Homework #10
EMA 545, Spring 2013

For all of these problems you may use Matlab or some other package to find the natural
frequencies and mode vectors and to mass normalize the mode vectors (if needed).

1.) Exercise 4.8 from Ginsberg. (Note: the spring constants are defined such that the
frequencies given are the natural frequencies that each spring-mass system would have if
it were attached to a rigid base. Notice that there is not a simple relationship between
those frequencies and the natural frequencies of the system as a whole.)

2.) Exercise 4.30 as given in the text. Repeat the analysis for k=2mg/L and graph that
response as well. (Questions to consider: What do you notice about the natural
frequencies of this system in each case? How does that affect the way the response
looks? Why?)

3.) Exercise 4.43 from Ginsberg. How does the time required to reach steady state
compare with t,=1/(C,w) for each mode, r=1,2,3?

4.) Exercise 4.47 from Ginsberg.
5.) (Covering material from Chapter 5)

A uniform rod of length [ and mass my; 1s attached to a cart having mass m, by means of a
spring k. A viscous damper c resists the motion of the cart.

m, |

(A 2C0C)

a.) Let F(t)=Re[Fexp(imt)], x(t) = Re[Xexp(iwt)] and 6(t)=Re[Yexp(iwt)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system is forced at
its natural frequencies m=wm; and m=w,. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: m;=m,=1 kg, k=3 N/m, L=1 m,
g=9.81 m/s"2, and ¢=0.1 N-s/m.



c.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: weart = (k/my)Y2 2

6.) Consider Exercise 3.45 and 3.46 in the text (you solved
this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for t
= 3n/w, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending)
modeled after one of the pillars supporting the ERB, which
have length L=40m, rectangular cross section with height h,
equal to the width b=h=0.6m, and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is wp=0.2Hz. What is the amplitude of the force, P, such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).
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HW 4.30 Solution
M.S. Allen
Spring 2013

Using the equations of motion and modal responses derived on the previous page, the
following Matlab code can then be used to find the transient response:

M = eye(3)/3; %*mL"2
K=[1-10; -12 -1; 0 -1 1]*0.05 + eye(3)*0.5; % Kspr + Kgrav

[phi,lam] = eig(K,M);
wns = sqrt(diag(lam));

% Sort & Normalize Eigenvectors to unity modal mass and Check
Orthogonality

[lam_sort, lam_indx] = sort(diag(lam));
wns = sqrt(lam_sort) % *sqrt(k/m)

phi_sort = (phi(:,lam_indx));
mu = phi_sort. "*M*phi_sort;
PHI = real(phi_sort*sqgrt(inv(mu)))

check _orth = norm(PHI."*M*PHI-eye(size(phi)))

n_0 = [0; O; O];

nd_0 = PHI"*M*[0; 2; 0]-/wns % *m/k
t = [0:0.5:80];

q = PHI*[nd_O0(1)*sin(wns(1)*t);

nd_0(2)*sin(wns(2)*t);
nd_ 0(3)*sin(wns(3)*t)];

figure(1)

plot(t,q(l,:), t,q(2,:), t,q(3,:), "."); grid on;

xlabel ("time t*(k/m)”~0"."5"); ylabel("Displacement (m)*k/m");
legend("\theta 1", "“\theta 2", "\theta 3%);

title("Response to Initial Velocity in \theta 2%)

% To animate the solution
%{
figure(2)
for 11 = 1:1:length(t);
st = 50;
plot([-0.5 0.5].", [0 O0]-","0:",[-0.7 O0.7]-", [0 O]-","k");
line([-0.5 -0.5+10*sin(q(1,11)/st)],[0 -
10*cos(q(1,ii)/sT)],"LineWidth", 4); grid on;
line([O 0+10*sin(q(2,ii1)/st)],[0 -10*cos(q(2,ii)/sf)], "LineWidth",
4); grid on;
line(JO.5 0.5+10*sin(q(3,11)/st)],[0 -
10*cos(q(3,11)/st)], “"LineWidth", 4); grid on;
xlabel (*X-position (*L)"); ylabel("Displacement (m)*k/m®);
title(["Time (M/k)"0.5 = " num2str(t(ii))])
axis([-0.7 0.7 -12 2]);
movl(ii) = getframe(2);
end



movie(movl,2,20)
%}

The natural frequencies and mode shapes are (only the first and third modes are excited):
wns =

1.2247
1.2845
1.3964
PHI =
-1 -1.2247 0.70711
-1 -7.4506e-09 -1.4142
-1 1.2247 0.70711

The response is given below for k=0.05 mg/L
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The response shows a beating phenomenon, since each bar is influenced by modes 1 and
3 and the modes’ frequencies are close (1.22 and 1.39 rad/s).

On the other hand, for k=2*mg/L, the natural frequencies differ by a factor of more than
three and the response does not look as simple:

wns =
1.2247
2.7386
4.4159
PHI =
-1 -1.2247 0.70711
-1 -1.2905e-08 -1.4142

-1 1.2247 0.70711
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Exercise 4.43

600 400 200 300 0 -200
M = [400 1200 O K := 1000/ 0 500 300 C =

200 0 800 -200 300 700

Eigensolution

A = genvals(K,M) ¢ = genvecs(K,M)
! [T >
¢ = submatrix\rsort|\stack\A ,¢,/,1/,2,rows(A) + 1,1, rows(A)
A = sort(L) o = J;

XT :[226.558845 308.438284 2.075003-103]

coT =(15.051872 17.562411 45.552199)
-0.586168 -0.806945  0.717
¢ =| 0.549759 -0.585395 -0.386503

j:=1..
-0.595123 -0.078432 -0.580109 J rows(2)

<j> <j>

- ifl ¢, 20, L _ o
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<(¢<j>>T-M-¢<j>>1,1

000
® =|-0.020293  0.016828  -0.020124 q)T.M.q) - identity(rows(1)) =| 0 0 0
0.021968 2.254691-107 -0.030205 00O
Light damping approximation T
C=d -CO

0.053409  -0.052984 -0.413171
C'=[-0.052984  0.768463  2.49957-10°°

~0.413171 2.49957-107°  3.428128

C'. .
L] ]
5 " =[ 177415310 0.021878 0.037629 ]
J



Unit cosine response from Appendix B
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Transient solution for modal coordinates when » = 16 rad/s:
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Matt Allen
Note
It is difficult to look at these plots and know that your answer is right.  The FFT of these plots might give a little more insight, but even then it might be tricky.  You could check your answer a number of ways.  First, you could integrate the EOM with the full M, C and K using ode45 and compare.  You could also find the steady state response and check that this solution converges to that after a long time.
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Matt Allen
Note
A much better way to do this would be to compute the time constant for each of the modal coordinates:
tau_j = 1/(omega_j*zeta_j)

For this problem these are:
tau_j= 37.447       2.6026       0.5834

Since each mode appears in every response coordinate, and the mode with the largest time constant will take the longest to decay, steady state will not be reached until (using a tolerance of about 2%) t = 4*max(tau_j) = 150 seconds.



Exercise 4.47
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