
Homework #11 
EMA 545, Spring 2013 

 
Problem 1.) 

 

 
 
Problem 2.) 

 



 

 
(a) Find the natural frequencies and mass-normalized modes of the system. 
(b) Find the magnitude and phase of the steady-state response x5(t) assuming the forcing to 

be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*5.  Plot the 
magnitude and phase of the response, clearly indicating the location of the natural 
frequencies. 

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C] 
matrix that gives 2% modal damping to each mode.  Overlay the frequency response of 
this system with that which you found in (b). 

(d) Compare your answer for part (c) to that obtained using a structural damping model and 
a loss factor of =0.04. 

 
(You will need the following to compare this problem with problem 3 below.)  As discussed in 
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters 
EA and L are as follows: ki = N*EA/L, i=2,N where N is the number of masses. The spring 
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness 
twice as high, k1 = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N: 
mi = AL/N, where is the mass density of the bar. 
 
 
 



Problem 1)  (Creating a damping matrix with any desired modal damping ratios.) 
 
The goal is to show that one can use the modal transformation together with the given 
damping matrix to obtain uncoupled equations of motion. 

 
Now, starting with the coupled equations of motion: 

square of the natural frequencies, we now have N uncoupled equations of motion. 
 

 
 
Note that we have also used the fact that each row of [Φ]T{Q} is equal to the jth mode 
vector transposed times {Q}. 



HW 12, PROBLEM 2:  LUMPED MASS APPROXIMATION FOR A BAR IN EXTENSION 
 
Part (a): 
The mass and stiffness matrices are given, so it is easy to find the natural frequencies and 
mode shapes in Matlab.  Here is the result:  (Matlab code given at the end.) 
 
wns = 
      0.31287 
      0.90798 
       1.4142 
        1.782 
       1.9754 
PHI = 
    -0.098938      0.28713     -0.44721     -0.56352     -0.62467 
     -0.28713      0.62467     -0.44721     0.098938      0.56352 
     -0.44721      0.44721      0.44721      0.44721     -0.44721 
     -0.56352    -0.098938      0.44721     -0.62467      0.28713 
     -0.62467     -0.56352     -0.44721      0.28713    -0.098938 
 
Part (b): 
The input is harmonic, so the steady-state response of each mass will also be harmonic.  
Their complex amplitudes can be found with the equation: inv([K+iωC-ω^2*M]).  See 
the Matlab code for details.  The complex amplitude of the 5th DOF is plotted below.  
Note that this stiffness proportional damping approach gives the following modal 
damping ratios, which are clearly different than those for part (c) below: 
zts = 
     0.015643 
     0.045399 
     0.070711 
     0.089101 
     0.098769 
 
Part (c): 
The solution here is the same as for (b), only now we use C = 
M*PHI*2*0.02*diag(wns)*PHI.'*M 
Both solutions are plotted below. 
 
Part(d): (not included in Spring 2011) 
For the structural damping case, K = K*(1+iγ). 
 
The plot shows that the stiffness proportional damping approach gives heavier damping 
for the higher frequency modes.   
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The mode shapes were requested as part of the next problem. They are plotted below: 
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Matlab Code: 
% ME 6442 Homework #10, MDOF Systems-LUMPED MASS APPROX TO BAR IN EXTENSION 
clear all; close all 
  
M = eye(5); % Identity matrix since each mj=1; 
K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1); 
    % Above is a fancy way to make the banded stiffness matrix, although 
    % the two terms below must be fixed manually. 
K(1,1) = 1+2; K(5,5) = 1; 
C = 0.1*K; 
  
[phi,lam] = eig(K,M); 
wns = sqrt(diag(lam)) 
  
% Normalize Eigenvectors 
[natfreqs,Isort]=sort(sqrt(diag(lam))); % sort by nat freq 
phi=phi(:,Isort);  % sort eigenvectors 
scale= phi.'*M*phi; 
PHI=real(phi*inv(sqrt(scale))) % normalize e.vectors 
zts = (diag(PHI.'*C*PHI)/2)./wns 
  
% Check Orthogonality 
check_m = norm(PHI.'*M*PHI-eye(size(PHI))) 
check_k = norm(PHI.'*K*PHI-lam) 
  
% Plot Mode Shapes 
% Create x-vector.  Remember that the masses are at the center of each 
% element, so the first node is at 0.5*(L/N) 
xs = [0, 0.5:1:4.5]/5; 
    % Will have to stack zeros above PHI below for the displacement at x=0. 
figure(1) 
plot(xs.',[0 0 0 0 0; PHI],'o-'); grid on; 
xlabel('X Location'); ylabel('Modal Amplitude'); 
legend('Mode #1', 'Mode #2','Mode #3','Mode #4','Mode #5'); 
  
ws = [0:max(wns)*1.2/2000:max(wns)*1.2]; 
% TF Using Proportional C-Matrix 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [K+i*ws(ii)*C-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gb = Gn(5,:); 
  
% TF Using modal damping ratios 
Cc = M*PHI*2*0.02*diag(wns)*PHI.'*M 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [K+i*ws(ii)*Cc-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gc = Gn(5,:); 
  
% TF Using Structural Damping 
Kd = K*(1+i*0.04); 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [Kd-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gd = Gn(5,:); 
  
figure(2) 
subplot(211); 
semilogy(ws,abs(Gb),ws,abs(Gc),':',ws,abs(Gd),'-.'); grid on; 
xlabel('Frequency (rad/s)'); ylabel('|X_5/F|'); 
legend('Proportional','Modal','Structural'); 
title('Transfer Function of X_5 with 3 Kinds of Damping'); 
axis([0 2.5 0.09 200]); 



subplot(212); 
plot(ws,angle(Gb)*180/pi,ws,angle(Gc)*180/pi,':',ws,angle(Gd)*180/pi,'-.'); 
grid on; 
xlabel('Frequency (rad/s)'); ylabel('Phase(X_5/F) (^o)'); 

 



Parts (a & b): 

 

 

 

Matt Allen
Sticky Note
It is also fine to leave your answer non-dimensional with EA/L=1 and then modify your answer in problem 2 so that it is comparable.



 
Note that the dimensional factors can be pulled out so that the eigenvalue problem can be 
solved in Matlab (for part (d)).  To do so, we define: 

 
Part (c): 
The integrals are not convenient to evaluate analytically using these basis functions, so 
the solution is carried out only in Matlab.  The resulting matrices are: 
>> M 
M = 
          0.5            0            0 
            0          0.5            0 
            0            0          0.5 
>> K 
K = 
       1.2337            0            0 
            0       11.103            0 
            0            0       30.843 
Notice that the matrices are diagonal.  This occurs because the chosen basis functions 
happen to be the eigenfunctions for this continuous system.  So, the coordinate governing 
each basis function is independent of all of the others and the natural frequencies can be 
found by inspection, for example: ω1=sqrt(1.2337/0.5)=1.5708, etc… 
 
Part (d): 
COMPARISON OF NATURAL FREQUENCIES: 
First we observe that since ρAL/(EA/L) = 25, we must multiply the natural frequencies 
found in Problem 2 by (25)^(1/2) to compare with the results from the nondimensional 
Ritz analysis.  The results are summarized in the table below, where the natural 
frequencies for other Ritz Series lengths are also shown FYI.  Notice that as the series 
length increases, new modes appear at higher frequencies, and the lower natural 
frequencies decrease slightly, converging towards the true values.  The lumped parameter 
method in Problem 2 gives similar results although the frequencies are sometimes lower 
than the true values, while the Ritz method always over predicts the natural frequencies. 



 
 

Natural Frequencies (nondimensional) Ritz 
Series 
Length ω1 ω2 ω3 ω4 ω5 

2 1.5767 5.6728 - - - 
3 1.5709 4.8365 10.4471 - - 
4 1.5708 4.7246 8.3309 16.3036 - 
5 1.5708 4.7132 7.9390 12.1739 23.3614 

Results for Lumped Parameter Approximation with N=5 below 
N=5 1.5643 4.539 7.0711 8.9101 9.8769 

 
With the second set of basis functions from part (c), one obtains the true analytical 
natural frequency for any length Ritz Series. 
 

Natural Frequencies (nondimensional) Ritz 
Series 
Length ω1 ω2 ω3 ω4 ω5 

2 1.5708 4.7124 - - - 
3 1.5708 4.7124 7.8540 - - 
4 1.5708 4.7124 7.8540 10.9956 - 
5 1.5708 4.7124 7.8540 10.9956 14.1372 

 
MODE SHAPES 
 
Using the polynomials in part (b): 

 

 



 
 

 
The three mode shapes obtained from the Ritz method for part (b) are shown below.  The 
first mode closely resembles a “1/4 sine,” which is the exact mode shape for a fixed-free 
rod.  The second resembles a “3/4 sine.”  The theoretical prediction of the third mode is a 
“5/4 sine,” but one can see that there is considerable error in the Ritz approximation for 
that mode since the basis is inadequate to describe it. 
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Mode 1 Ritz
Mode 2 Ritz
Mode 3 Ritz
Mode 1 Analytical
Mode 1 Lumped
Mode 2 Lumped
Mode 3 Lumped

 
When using the basis functions from part (c), the modes are exact and are given in the 
figure below. 
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The Matlab code used for these calculations follows.  Symbolic variables were used to 
check the answer for part c), and to compute the M and K matrices for part d). 
 
Part b.) 
% EMA 545, HW12 
% Ritz Series solution for Clamped-free rod in extension 
% 
% M.S. Allen, May 2011 
  
clear all; close all 
syms x jj kk real; 
tic 
N = 5; 
  
% Create basis functions as symbolic functions in Matlab - Symbolic 
% variables x and jj and kk defined above  
for jj = 1:N; 
    psi(jj) = x^jj; 
end 
% Loop to create (jj,kk) terms of mass and stiffness matrices 
for jj = 1:N; 
    for kk = 1:jj; 
        % Usig Matlab symbolics 
        MM(jj,kk) = int(psi(jj)*psi(kk),x,0,1);% *rho*A*L 
        KK(jj,kk) = int((diff(psi(jj),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L 
        % Using analytically derived formulas for M and K 
        M1(jj,kk) = 1/(jj+kk+1); 
        K1(jj,kk) = (jj*kk)/(jj+kk-1); 
        % note - matrices are symmetric, so we can fill the rest of the 
        % matrix in with the same terms. 
        MM(kk,jj) = MM(jj,kk); KK(kk,jj) = KK(jj,kk); 
        M1(kk,jj) = M1(jj,kk); K1(kk,jj) = K1(jj,kk); 
    end 
end 
M = double(MM); % convert symbolic expressions to numbers. 
C = 0; K = double(KK); 
toc 
% display the difference, which is on the order of numerical round off 
% error. 
M-M1 
K-K1 



  
% Use Embedding Property to find Eigensolutions for 2 <= N <= 5.  For 
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant 
% of M and K. 
for p = 2:1:N; 
    [phi,lambda] = eig(K(1:p,1:p),M(1:p,1:p)); 
    wnd(p-1,1:p) = sqrt(diag(lambda))' 
end 
  
% Finding Mode Functions 
Ns = [3]; % number of basis functions to use for mode shape plots. 
delta = 1/(100-1); % spacing for y-axis on mode shapes. 
yd = [0:delta:1]'; 
for q = 1:length(Ns); 
    psi_vals = 0; phi = 0; lambda = 0; 
    [phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q))); 
    wns = sqrt(diag(lambda)); 
    for p = 1:1:100; 
        for n = 1:Ns(q); 
            % evaluate each basis function 'n' at each point 'p'.  (or use 
yd(p)^n) 
            psi_vals(p,n) = subs(psi(n),'x',yd(p)); % Matlab symbolics - sub 
yd(p) for 'y' 
        end 
    end 
% mode shapes for plotting are psi_vals*phi 
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi; 
end 
  
% Analytical Mode Shape 
psi_an = sin((2*1-1)/2*pi*yd); 
psi_an = psi_an/max(psi_an)*max(psi_c(:,1,1)); % scale to same amplitude as 
psi_c 
  
% Plotting 
figure(3) 
plot(yd, psi_c(:,1,1),yd, psi_c(:,2,1), yd, psi_c(:,3,1),... 
    yd, psi_an,'b.'); grid on;%, yd, psi_c(:,1,2), '.:', yd, 
psi_c(:,3,2),'.:'); grid; 
legend('Mode 1 Ritz','Mode 2 Ritz','Mode 3 Ritz','Mode 1 Analytical'); 
xlabel('Position (X/L)'); ylabel('Mode Function'); 
title(['Mode Functions for First Three Modes, N = ',num2str(Ns)]); 
  
return 
%% Plot the solution to Problem 2 on top: 
M = eye(5); % Identity matrix since each mj=1; 
K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1); 
    % Above is a fancy way to make the banded stiffness matrix, although 
    % the two terms below must be fixed manually. 
K(1,1) = 1+2; K(5,5) = 1; 
M = M/5; K = K*5; % change to non-dimensional 
  
[phi,lam] = eig(K,M); 
PHI=real(phi*inv(sqrt(phi.'*M*phi))); 
xs = [0, 0.5:1:4.5]/5; 
  
% To get a good plot, have to manually adjust the sign of some of the mode 
% vectors (the sign of a mode vector is arbitrary).  Make all end values 
% positive: 
PHI = PHI*diag(sign(PHI(end,:))); 
hold on; plot(xs.',[0 0 0; PHI(:,1:3)],'o-'); hold off; 
legend('Mode 1 Ritz','Mode 2 Ritz','Mode 3 Ritz','Mode 1 Analytical','Mode 1 
Lumped','Mode 2 Lumped','Mode 3 Lumped'); 



Part (c): 
% EMA 545, HW12 
% Ritz Series solution for Clamped-free rod in extension 
% 
% M.S. Allen, April 2008 
  
clear all; close all 
syms x jj kk real; 
tic 
N = 3; 
  
% Create basis functions as symbolic functions in Matlab - Symbolic 
% variables x and jj and kk defined above  
for jj = 1:N; 
    psi(jj) = sin((2*jj-1)/2*pi*x); 
end 
% Loop to create (jj,kk) terms of mass and stiffness matrices 
for jj = 1:N; 
    for kk = 1:jj; 
        % Usig Matlab symbolics 
        MM(jj,kk) = int(psi(jj)*psi(kk),x,0,1);% *rho*A*L 
        KK(jj,kk) = int((diff(psi(jj),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L 
        % note - matrices are symmetric, so we can fill the rest of the 
        % matrix in with the same terms. 
        MM(kk,jj) = MM(jj,kk); KK(kk,jj) = KK(jj,kk); 
    end 
end 
M = double(MM); % convert symbolic expressions to numbers. 
C = 0; K = double(KK); 
toc 
  
% Use Embedding Property to find Eigensolutions for 2 <= N <= 5.  For 
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant 
% of M and K. 
for p = 2:1:N; 
    [phi,lambda] = eig(K(1:p,1:p),M(1:p,1:p)); 
    wnd(p-1,1:p) = sqrt(diag(lambda))' 
end 
  
% Finding Mode Functions 
Ns = [3]; % number of basis functions to use for mode shape plots. 
delta = 1/(100-1); % spacing for y-axis on mode shapes. 
yd = [0:delta:1]'; 
for q = 1:length(Ns); 
    psi_vals = 0; phi = 0; lambda = 0; 
    [phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q))); 
    wns = sqrt(diag(lambda)); 
    for p = 1:1:100; 
        for n = 1:Ns(q); 
            % evaluate each basis function 'n' at each point 'p'.  (or use 
yd(p)^n) 
            psi_vals(p,n) = subs(psi(n),'x',yd(p)); % Matlab symbolics - sub 
yd(p) for 'y' 
        end 
    end 
% mode shapes for plotting are psi_vals*phi 
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi; 
end 




