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1 problem 1

1.1 Part(a)
We assume the cube is displaced downwards from its static equilibrium position and it
is currently at distance 𝑥 below the static position.

The buoyant force 𝐹𝑏 will push the cube upwards. This force will equal the weight of
water displaced which is 𝑥𝑎2𝜌𝑤𝑔 where 𝜌𝑤 is density of water and 𝑔 is the gravitational
constant. The free body diagram is

c.g.

Fb
Buoyant 
force

x  0

x

Showing cube 
when slightly 
pushed 
downward

M

Static equilibrium

Applying 𝐹 = 𝑚𝑥′′ we obtain equation of motion

𝑀𝑥′′ = −𝐹𝑏 (1)
𝑀𝑥′′ + 𝐹𝑏 = 0 (2)
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𝑀 = 𝑎3𝜌where 𝜌 is density of pine. The above can be simplified to

𝑎3𝜌𝑥′′ + 𝑥𝑎2𝜌𝑤𝑔 = 0 (3)

𝑥′′ +
𝜌𝑤𝑔
𝑎𝜌

𝑥 = 0 (4)

𝑥′′ + 𝜔2
𝑛𝑥 = 0 (5)

1.2 Part(b)
Hence from the above equation

𝜔𝑛 =
�

𝜌𝑤𝑔
𝑎𝜌

1.3 Part(c)

Given 𝜌 = 400 𝑘𝑔/𝑚3 and 𝜌𝑤 = 1000 𝑘𝑔/𝑚3 and 𝑎 = 0.1𝑚 then

𝜔𝑛 =
�

𝜌𝑤𝑔
𝑎𝜌

=
�
1000 × 9.81
0.1 × 400

= 15.66
𝑟𝑎𝑑
sec2

Hence frequency in Hz is

𝑓 =
𝜔𝑛
2𝜋

=
15.66
2𝜋

= 2.492 ℎ𝑧

2 Problem 2
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2.1 Part(a)

q  0

q0  20mm

q0  50m/sec

M

kq

q

Static 
equilibrium

applying 𝐹 = 𝑚𝑞′′, we obtain equation of motion

𝑀𝑞′′ = −𝑘𝑞 (6)
𝑀𝑞′′ + 𝑘𝑞 = 0 (7)

𝑞′′ +
𝑘
𝑀
𝑞 = 0 (8)

𝑞′′ + 𝜔2
𝑛𝑞 = 0 (9)

Let solution be 𝑞(𝑡) = Re�𝐴̂𝑒𝑖𝜔𝑛𝑡�where 𝐴̂ is the complex amplitude, which is a complex
number that can be written as 𝐴̂ = 𝑎 + 𝑖𝑏. We use initial conditions to determine 𝐴̂. At
𝑡 = 0, let 𝑞(0) = 𝑞0

𝑞0 = Re�𝐴̂𝑒𝑖𝜔𝑛𝑡� (10)

= Re�𝐴̂� (11)
= 𝑎 (12)

Hence 𝑎 = 𝑞0 And since 𝑞′(𝑡) = Re�𝑖𝜔𝑛𝐴̂𝑒𝑖𝜔𝑛𝑡�, then 𝑡 = 0 we have

𝑞′0 = Re�𝑖𝜔𝑛𝐴̂� (13)
= Re(𝑖𝜔𝑛(𝑎 + 𝑖𝑏)) (14)
= Re(𝑖𝜔𝑛𝑎 − 𝜔𝑛𝑏) (15)
= −𝜔𝑛𝑏 (16)
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Hence 𝑏 = − 𝑞′0
𝜔𝑛

therefore the general solution is

𝑞(𝑡) = Re�𝐴̂𝑒𝑖𝜔𝑛𝑡� (17)

= Re�(𝑎 + 𝑖𝑏)𝑒𝑖𝜔𝑛𝑡� (18)

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴̂

�������������
�𝑞0 − 𝑖

𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Hence �𝐴̂� =
�
𝑞20 + �

𝑞′0
𝜔𝑛
�
2
and arg�𝐴̂� = 𝜃 = tan−1

⎛
⎜⎜⎜⎜⎜⎝

𝑞′0
𝜔𝑛
𝑞0

⎞
⎟⎟⎟⎟⎟⎠. We have 2 complex quantities

above being multiplied. The first is 𝐴̂ and the second is 𝑒𝑖𝜔𝑛𝑡, therefore the result is ob-
tained by adding the angles and by multiplied the magnitudes. The magnitude of 𝑒𝑖𝜔𝑛𝑡 is
one. Hence on the complex plan, the above expression for 𝑞(𝑡) is represented as vector of
length �𝐴̂� and phase 𝜙 = 𝜃 + 𝜔𝑛𝑡

Imaginary axes

Â



q0

q 0


n

eint

n t Âeint

n t



qt



Âeint

Â

From the above diagram we see that the maximum value of

𝑞max(𝑡) = �𝐴̂�

which occurs when
𝜙 = 𝜃 + 𝜔𝑛𝑡 = 0

solving for 𝑡 gives

𝑡 =
−𝜃
𝜔𝑛

Notice that 𝜃 is negative, hence wewill get positive value for 𝑡. Substituting the numerical
values given we find thatAnd the earliest time this occurs is

𝑡 =
1.3724
2𝜋(80)

= 2.7303 × 10−3 = 2.73ms
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We confirm this by noticing that the initial position vector was at about 1
4𝑐𝑦𝑐𝑙𝑒 away from

the positive x-axis (we found the phase of 𝐴̂ above to be about −80 degrees), and the
rotational speed is given as 80 cycles per second. Hence it takes 12.5ms to make one cycle
and 1

4 of this is about 3𝑚𝑠.

2.2 Part(b)

Since we found 𝑞(𝑡) = Re��𝑞0 − 𝑖
𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡�, then

𝑞′(𝑡) = Re�𝑖𝜔𝑛�𝑞0 − 𝑖
𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡� (20)

= Re��𝜔𝑛𝑞0 − 𝑒
𝑖𝜋2 𝑞′0�𝑒

𝑖𝜋2 𝑒𝑖𝜔𝑛𝑡� (21)

= Re��𝜔𝑛𝑞0𝑒
𝑖𝜋2 − 𝑒𝑖𝜋𝑞′0�𝑒𝑖𝜔𝑛𝑡� (22)

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵̂

�������������������
�𝜔𝑛𝑞0𝑒

𝑖𝜋2 + 𝑞′0� 𝑒𝑖𝜔𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

Where now 𝐵̂ is the complex amplitude of 𝑞′(𝑡). Hence �𝐵̂� = ��𝜔𝑛𝑞0�
2
+ �𝑞′0�

2
and its

phase is arg�𝐵̂� = tan−1 𝜔𝑛𝑞0
𝑞′0

. The complex plane representation of 𝑞′(𝑡) is

Imaginary axes



eint

n t

B
nq0

q0
 Beint



B

Beint

n t  

This 
angle is

qt
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From the above diagram we see that maximum magnitude of 𝑞′(𝑡) is �𝐵̂� given by

�𝐵̂� =
�
�𝜔𝑛𝑞0�

2
+ �𝑞′0�

2
(24)

=
�
�2𝜋(80)�20 × 10−3��

2
+ (−50)2 (25)

= 51.001m/s (26)

The earliest time it occurs is found by solving for 𝑡 in

𝜔𝑛𝑡 + 𝜃 = 2𝜋 (27)

𝑡 =
2𝜋 − 𝜃
𝜔𝑛

(28)

=
2𝜋 − tan−1 𝜔𝑛𝑞0

𝑞′0
2𝜋(80)

=
2𝜋 − tan−1

2𝜋(80)�20×10−3�

−50
2𝜋(80)

(29)

=
2𝜋 − tan−1(−0.20106)

2𝜋(80)
= 1.2895 × 10−2 (30)

= 0.129ms (31)
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3 Problem 3

Adding 2 kg caused deflection of 50mm, hence from 𝐹 = 𝑘Δ we can find 𝑘 as follows

𝑘 =
𝐹
Δ
=

2𝑔
0.05

=
2(9.81)
0.05

= 392 N/m (32)

where 𝑔 is the gravitational constant. We also told that 𝑓2 = 𝑓1 − 5where 𝑓2 is the natural
frequency after adding the second mass and where 𝑓1 =

1
2𝜋𝜔1 and 𝑓2 =

1
2𝜋𝜔2, hence

𝑓2 = 𝑓1 − 5 (33)
1
2𝜋
𝜔2 =

1
2𝜋
𝜔1 − 5 (34)

𝜔2 = 𝜔1 − 10𝜋 (35)
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But 𝜔1 = �
𝑘
𝑚 and 𝜔2 = �

𝑘
𝑚+2 , hence

�
𝑘

𝑚 + 2
=
�
𝑘
𝑚
− 10𝜋

From Eq 32 the above becomes

�
392
𝑚 + 2

=
�
392
𝑚

− 10𝜋

Solving numerically gives 𝑚 = 0.1955kg

4 Problem 4

To show that 𝑥(𝑡) = 𝐵𝑒𝜆𝑡 is solution to the differential equation, we substitute this solution
into the LHS of the differential equation and see if we obtain zero.

𝑥′(𝑡) = 𝜆𝐵𝑒𝜆𝑡 = 𝜆𝑥(𝑡) (36)
𝑥′′(𝑡) = 𝜆2𝐵𝑒𝜆𝑡 = 𝜆2𝑥(𝑡) (37)

Then

𝑥′′ + 2𝜁𝜔𝑛𝑥′ + 𝜔2
𝑛𝑥 = 0 (38)

𝜆2𝑥(𝑡) + 2𝜁𝜔𝑛𝜆𝑥(𝑡) + 𝜔2
𝑛𝑥(𝑡) = 0 (39)

�𝜆2 + 2𝜁𝜔𝑛𝜆 + 𝜔2
𝑛�𝑥(𝑡) = 0 (40)

Hence 𝑥(𝑡) = 𝐵𝑒𝜆𝑡 is a non-trivial solution to the differential equation provided𝜆2+2𝜁𝜔𝑛𝜆+
𝜔2
𝑛 = 0 since then we obtain 0 = 0.

Now we find 𝜆 for the different cases.

4.1 case 1

The roots of 𝜆2 + 2𝜁𝜔𝑛𝜆 + 𝜔2
𝑛 = 0 are

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�𝜁2 − 1

For underdamped 𝜁 < 1, hence √𝜁2 − 1 < 0 and we write the above as

𝜆1,2 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛�1 − 𝜁2 (41)
= −𝜁𝜔𝑛 ± 𝑖𝜔𝑑 (42)
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where
𝜔𝑑 = 𝜔𝑛�1 − 𝜁2

Let 𝜆 = −𝜁𝜔𝑛 + 𝑖𝜔𝑑 and its complex conjugate 𝜆∗ = −𝜁𝜔𝑛 − 𝑖𝜔𝑑, hence the solution is

𝑥(𝑡) = 𝐵1𝑒𝜆𝑡 + 𝐵2𝑒𝜆
∗𝑡

To obtain a real solution we must have 𝐵1 be complex say 𝐵̂ and 𝐵2 = 𝐵̂∗. Hence the above
can be written as

𝑥(𝑡) = 𝐵̂𝑒𝜆𝑡 + 𝐵̂∗𝑒𝜆∗𝑡 (43)
= 2Re�𝐵̂𝑒𝜆𝑡� (44)

= Re�2𝐵̂𝑒(−𝜁𝜔𝑛+𝑖𝜔𝑑)𝑡� (45)

Therefore

𝑥(𝑡) = Re�𝐴̂𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (46)

Where 𝐴̂ = 2𝐵̂ = 𝑎 + 𝑖𝑏. Hence

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡�

To find 𝑎, 𝑏we need to use initial conditions. Assuming 𝑥(0) = 𝑥0 and 𝑥′(0) = 𝑥′0 then from
Eq 46 we obtain

𝑥0 = Re(𝑎 + 𝑖𝑏) = 𝑎
Hence

𝑎 = 𝑥0
and taking derivative of 46

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (47)

𝑥′(𝑡) = Re�−𝜁𝜔𝑛(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡 + 𝑖𝜔𝑑(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (48)
𝑥′(0) = Re(−𝜁𝜔𝑛(𝑎 + 𝑖𝑏) + 𝑖𝜔𝑑(𝑎 + 𝑖𝑏)) (49)

= −𝜁𝜔𝑛𝑎 − 𝜔𝑑𝑏 (50)

Hence
𝑏 =

𝑥′0 + 𝜁𝜔𝑛𝑎
𝜔𝑑

But 𝑎 = 𝑥0, hence

𝑏 =
𝑥′0 + 𝜁𝜔𝑛𝑥0

𝜔𝑑
Hence 46 becomes

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (51)

= Re��𝑥0 + 𝑖
𝑥′0 + 𝜁𝜔𝑛𝑥0

𝜔𝑑
�𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (52)

And this is the general solution. In complex plan it is
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x₀

x0
 nx0

d

Imaginary 
axis

Imaginary 
axis

e
nt

Â

Â  x 0
2 

x0
 nx0

d

2

d t

eidt

Ât

Ât  Â ent

  tan1 x0
 nx0

x0d

d t  

Âenteidt

xt

Hence the rotating vector will have its length become smaller with time since �𝐴̂� is mul-
tiplied by 𝑒−𝜁𝜔𝑛𝑡. The real part, which is the solution will eventually damp down to zero.
Hence it is a damped sinusoid oscillation as follows

4.2 case 2
From

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�𝜁2 − 1

For overdamped 𝜁 > 1, hence √𝜁2 − 1 > 0 and we write the above as

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�1 − 𝜁2
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Hence the solution is
𝑥(𝑡) = 𝐵1𝑒𝜆1𝑡 + 𝐵2𝑒𝜆2𝑡

where 𝜆1 = −𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2 and 𝜆2 = −𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2 . We see that both roots are
negative always, hence we have 2 exponentially damped solution being added with no
oscillation. A sketch of the solution is
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5 Problem 5

5.1 Part(a)
From looking at the plot above, here are the values estimated for displacement positive
peaks and time they occur



14

𝑡 𝑦(𝑡)

0.07 16
0.17 12
0.27 9
0.37 6

From the above we estimate the natural period 𝑇 ≈ 0.1 sec hence 𝑓 = 10 hz hence 𝜔𝑛 =
2𝜋𝑓 = 60.3 rad/sec The log decrement is

𝛿 = ln
𝑦𝑖
𝑦𝑖+𝑁

Select 𝑖 = 1 and 𝑁 = 3 gives

𝛿 = ln
16
6

(53)

= 0.981 (54)
To find 𝜁we use the log decrement method

𝛿 = 2𝜋𝑁𝜁
Hence

𝜁 =
𝛿

2𝜋𝑁
=
0.98083
2𝜋(3)

(55)

𝜁 = 0.052 (56)
Hence

𝜁 = 5.2%

5.2 Part(b)

ln�
𝑦1
𝑦1+𝑁

� = 2𝜋𝑁𝜁

Where now we write 𝑦1 = 16 and 𝑦𝑁+1 = 0.01, and hence we need to find 𝑁 the only
unknown in the equation above

ln�
16
0.01�

= 2𝜋𝑁(0.052)

Hence

𝑁 =
ln� 16

0.01
�

2𝜋(0.052)
= 22.581

We take 𝑁 = 23. What this says is that after 23 periods beyond the first peak, we will
satisfy the requirement. But 𝑇 = 0.1 sec, and the first peak was at 𝑡 = 0.05 sec, therefore

𝑡 = 0.07 + 23(0.1) (57)
= 2.37sec (58)
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5.3 Part c

Since 𝛿𝑁 = 2𝜋𝑁𝜁 and 𝜁 = 𝑐
𝑐𝑟
= 𝑐

2√𝑘𝑚
, then if we double 𝑘 and half the mass 𝑚, then 𝜁

would remain the same since 𝑐 is held constant. Therefore the answer in part b would not
change.

5.4 Part d
Since this is an underdamped system, the solution is

𝑞(𝑡) = Re�𝐴̂𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

Where 𝐴̂ is the complex amplitude, say (𝑎 + 𝑖𝑏), hence

𝑞(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

At 𝑡 = 0 we find that
𝑎 = 𝑞(0) = 𝑞0

Hence
𝑎 = −0.01

and the general solution is

𝑞(𝑡) = Re��𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

Now taking derivatives of the above gives

𝑞′(𝑡) = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

At 𝑡 = 0 then, assuming 𝑞′0 is the initial velocity

𝑞′0 = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 + 𝑖𝑏�� (59)
= −𝜔𝑛𝜁𝑞0 − 𝜔𝑑𝑏 (60)

Hence
𝑏 = −

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

Therefore the general solution is

𝑞(𝑡) = Re��𝑞0 − 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

and
𝑞′(𝑡) = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 − 𝑖

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�
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Now at 𝑡0 = 0.07 sec the velocity is zero, since this is where the displacement is maximum
(first peak). Hence now we have one equation with one unknown 𝑞′0that we can solve for
from the above

0 = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 − 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡0� (61)

= 𝑒−𝜔𝑛𝜁𝑡0 Re��−𝜔𝑛𝜁𝑞0 + 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑖𝑞0𝜔𝑑 +

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

𝜔𝑑�𝑒𝑖𝜔𝑑𝑡0� (62)

= 𝑒−𝜔𝑛𝜁𝑡0 Re��𝑖�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑� + 𝑞′0�𝑒𝑖𝜔𝑑𝑡0� (63)

= 𝑒−𝜔𝑛𝜁𝑡0 Re�𝑖�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖𝜔𝑑𝑡0 + 𝑞′0𝑒𝑖𝜔𝑑𝑡0� (64)

= 𝑒−𝜔𝑛𝜁𝑡0 Re�
−1
𝑖 �
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖(𝜔𝑑𝑡0) + 𝑞′0𝑒𝑖𝜔𝑑𝑡0� (65)

= 𝑒−𝜔𝑛𝜁𝑡0�Re�
−1
𝑖 �
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖(𝜔𝑑𝑡0)� + Re�𝑞′0𝑒𝑖𝜔𝑑𝑡0�� (66)

= 𝑒−𝜔𝑛𝜁𝑡0�−�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑� sin(𝜔𝑑𝑡0) + 𝑞′0 cos(𝜔𝑑𝑡0)� (67)

But 𝑞0 = −0.01m/sec, 𝜁 = 0.052,𝜔𝑛 = 60.3 rad/sec and𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 = 60.3√1 − 0.0522 =
60.218, therefore𝜔𝑑𝑡0 = 60.218×0.07 = 4.2153 and 𝑞0𝜔𝑑 = (60.218)(−0.01) = −0.60218hence
the above equation becomes

0 = 𝑒−(60.3)(0.052)(0.07)�−�
𝑞′0 + (60.3)(0.052)(−0.01)

60.218
60.3 × 0.052 − 0.602� sin(4.215) + 𝑞′0 cos(4.215)�

(68)

= 0.80293�−�
𝑞′0 − 3.136 × 10−2

60.218
(3.1356) − 0.602�(−0.879) + 𝑞′0(−0.477)� (69)

Solving for 𝑞′0 gives
𝑞′0 = −1.231m/sec

Now that we 𝑞′0,

Now that we 𝑞′0, we can find the numerical value for 𝑏 and write the general solution
again.

𝑏 = −
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
(70)

= −
−1.231 + 60.3(0.052)(−0.01)

60.218
(71)

= 2.0963 × 10−2 (72)
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Hence from

𝑞(𝑡) = Re��𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡� (73)

= Re�(−0.01 + 𝑖0.0209)𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡� (74)

giving�𝐴̂� = √0.012 + 0.02092 = 0.023

6 Problem 6

6.1 Part a
Assume the system is underdamped.

When the package hits the ground, its speed becomes zero. Therefore the impulse gen-
erated on it is the change of linear momentum. Since it speed was 𝑣 just before impact,
then impulse= 𝑚𝑣.
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F impulse

Hence the EQM is

𝑚𝑧′′ = −𝑐𝑧′ − 𝑘𝑧 − 𝐹𝑖𝑚𝑝𝑢𝑙𝑠𝑒 + 𝑚𝑔 (75)
𝑚𝑧′′ + 𝑐𝑧′ + 𝑘𝑧 = 𝑚𝑔 − 𝐹𝑖𝑚𝑝𝑢𝑙𝑠𝑒 (76)

With the initial conditions now being 𝑧 = 0 and 𝑧′ = 0.

The response due to the force 𝑚𝑔 can be found from the response to a unit step of ampli-
tude 𝑚𝑔 Hence the response due to the force 𝑚𝑔 is

𝑢(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��

The response due to the impulse is the response of a free systemwith zero initial position
but with initial velocity 𝑖𝑚𝑝𝑢𝑙𝑠𝑒

𝑚 in the upward (negative) direction. Hence the response
due to the impulse only is

𝑔(𝑡) =
𝑚𝑣
𝑚𝜔𝑑

𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 (77)

=
𝑣
𝜔𝑑
𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 (78)

Hence the downward displacement is given by

𝑧(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 (79)

6.2 Part b
Now that the impulse have taken place and we have accounted for it in the 𝑧(𝑡) solution,
then we can use this expression to find the spring force since 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑧(𝑡) and the
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damping force on the mass 𝐹𝑑𝑎𝑚𝑝𝑒𝑟 = 𝑐𝑧′(𝑡). When resultant net force 𝐹 is negative then
the mass will rebound from the ground.

m

kz

cz

z

mg

𝐹 = 𝑚𝑔 − 𝑘𝑧(𝑡) − 𝑐𝑧′(𝑡)

But

𝑧(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 (80)

Hence

𝑧′(𝑡) =
𝑚𝑔
𝑘 �

𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡� − 𝑒−𝜁𝜔𝑛𝑡[−𝜔𝑑 sin𝜔𝑑𝑡 + 𝜁𝜔𝑛 cos𝜔𝑑𝑡]� −
𝜁𝜔𝑛𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 − 𝑣𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡

(81)

or

𝑧′(𝑡) =
𝑒−𝜁𝜔𝑛𝑡

𝑘𝜔𝑑
��𝑘𝑣𝜔𝑛𝜁 + 𝑔𝑚�𝜔2

𝑑 + 𝜔2
𝑛𝜁2�� sin𝜔𝑑𝑡 − 𝑘𝑣𝜔𝑑 cos(𝜔𝑑𝑡)� (82)

Hence

𝐹 = 𝑚𝑔 − 𝑘𝑧(𝑡) − 𝑐𝑧′(𝑡) (83)

= 𝑚𝑔 − 𝑘�
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡� − 𝑐

𝑒−𝜁𝜔𝑛𝑡

𝑘𝜔𝑑
��𝑘𝑣𝜔𝑛𝜁 + 𝑔𝑚�𝜔2

𝑑 + 𝜔2
𝑛𝜁2�� sin𝜔𝑑𝑡 − 𝑘𝑣𝜔𝑑 cos(𝜔𝑑𝑡)�

(84)

To find when this force will turn negative first time, we can take the derivative with
respect to time and set it to zero and solve for first 𝑡 = 𝑡′ that will make it zero. Since the
force was positive first, then it has to become zero before turning negative.
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6.3 Part(c)

Let 𝑚 = 1 kg, 𝜔𝑛 = 5 rad/sec1, 𝑣 = 4 m/s. Hence 𝜔𝑑 = 5√1 − 𝜁2 . Since 𝜔2
𝑛 =

𝑘
𝑚 , hence

𝑘 = 25 N/m. Also 𝑐 = 𝜁𝑐𝑐𝑟 = 𝜁2𝑚𝜔𝑛 = 10𝜁

Using these values, the force in part(b) is plotted for different values of 𝜁. For example,
setting 𝜁 = 5% gives this plot of 𝐹(𝑡) for 𝑡 = 0 to 20 seconds.

Themaximum force is seen as little over 20N.Therefore, to findwhich 𝜁 gives the smallest
value of maximum force, we can try different values of 𝜁 and see how the maximum force
changes as a function of 𝜁. Using software the following values of maximum for for
different 𝜁 are generated along with 𝑡 = 𝑡max when this maximum occurs and with the
time 𝑡 = 𝑡′ when the mass rebounds first time from 𝑧 = 0

1typo in book. hz is assumed to mean rad/sec
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maximum force (N) 𝜁% 𝑡max(sec) 𝑡′(sec)

22.1 1 0.21 0.84
21.85 3 0.206 0.834
21.45 7 0.184 0.81
21.27 10 0.16 0.779
21.4 20 0.11 0.75
25.8 40 0.01 0.68
30 50 0.001 0.64

Most protection when damping ratio is below 10%
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