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1 problem1

Problem 1:

A cube with density p and side length a is floating ’7 2 4‘

freely in a pool of water.

a.) Find the equation of motion of the cube when it is
displaced in the vertical direction. (Recall that the
buoyant force on a floating object is equal to the 2l ;
weight of the water displaced.) If necessary, re- : ; b i
define your vertical coordinate to eliminate any X
static forees. |

b.) Derive an expression for the natural frequency of
the cube.

¢.) If the block is pine (p=400 kg/m’®) with a side length of 10em. what is the natural frequency
in Hz?

(Note that. while an analysis like this would be important when designing a boat or ocean vessel,

in reality the rotational motions of the vessel would usually be more important and those require

a more complicated analysis.)

1.1 Part(a)

We assume the cube is displaced downwards from its static equilibrium position and it
is currently at distance x below the static position.

The buoyant force Fj, will push the cube upwards. This force will equal the weight of
water displaced which is xa%p,,¢ where p,, is density of water and g is the gravitational
constant. The free body diagram is

Static equilibrium

X=0---4--—-———1 1__

Ocg |X

Showing cube
when slightly
pushed
downward

Buoyant
b force

Applying F = mx”" we obtain equation of motion

Mx” = —F, (1)
Mx" + Fb 0 (2)



M = a®p where p is density of pine. The above can be simplified to
adpx’ + xa?pug =0

X"+ %x =0
ap

x” +wix =0

1.2 Part(b)

Hence from the above equation
Pu8
ap

1.3 Part(c)

Given p = 400 kg/m> and p,, = 1000 kg/m> and a = 0.1m then

Pws 1000 x 9.81 rad
Wy = == == =15.66 —
"V oap 0.1 x 400 sec?
Hence frequency in Hz is

w, 15.66
=1 = —2492 hz

f_271_ 21

2 Problem 2

2.17 An undamped one-degree-of-freedom sys-
tem has a mass coefficient of 50 kg and a natural
frequency of 80 Hz. At t = 0 it is released from
g = 20 mm with ¢ = —50 m/s.

(a) Determine the maximum positive value of q
that occurs in the ensuing vibration, and the earll-

est instant at which 1t occurs.

(b) Determine the maximum positive value of g
that occurs in the ensuing vibration, and the earli-

est instant at which it occurs.



2.1 Part(a)

g(0) = 20mm
q'(0) = -50m/sec
q
T _ Static
L q= 0 equilibrium
" i kg
applying F = mq”’, we obtain equation of motion
Mq" = —kq (6)
Mg” +kq=0 (7)
"+ LIS 0 (8)
q Mq -
7' +wig =0 9)

Let solution be g(t) = Re(Aei“’”t) where A is the complex amplitude, which is a complex

number that can be written as A = a + ib. We use initial conditions to determine A. At
t=0,letg(0) = g9

go = Re(Aei“’"t) (10)
= Re(A) (11)
=aq (12)

Hence a = gy And since g'(t) = Re(ia)n/iei‘””t), then t = 0 we have

96 = Re(iw, A) (13)
= Re(iw,(a + ib)) (14)
= Re(iw,a — w,b) (15)

=—wyb (16)



Hence b = —Z—é therefore the general solution is
q(t) = Re(flei“’"t) (17)
= Re((a + ib)eint) (18)
A
—
~ Re (qo - iZ—O)ei‘“nt (19)

[ 2 9
Hence |A| = /g5 + (Z—O) and arg(A) =0 = tan]{%]. We have 2 complex quantities

above being multiplied. The first is A and the second is ¢!, therefore the result is ob-
tained by adding the angles and by multiplied the magnitudes. The magnitude of ¢/ is
one. Hence on the complex plan, the above expression for g(t) is represented as vector of
length |A| and phase ¢ = 0 + w,t

Imaginary axes

eia)nt

N
>
s

q(,] \ \ Ae ia)nt

From the above diagram we see that the maximum value of

qmax(t) = |A|
which occurs when
¢=0+w,t=0
solving for t gives
-0
t=—
a)I’l

Notice that 0 is negative, hence we will get positive value for t. Substituting the numerical
values given we find thatAnd the earliest time this occurs is

1.3724

t= =2.7303%x1073 =2.73
271(80) ms




We confirm this by noticing that the initial position vector was at about cycle away from

the positive x-axis (we found the phase of A above to be about —80 degrees), and the
rotational speed is given as 80 cycles per second. Hence it takes 12.5 ms to make one cycle

and i of this is about 3ms.

2.2 Part(b)

Since we found g(t) = Re((qo - iZ—é)eia’”t), then

B

. .
= Re (a)nqoelE + q()) elwnt

: _ ﬁ iyt
o= )
= Re((a)nqo -~ eigqé)eigei‘“"t)

. TC . .
— Re (a)HQOEZE _ eznqé)ezwnt)

(20)
(21)

(22)

(23)

. . 2 2
Where now B is the complex amplitude of g'(t). Hence |B| = \/ (a)nqo) + (%) and its

phase is arg(B) = tan" 22 The complex plane representation of ¢’ (t) is

90

Imaginary axes

@n(o
N

eiwnt

éeiwnt

\\__—> wnt +9




From the above diagram we see that maximum magnitude of g'(t) is |]§| given by

= \/ (wu0) -+ (a5) (24)

= 1/ (27:(80)(20 x 10-3))” + (=50)2 (25)
(2n(B0)( )
=51.001m/s (26)

A

|B

The earliest time it occurs is found by solving for t in

w,t +0 =21 (27)
2n -0
== (28)
w?’l
21— tan™' R o7 _ tan°! 2n(80)(20x10°%)
= fo _ 50 (29)
27(80) 271(80)

_ 21— tan™*(-0.20106)

=1.2895 x 1072 30
27(80) (30)

=0.129 ms (31)



3 Problem 3

~ 2.19 A block of mass m is mounted on a spring
having stiffness k. The block moves in the vertical
direction. When the system is at rest, a 2 kg block
is placed gently on the original block. It is
observed that the static length of the spring after
insertion of the additional block is 50 mm less
than it was prior to the addition. It also is
observed that the natural frequency with the addi-
tional mass is 5 Hz less than it was originally.
Determine k and m.

iy

EXERCISE 2.19

Adding 2 kg caused deflection of 50 mm, hence from F = kA we can find k as follows

F2¢  2(9.81)
AT 005 005 _2N/m (32)

where g is the gravitational constant. We also told that f, = f; —5 where f, is the natural
frequency after adding the second mass and where f; = %a}l and f, = 5-wo, hence

fo=f1-5 (33)
L= Lo -5 (34)
271(‘)2 B 271(‘)1

wy = wy — 101 (35)



But w; = \/g and w, = \/%,hence
[k |k 10
m+2  Nm "
From Eq|32|the above becomes

392 392
\/ = = -10m
m + m

Solving numerically gives m = 0.1955kg

4 Problem 4

Problem 4: Show that x(/)=Be” is a solution to ¥+ 2w x+ a),,Jx: 0 and find X for the

following cases: 1.) Underdamped system. 2.) Overdamped system. Write the solution x(#) for
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each
;ro”reimj }

response x(f) would look. Show that x(f) can be written as x(f) = Re(Ae_ in case (1).

To show that x(t) = Be is solution to the differential equation, we substitute this solution
into the LHS of the differential equation and see if we obtain zero.

x'(t) = ABeM = Ax(t) (36)
x”(t) = A?2BeM = A%x(t) (37)
Then
X"+ 2Cw,x" + w?x =0 (38)
A%x(t) + 2Cw, Ax(t) + w2x(t) = 0 (39)
(A2 +2Cw, A + w2)x(t) = 0 (40)

Hence x(t) = Be is a non-trivial solution to the differential equation provided A2 420w, A+
w? = 0 since then we obtain 0 = 0.

Now we find A for the different cases.

4.1 casel

The roots of A2 + 2Cw, A + w? = 0 are

Al,Z = —Ca)n *w, \/Cz -1

For underdamped C < 1, hence V(%2 -1 < 0 and we write the above as

Al,Z = _Ca)n == ia)n Vl - CZ (41)
= —Cw, *iwy (42)
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where
wy = w, V1 -2
Let A = —Cw,, + iw, and its complex conjugate A* = —Cw,, — iwy, hence the solution is

x(f) = ByeM + Byet't

To obtain a real solution we must have B; be complex say B and B, = B*. Hence the above
can be written as

x(t) = BeM + Bret't (43)
= 2Re(Be™) (44)
_ RefaBet-Garioa) (45)
Therefore
x(t) = Re(Ae‘C“’"tei“dt) (46)

Where A = 2B = a + ib. Hence
x(t) = Re((a + ib)e~nteivit)

To find a, b we need to use initial conditions. Assuming x(0) = xy and x’(0) = x{, then from
Eq 46/ we obtain
xo =Re(a+ib) =a

Hence
a =Xy
and taking derivative of 46|
x(t) = Re((a + ib)e‘cw"teiwdt) (47)
x/(t) = Re(—Ca)n(a + ib)e—Cwnteiwdt + ia)d(a + ib)e_cw"teiwdt) (4:8)
x’(0) = Re(—Cwy,(a + ib) + iwy(a + ib)) (49)
= —Ca)na - a)db (50)
Hence )
b xy + Cwya
Wq
But a = xj, hence
- x4 + Cwyxg
Wq
Hence 46 becomes
x(t) = Re((a + ib)e~t@nteivat) (51)
() + ‘
= Re((xo + iw)e—cwntela}dt) (52)
Wy

And this is the general solution. In complex plan it is
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Imaginary Ljmqgt Im_aginary
; e axis
axis 4
/ A .
/ Ae*é“’ntelmdt
/ N
/ AL
e I
/X@qt |:> R |
/ wqt—0 |
SN To I e
SN _ ~1( Xots®nXo l
S j@ = fan ( Xowd ) X(t) |
\‘A
At)
\/
X'0+§'wn>(c

g

! 2
Al 2 Xg+E wnXo
[A] = i+ (Kgoe)

A®)] - [Aes

Hence the rotating vector will have its length become smaller with time since |A| is mul-
tiplied by =¥, The real part, which is the solution will eventually damp down to zero.
Hence it is a damped sinusoid oscillation as follows

skatch of solution to vndardamped

1:| _|I T T 1 ] T T T Y L T T
L 1
- II
| |Iﬁ|| i
LT | l | 'r II| - T
I | || \ II I| |'II lII| II(
o I | | [ ' ;
L |I l |I I| 'I II| III lIIII f ﬁl‘" ."ﬁ'-. ™
0.0 I | || | ] I| II | A ! II'|| ! II'. llll.II \ r."'
24 | | | | / L
I| I| I| [ |II II'. 'II Ill"a / \/ 7
Lt b I|I |'I \ :
—osk ||| \ .
| | \/
Ilull Wl 4
:.:' — 1!:' — l'lﬂl 3!: — 4'I:' 5!3-
I
4.2 case?2
From
/\1,2 = _Ca)n + w, VCZ -1

For overdamped C > 1, hence V(? -1 > 0 and we write the above as

~Lw, + w,\1 - 2

Al,Z =



Hence the solution is

x(t) = ByeMt + B,el2!t

where Ay = ~lw, + w,V1 - ? and A, = —Cw,, — w, V1 — (2. We see that both roots are
negative always, hence we have 2 exponentially damped solution being added with no
oscillation. A sketch of the solution is

sketch of solution to oversrdempsd

ook

BEeth solutions sdded

12
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5 Problem 5

2.29' The measured free vibration response of a
one-degree-of-freedom system is as shown in the

graph.
~ VT T
E s e o i o s el i e R e Mk
0 E7 Vo i o st o i i e g G
bord ] = B o ot S . A e e B B
c _':: : ::: ol bt b etk Bl B Tl L
Q —§-1
0 El
§ " B :
g . e F--i--'l--F-——-'!"F"II—_Y"'
—_— = = = bl .,_|...|._a._..:\._Jr__:.-.J__A__r.?.:-_:--.
e O EE P VS 4 e e e
- il — 4 Bl L . —.I.-A__J—.I.-__—J...I_.J__J.-.'
A B s e o e s e g M o s M e M
_20 'I'"I"J"‘.I“]’"["1“T“J"1"r"l"'1“i'"1“]'_"r'1“‘l"
0 0.2 0.4 0.6 0.8
Time (s)
EXERCISE 2.29

(a) Deduce from this measurement the log decre-
ment, the natural frequency, and the critical damp-
ing ratio of the system.

(b) Estimate the value of ¢ beyond which the
displacement magnitude Ig| will not exceed
0.01 mm.

(c) If the damping constant C is held fixed, while
the system is modified by doubling the stiffness K
and halving the generalized mass M, how would
that alter the answer to part (b)?

(d) The initial displacement, at t = 0,is g, = —10
mm. What is the initial velocity?

5.1 Part(a)
From looking at the plot above, here are the values estimated for displacement positive
peaks and time they occur
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t y(t)
0.07 | 16
017 | 12
027 | 9
037 | 6

From the above we estimate the natural period T = 0.1 sec hence f = 10 hz hence w,, =
2nf = 60.3 rad/sec The log decrement is

5=In-2
YitN
Selecti=1and N = 3 gives
16
6=In 3 (53)
=0.981 (54)
To find C we use the log decrement method
0 =2nNC
Hence
o 0.98083
¢= 2N 271(3) (59)
C=0.052 (56)
Hence
C =52%

5.2 Part(b)

ln( 4 ) =2ntNC
Y1+N
Where now we write y; = 16 and yy;1 = 0.01, and hence we need to find N the only

unknown in the equation above

16
In{ — | = 2rN(0.052
n(0.0l) 7N (0.052)

16
_ inlg)
~ 271(0.052)
We take N = 23. What this says is that after 23 periods beyond the first peak, we will
satisfy the requirement. But T = 0.1 sec, and the first peak was at t = 0.05 sec, therefore
t =0.07 +23(0.1) (57)
= 2.37sec (58)

Hence

= 22.581
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5.3 Partc

Since 6y = 2nNCand C = Ci = ﬁ, then if we double k and half the mass m, then C

would remain the same since c is held constant. Therefore the answer in part b would not
change.

5.4 Partd

Since this is an underdamped system, the solution is
q(t) = Re( AeCwnt+iwat)
Where A is the complex amplitude, say (a + ib), hence
q(t) = Re((a + ib)e(_wnC"riwd)t)

At t = 0 we find that
a =q(0) = g

Hence
a=-0.01

and the general solution is
4(t) = Re((qo + ib)e-wntrien)
Now taking derivatives of the above gives
g'(t) = Re((~w, C + iwa)(qo + ib)el-ncriw)

At t = 0 then, assuming g is the initial velocity

96 = Re((~w, L + iawy)(qo + ib)) (59)
= —w,Cqo — wgb (60)
Hence ,
b:_%+wﬂ%
Wy

Therefore the general solution is
q(t) = Re((ﬂlo _ o T Onlo ©OnClo )e(‘wnC+ "“’d)t)

Wy

and

q(t) = Re((—wnC - iwd)(qo - iw)e(—wncmdﬁ)
Wq
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Now at ¢, = 0.07 sec the velocity is zero, since this is where the displacement is maximum
(first peak). Hence now we have one equation with one unknown gythat we can solve for
from the above

0= Re((—a)n(: + ia)d)(‘]o _ iM)e(—wnGiwdﬁo) (61)
Wyq
4 + / + .
— e—a)nCtO Re (_wanO + 1%—a)ncqownc + Zqowd + qo—a)anOa)d)elwdtO) (62)
Wq
’ + .
= ¢l Re (i(%w—a:lc%wnC + qowd) + ‘16)€lwdt°) (63)
— e_wnctO Re l(qO + CUanO a)nC + qoa)d)eiwdto + Dléeiwdto) (64)
W4
o tto ol ~1 (0 + @nC0 wato) + 7 gt
= ¢~ Re =Tl + 0w el(@ito) 4 gl eiwito (65)
Wq
-1(q{ + : -
_ e““’ﬂCt0|Re(—,(qO a)anO CUnC + qowd)el(wdto)) + Re(q6elwdto)l (66)
1 Wy
—w, Ct % + a)anO . ’
= ¢~ @nllo| — a)—da)nC + gowy | sin(wyty) + g4 cos(wgtp) (67)

Butgy = -0.01 m/sec, ¢ = 0.052, w,, = 60.3rad/secand w; = w, V1 - (* = 60.3V1 - 0.052? =
60.218, therefore w,ty = 60.218%0.07 = 4.2153 and gpw,; = (60.218)(-0.01) = —0.60218 hence
the above equation becomes

g0 + (60.3)(0.052)(-0.01)
60.218

0= e-<60~3><0-052><0-07>(—( 60.3 x 0.052 — 0.602) sin(4.215) + g}, cos(4.215))

(68)
gy — 3136 X 1072
60.218

= 0.80293(—( (3.1356) — 0.602 |(~0.879) + qa(—o.477)) (69)

Solving for q; gives
90 = —1.231 m/sec

Now that we gq;,

Now that we g, we can find the numerical value for b and write the general solution
again.

Wy
-1.231 + 60.3(0.052)(-0.01
_ 31 + 60.3(0.052)(—0.01) (71)
60.218

= 2.0963 X 102 (72)



Hence from

q(t) = Re((qo + ib)e(—wnc+iwd)t)
= Re((~0.01 + i0.0209)el-nC+iwat)

giving|A| = v0.012 + 0.02092 = 0.023

6 Problem 6
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(73)
(74)

2.32 The cushioning for a package of mass m may
be represented as a spring k and dashpot c. After
falling some distance, the package hits the ground
with a known initial velocity v. The system is
underdamped.

6.1 Parta

Assume the system is underdamped.

(a) Determine the downward displace
based on z = 0 being the center of magg
at the instant when the package first copg,
ground. Hint: Gravity cannot be ignored
z = 0 is not the static equilibrium posit;
(b) Use the solution in part (a) to derive ap
sion for the force exerted by the cushionipg:
package mass m. How can this expression
to determine the instant ¢’ at which the
will rebound from the ground?

(c) Consider the case where m = 1 kg,
Hz, and v = 4 m/s. Use mathematical sg
evaluate the maximum cushioning force in
for all ¢ at a fixed critical damping ratio.
0 < ¢ < 1 for this evaluation. Which ¢;
to the most protection for the package?

When the package hits the ground, its speed becomes zero. Therefore the impulse gen-
erated on it is the change of linear momentum. Since it speed was v just before impact,

then impulse= mo.
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m _—:_
l
i \/
Z
kz I:impulse
cz’
\
mg
Hence the EQM is
mz" = —cz' —kz = Fippyise + Mg (75)
mz"” +cz' +kz = mg — ijpulse (76)

With the initial conditions now being z = 0 and z’ = 0.

The response due to the force mg can be found from the response to a unit step of ampli-
tude mg Hence the response due to the force mg is

u(t) = %(1 - e‘C“’"t[cos wyt + Ca%n sin wdt])

The response due to the impulse is the response of a free system with zero initial position
impulse

but with initial velocity in the upward (negative) direction. Hence the response

due to the impulse only is

m

mo

g(t) = m—wde‘cwﬂt sin w,t (77)
v

= —et@nt gin wyt (78)
Wy

Hence the downward displacement is given by

—Cwpt

m ve n

z(t) = g 1 - e %@nt|cos wgt + Cﬂ sinwyt || - sin w,t (79)
k wy g

6.2 Partb

Now that the impulse have taken place and we have accounted for it in the z(t) solution,
then we can use this expression to find the spring force since Fg,;,, = kz(t) and the
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damping force on the mass Fy;per = ¢2'(f). When resultant net force F is negative then
the mass will rebound from the ground.

m B
I
A \/
Z
kz v
mg
cz'

F =mg — kz(t) — cZ'(t)

But
mg ot lw, . ve twnt
z(t) = =21 — e %@nt|cos wyt + —= sinwyt || - sin w,t (80)
k Wy g4
Hence
—Cwpt
Z'(t) = @(Ca)ne‘cwnt[cos w4t + % sin a)dtl — et~ sin wyt + Cw,, cos a)dt]) - COJL sin w,t — v
k g g
(81)
or
e—Cwnt
Z/(t) = fo ((kva)nC + gm(cuﬁ + a),%CZ)) sin wyt — koaw, cos(a)dt)) (82)
Hence
F =mg —kz(t) — cz'(t) (83)

—Cwpt —Cawy,t
=1mg — k[%(l - e‘cwnt[cos w4t + Cw—a;” sin a)dt]) - erd sin wdt] - Ceka)d ((kva)nC + gm(a)fl + a),%Cz)) S
(84)

To find when this force will turn negative first time, we can take the derivative with
respect to time and set it to zero and solve for first ¢t = #’ that will make it zero. Since the
force was positive first, then it has to become zero before turning negative.
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6.3 Part(c)

Letm =1kg w, =5 rad/se v = 4m/s. Hence w; = 5V1 — (2. Since a),% = %, hence
k =25 N/m. Also ¢ = Cc., = (2mw,, = 10C

Using these values, the force in part(b) is plotted for different values of C. For example,
setting C = 5% gives this plot of F(t) for t = 0 to 20 seconds.

S
e I N A |
total Force onmass for [=3. %

max force = 21 6308 N at t=0.193186 sec
first time zero at 0.824292 sec

20 HL

il
\

I LT A W A NN

The maximum force is seen as little over 20 N.Therefore, to find which C gives the smallest
value of maximum force, we can try different values of  and see how the maximum force
changes as a function of (. Using software the following values of maximum for for
different C are generated along with t = t,,, when this maximum occurs and with the
time t = t’ when the mass rebounds first time from z = 0

ltypo in book. hz is assumed to mean rad/sec



maximum force (N) | C% | tphax(sec) | t'(sec)
221 1 0.21 0.84
21.85 3 0.206 0.834
21.45 7 0.184 0.81
21.27 10 | 0.16 0.779
21.4 20 | 0.11 0.75
25.8 40 | 0.01 0.68
30 50 | 0.001 0.64

Most protection when damping ratio is below 10%

21
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