝑢(𝑡) is

𝑞𝑠(𝑡) =
1

𝑀𝜔2
𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡)

Therefore the solution for 0 < 𝑡 < 𝑇 is 3𝐹0/𝐿2

𝑀𝜔2𝑛
(1 − cos(𝜔𝑛𝑡)). This means at 𝑡 = 𝑇 which is
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when the step load is removed,𝜃(𝑇) = 3𝐹0/𝐿2

𝑀𝜔2𝑛
(1 − cos(𝜔𝑛𝑇)) and𝜃′(𝑇) = −

3𝐹0/𝐿2

𝑀𝜔2𝑛
(𝜔𝑛 sin(𝜔𝑛𝑇)).

For 𝑡 > 𝑇, the load is not present any more and we have free vibration response but with
the above initial conditions obtained at the end of the 𝑇. The solution to free vibration of
an undamped system for ̃𝑡 = 𝑡 − 𝑇 ≥ 0 is given by

𝜃� ̃𝑡� =
𝜃′(𝑇)
𝜔𝑛

sin𝜔𝑛 ̃𝑡 + 𝜃(𝑇) cos𝜔𝑛 ̃𝑡

=
−3𝐹0/𝐿2

𝑀𝜔2𝑛
(𝜔𝑛 sin(𝜔𝑛𝑇))

𝜔𝑛
sin𝜔𝑛 ̃𝑡 +

3𝐹0/𝐿2

𝑀𝜔2
𝑛
(1 − cos(𝜔𝑛𝑇)) cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 + �
3𝐹0/𝐿2

𝑀𝜔2
𝑛
−
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos(𝜔𝑛𝑇)� cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos(𝜔𝑛𝑇) cos𝜔𝑛 ̃𝑡 +
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 + cos(𝜔𝑛𝑇) cos𝜔𝑛 ̃𝑡� +

3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 (5)

We have obtained a solution for the time after the step load was removed. We now inves-
tigate the result observed. We see that when 𝑇 is close to an integer multiple of the period
of the system, where we call the period of the system 𝑇̃ to differentiate it from 𝑇, then

sin�𝜔𝑛𝑛𝑇̃� = sin�
2𝜋
𝑇̃
𝑛𝑇̃� = sin(𝑛2𝜋) = 0

Also
cos�𝜔𝑛𝑛𝑇̃� = cos�

2𝜋
𝑇̃
𝑛𝑇̃� = cos(𝑛2𝜋) = 1

Hence the response given by equation 5 becomes

𝜃� ̃𝑡� = −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 +
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= 0 (6)

But if 𝑇 occurs at multiple of halves of the period of the system (for example, 𝑇 =
0.5𝑇̃, 1.5𝑇̃, 2.5𝑇̃, etc...) then now

sin�𝜔𝑛�𝑛
𝑇̃
2 ��

→ sin�
2𝜋
𝑇̃ �

𝑛
𝑇̃
2 ��

→ sin(𝑛𝜋) → 0

However
cos�𝜔𝑛𝑛

𝑇̃
2 �

→ cos�
2𝜋
𝑇̃
𝑛
𝑇̃
2 �

→ cos(𝑛𝜋) → −1
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We notice that the sign is now negative. This means equation 5 becomes

𝜃� ̃𝑡� = −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= −
6𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 (7)

ComparingEqs 6 and 7we see that when 𝑇 is an integer multiple of the period of the system ,
then the response after 𝑇 is minimal (zero for the case on undamped)

While when 𝑇 occurs at multiple of halves of the period of the system ,the response is
large beyond the time 𝑇.

The above analysis was done for undamped system, but the same idea carries to the
underdamped case. This explains why the response dies out quickly when 𝑇 = 3𝑇𝑑 while
it was large when 𝑇 = 2.5𝑇𝑑
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3 Problem 3

First lets look at the free vibration response (zero input response, called 𝑢𝑧𝑖). The damping

ratio 𝜁 = 𝑐
𝑐𝑟
= 𝑐

2√𝑘𝑚
= 660

2√11000×1000
= 9.9499 × 10−2 ≈ 0.1 and 𝜔𝑛 = �

𝑘
𝑚 = �

10000
1000 hence

𝜔𝑛 = 3.162 rad/sec, and 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 = 3.1623√1 − 0.12 . Hence 𝜔𝑑 = 3.146 rad/sec .

The damped period of the system is 𝑇𝑑 =
2𝜋
𝜔𝑑
= 2𝜋

3.146 = 1.997 seconds and the natural

period is 𝑇𝑛 =
2𝜋
𝜔𝑛
= 2𝜋

3.162 = 1.987 seconds.

Hence the system is underdamped and the solution is

𝑢𝑧𝑖 = Re�𝐴̂𝑒(𝑖𝜔𝑑−𝜁𝜔𝑛)𝑡�

Where 𝐴̂ = 𝑎 + 𝑖𝑏 is the complex amplitude. At 𝑡 = 0 we have

𝑎 = 𝑢𝑧𝑖(0) = −0.1

and 𝑢′𝑧𝑖(0) ≡ 𝑢′0 = Re((𝑖𝜔𝑑 − 𝜁𝜔𝑛)(𝑎 + 𝑖𝑏)) = −𝑏𝜔𝑑 − 𝑎𝜁𝜔𝑛 therefore 𝑏 = −𝑢′0−𝑎𝜁𝜔𝑛
𝜔𝑑

. Since car

was dropped from rest, then we take 𝑢′0 = 0 which leads to 𝑏 = − (−0.1)(0.1)3.162
3.146 = 0.1

Hence, since 𝑎 = 𝑢′0(0) ≡ 𝑢0 and

𝑏 =
−𝑢′0 − 𝑎𝜁𝜔𝑛

𝜔𝑑
= 0.1

then

𝑢𝑧𝑖(𝑡) = Re�(𝑎 − 𝑖𝑏)𝑒(𝑖𝜔𝑑−𝜁𝜔𝑛)𝑡�

= Re�𝑒−𝜁𝜔𝑛𝑡�𝑢0 − 𝑖�
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
��𝑒𝑖𝜔𝑑𝑡�

= 𝑒−𝜁𝜔𝑛𝑡�𝑢0(0) cos𝜔𝑑𝑡 + �
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
� sin𝜔𝑑𝑡� (8)
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For the numerical values gives, we now can plot this solution

𝑢𝑧𝑖(𝑡) = 𝑒−0.1(3.162)𝑡(−0.1 cos 3.146𝑡 + 0.1 sin 3.146𝑡)

The phase is given by tan−1� 𝑏𝑎� = tan−1� 0.1
−0.1

� = 2.356 𝑟𝑎𝑑 = 1350, In complex plane, 𝑢ℎ(𝑡) is

e 
n t

a
2


b
2

  tan1 b
a

d t

eidt

e
nt Â

 1350

θ

d t

Zero input (free vibration) 
solution vector at time t

uzi  Re Âeidnt

Â
e 

n t

Â  a2  b2

Now we add the zero initial conditions response, also called zero state response 𝑢𝑧𝑠 for
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an input which is an impulse using appendix B.

𝑢𝑧𝑠(𝑡) = 𝑒−𝜁𝜔𝑛𝑡�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑𝑡�ℎ(𝑡)

Hence 𝑢𝑧𝑠 for an impulse that occurs at time 𝑇 is

𝑢𝑧𝑠(𝑡) = 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇) (9)

Hence the solution is found by combining Eq. 8 and Eq 9

𝑢(𝑡) = 𝑢𝑧𝑖 + 𝑢𝑧𝑠

= 𝑒−𝜁𝜔𝑛𝑡�𝑢0(0) cos𝜔𝑑𝑡 + �
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
� sin𝜔𝑑𝑡�ℎ(𝑡) + 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�

𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇)

We need now to solve for 𝑇 and 𝐹0 in order to meet the requirements that 𝑢(𝑡) should
become zero between for 2 < 𝑡 < 5. To do this in the complex plane, we draw the zero
state response as a vector

𝑢𝑧𝑠 = 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇)

= Re�
𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑

1
𝑖
𝑒𝑖𝜔𝑑(𝑡−𝑇)�ℎ(𝑡 − 𝑇)

= Re�
𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
𝑒𝑖�𝜔𝑑(𝑡−𝑇)−

𝜋
2 ��ℎ(𝑡 − 𝑇)

Hence 𝑢𝑧𝑠 vector has magnitude 𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
and phase 𝜔𝑑𝑡 − 𝜔𝑑𝑇 −

𝜋
2 Now to solve the

problem of finding 𝑇 and 𝐹0: To make the response become 𝑧𝑒𝑟𝑜 we need the magnitude
of 𝑢𝑧𝑠 to be equal but opposite in sign to the magnitude of 𝑢𝑧𝑖 so that the projection on
the x-axis cancel out (the projection on the x-axis of the vector is the real part which is
the solution). Therefore, for the projection of 𝑢𝑧𝑠 to be the same as the projection of 𝑢𝑧𝑖
but of different sign, the following diagram shows all the possible 𝑇 values that allows
this. We will pick the first 𝑇 value which is larger than 2 seconds to use.
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d tÂ ent

This vector represents the response 
to the impulse for zero initial 
conditions shown here at one 
possible value for T

F0entT

md

Magnitude of 
this vector is

Magnitude of 
this vector is

Zero input (free vibration) 
solution vector at time 0

We want these 2 values to 
be the same for the total 

response to be zero

d t

450

450

450

This angle is
d T  

2

From the above diagram, we need 𝜔𝑑𝑇 +
𝜋
2 = 2𝜋 − 𝜋

4 , hence 𝑇 =
2𝜋−𝜋

4 −
𝜋
4

𝜔𝑑
=

3
2𝜋

𝜋 = 1.5
seconds. Hence this value of 𝑇 is not acceptable. We now look for the next possible 𝑇.
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d tÂ ent

This vector represents the response 
to the impulse for zero initial 
conditions shown here at one 
possible value for T

F0entT

md

Magnitude of 
this vector is

Magnitude of 
this vector is

Zero input (free vibration) 
solution vector at time 0

We want these 2 values to 
be the same for the total 

response to be zero

d t

450

450

450

This angle is
d T  

2

From the above diagram we see it will be 𝜔𝑑𝑇 +
𝜋
2 = 2𝜋 + 𝜋

4 hence 𝑇 =
2𝜋+𝜋

4 −
𝜋
2

𝜋 = 1.75
seconds. Hence this is still too early to apply the impulse. We look at the next possible
case. We see that now we must rotate the vector all the way it was in the first diagram
above to get the projection on the x-axis canceling the projection of the free vibration
vector. Hence now the relation to solve for is

𝜔𝑑𝑇 +
𝜋
2
= 4𝜋 −

𝜋
4

Where in the above we added full 2𝜋 to the first case we considered above. This gives

𝑇 =
4𝜋 − 𝜋

4 −
𝜋
2

𝜋
= 3.25 sec

.We have found 𝑇 which brings the system to halt after at least 2 seconds has elapsed.
Now we find 𝐹0 This is done by equating the amplitudes of the vectors as follows

𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
= 𝑒−𝜁𝜔𝑛𝑡�𝐴̂�
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Now for𝑡 = 𝑇 = 3.25 second, plug-in numerical values

𝐹0
1000(3.146)

= 𝑒−(0.1)(3.162)(3.25)√0.12 + 0.12

𝐹0
3146.0

= 5.0607 × 10−2

𝐹0 = 159.21

To verify, here is a plot of the response when the impulse hit with

𝐹0 = 159.21 N at 𝑡 = 3.25 seconds
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4 Problem 4

4.1 First part
Let𝐴 be the area of the cross section and 𝜌 the mass density and 𝐿 the length, then actual
mass is

𝑚𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐿𝐴𝜌
= 50(18 × 0.0254)(4 × 0.3048)(7800)
= 217393 kg

Hence we will use
𝑚 =

217393
3

= 72464 kg

The actual stiffness for a simply supported mean with loading at the center is 48𝐸𝐼
𝐿3 where

𝐼 is the area moment of inertia. Hence

𝐼 =
𝑤ℎ3

12
=
(4 × 0.3048)(18 × 0.0254)3

12
= 0.00971m4
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Therefore the stiffness of the beam is

𝑘 =
48𝐸𝐼
𝐿3

=
48�210 × 109�(0.00971)

503
= 783014 N/m

The natural frequency is

𝜔𝑛 = �
𝑘
𝑚
=
�
783014
72464

= 3.287rad/sec

𝑓𝑛 = 0.523 Hz

Therefore, assuming the loading is given by 𝐹0 cos(𝜔̄𝑡)where 𝜔̄ is the forcing frequency.
The dynamic response at any time is given by

�𝑋̂� =
𝐹0/𝑘

��1 − 𝑟
2�

2
+ (2𝜁𝑟)2

Where 𝑟 = 𝜔̄
𝜔𝑛
.We start by drawing �𝑋̂� vs. 𝜔̄ for the load of 1000 N by changing 𝜔̄ from 0

to 8𝜋, Hence for a single student the displacement vs. forcing frequency is
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Hence we see that for one student, the maximum displacement is around 6 cm when the
student is jumping at resonance frequency.

To answer the question of how many students are needed to cause |𝑋| to be 50 cm then
that will depend on what forcing frequency is used. Now we will find the minimum
number of students needed.

The minimum number will be when they all jump at the resonance frequency which is
found from solving for 𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 in

𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

= �1 − 2𝜁2

𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = 𝜔𝑛�1 − 2𝜁2

= 3.287�1 − 2(0.01)
2

= 3.28667 rad/sec

Therefore, at this forcing frequency, we now solve for 𝐹0 to determine the number of
students

�𝑋̂� =
𝐹0/𝑘

�
�1 − �

𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2
�
2

+ �2𝜁 𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2

𝐹0 = 𝑘�𝑋̂�

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎝1 − �

𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2⎞⎟⎟⎟⎟⎠

2

+ �2𝜁
𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2

= (783014)(0.5)

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎝1 − �

3.28667
3.287 �

2⎞⎟⎟⎟⎟⎠

2

+ �2(0.01)
3.28667
3.287 �

2

= 7829.75 N

Therefore we need at least 8 students all jumping at 3.287 rad/sec to cause a displace-
ment of at least 50 cm.

5 Extra part

To make the structure avoid resonance, we need to make sure the ratio 𝜛
𝜔𝑛

stays away
from one. This is the ratio of the forcing frequency to the natural frequency. One way is to
make 𝜔𝑛 much larger than any expected 𝜛 that can occur is typical use of this structure.

But to make 𝜔𝑛 = �
𝑘
𝑚 large, means either making 𝑚 small or making 𝑘 large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be a
better solution.
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The bridge can be made more stiff in many ways, such as by adding additional truss
structure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence 𝜔𝑛 = �
2𝑘
𝑚 = �

2(783014)
72464 = 4.649rad/sec.

Therefore now 𝜔̄𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = 𝜔𝑛√1 − 2𝜁2 = 4.649�1 − 2(0.01)
2 = 4.65 rad/sec. Now the

same number of students (8) as before, jumping at same frequency of 3.28667 will cause
displacement of

�𝑋̂� =
8𝐹0/𝑘

�
�1 − �

𝜔̄
𝜔𝑛
�
2
�
2

+ �2𝜁 𝜔̄
𝜔𝑛
�
2

=
8000/783014

�
�1 − �

3.28667
4.649

�
2
�
2

+ �2(0.01)3.286674.649
�
2

= 0.02meter

Therefore by making the bridge twice as stiff, now the same 8 students at 𝜔̄ = 3.287 will
cause only 2 cm displacement instead of 50 cm.

6 Problem 5
A radar display is to be tested by mounting it on spring-dashpot suspension and subject-
ing it to harmonic force 𝑄 = 𝐹 cos(𝜔̄𝑡). The mounted mass is 8 kg and 𝜁 = 0.25. A free
vibration shows that damped natural frequency 𝑓𝑑 = 5hz.It is observed that when the
force is applied at very low frequency the displacement amplitude is 2 mm. The test is to
be performed at 5.2 Hz. What will be the steady state response?

We are given are the following

𝑚 = 8 kg
𝜁 = 0.25

𝜔𝑑 = 𝜔𝑛�1 − 𝜁2 = 2𝜋(5) rad/sec
𝐹0/𝑘 = 0.002meter
𝜔̄ = 2𝜋(5.2) rad/sec

Hence 𝜔𝑛 =
𝜔𝑑

�1−𝜁2
= 2𝜋(5)

√1−0.252
= 32.446 rad/sec. The steady state response is given by

𝑢𝑠𝑠 = Re�𝑋̂𝑒𝑖𝜔̄𝑡�
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where 𝑋̂ = �𝑋̂�𝑒𝑖𝜃. Hence

�𝑋̂� =
𝐹0/𝑘

�
�1 − �

𝜔̄
𝜔𝑛
�
2
�
2

+ �2𝜁 𝜔̄
𝜔𝑛
�
2

=
0.002

�
�1 − �

2𝜋(5.2)
32.446

�
2
�
2

+ �2(0.25)2𝜋(5.2)32.446
�
2

= 0.00397

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1�
2(0.25)
0 �

tan−1(∞)

Since 0 ≤ 𝜃 ≤ 𝜋 then the phase is
𝜃 =

𝜋
2

Hence

𝑢 = Re�𝑋̂𝑒𝑖𝜔̄𝑡�

= Re�0.00397𝑒𝑖
𝜋
2 𝑒𝑖𝜔̄𝑡�

= 0.00397 cos�𝜔̄𝑡 +
𝜋
2
�

= −0.00397 sin(𝜔̄𝑡)
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7 Problem 6
A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1
khz is subjected to a harmonic excitation 1.2 sin 𝜔̄𝑡 kN. The steady state amplitude when
𝜔̄ = 1 khz is observed to be 2.4mm. Determine the steady state response at 𝜔̄ = 0.95 khz
and 𝜔̄ = 1.05 khz.

We are given
𝑚 = 10 kg
𝜔𝑛 = 2𝜋(1000) rad/sec
𝐹0 = 1200 N
|𝑋| = 2.4 × 10−3 meter when 𝜔̄ = 𝜔𝑛

Since 𝜔2
𝑛 =

𝑘
𝑚 , hence 𝑘 = 𝜔2

𝑛𝑚 = (2𝜋(1000))2(10), therefore

𝑘 = 3.949 × 108 N/m

Now when 𝜔̄ = 𝜔𝑛 we have

�𝑋̂� =
𝐹0/𝑘

�
�1 − �

𝜔̄
𝜔𝑛
�
2
�
2

+ �2𝜁 𝜔̄
𝜔𝑛
�
2

2.4 × 10−3 =
1200/�3.949 × 108�

�(2𝜁)
2

=
3.039 × 10−6

2𝜁



24

Hence

𝜁 = �
3.039 × 10−6

2 × 2.4 × 10−3 �

= 0.000633

7.1 Part (1)

when 𝜔̄ = 2𝜋(950) now 𝑟 = 𝜔̄
𝜔𝑛

< 1 hence dynamic magnification factor is positive.
Therefore loading and displacement will be in phase with each others. (i.e. displacement
is in same direction as force). Since the force is sin then the response will be sin with
same frequency but different phase and amplitude. Hence let

𝑢𝑠𝑠 = 𝑋 sin(𝜔̄𝑡 − 𝜃)

Where

𝑋 =
𝐹0/𝑘

�
�1 − �

𝜔̄
𝜔𝑛
�
2
�
2

+ �2𝜁 𝜔̄
𝜔𝑛
�
2

=
1200/�3.949 × 108�

�
�1 − �

2𝜋(950)
2𝜋(1000)

�
2
�
2

+ �2(0.000633) 2𝜋(950)2𝜋(1000)
�
2

= 3.116 × 10−5 meter

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.000633) 2𝜋(950)2𝜋(1000)

1 − � 2𝜋(950)
2𝜋(1000)

�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tan−1�1.234 × 10−2�
= 0.01235 radians
= 0.71∘

Hence steady state response is

𝑢𝑠𝑠 = 3.116 × 10−5 sin(𝜔̄𝑡 − 0.71∘)

Hence we see that the displacement is lagging the load by 0.71∘. On complex plane it
looks as follows
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1.2
sin
 t

 t

 t

Re

Im When r<1 the displacement 
moves with load, but lags 
behind it by





Xsin t  

load

Disp.

7.2 Part (2)

When 𝜔̄ = 2𝜋(1050) now 𝑟 = 𝜔̄
𝜔𝑛

> 1 hence dynamic magnification factor is negative.
Therefore loading and displacement will be out of phase with loading. (i.e .displacement
is in opposite direction to force). Doing the same calculations are done as above

𝑢𝑠𝑠 = 𝑋 sin(𝜔̄𝑡 − 𝜃)
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where 𝑋

𝑋 =
𝐹0/𝑘

�
�1 − �

𝜔̄
𝜔𝑛
�
2
�
2

+ �2𝜁 𝜔̄
𝜔𝑛
�
2

=
1200/�3.949 × 108�

�
�1 − �

2𝜋(1050)
2𝜋(1000)

�
2
�
2

+ �2(0.000633)2𝜋(1050)2𝜋(1000)
�
2

= 2.964 × 10−5 meter

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.000633)2𝜋(1050)2𝜋(1000)

1 − �2𝜋(1050)2𝜋(1000)
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tan−1�
0.0013293
−0.1025 �

= 3.12862 radians
= 179.257∘

Hence steady state response is

𝑢𝑠𝑠 = 2.964 × 10−5 sin(𝜔̄𝑡 − 179.257∘)

On complex plane it looks as follows
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1.2
sin t

 t

load

displacement

 t

Re

Im

When r>1 the displacement 
moves with load, but lags 
behind it by



X
sin t 

179.257 

load

disp

Load increasing

Displacement increasing

We see that when r>1 then as load 
increases in one direction, the displacement 
is increasing but in opposite direction

Here is a plot by hand for the above 2 cases. First, the period that the loading is using
𝑇 = 2𝜋

𝜛 = 1
950 = 1.0526 × 10

−3sec
𝑇 = 1.053ms
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