HW 1

HW 1 EMA 545
 Mechanical Vibrations

Spring 2013
 University of Wisconsin, Madison

Nasser M. Abbasi

Contents

1 Problem 1 (1.1 book) 2
2 Problem 2 3
3 Problem 3 5
3.1 part(a) 7
$3.2 \operatorname{part}(\mathrm{~b})$ 7
$3.3 \operatorname{part}(\mathrm{c})$ 8
$3.4 \operatorname{part}(\mathrm{~d})$ 9
4 Problem 4 (2.5 book) 10
4.1 part(a) 10
4.2 part(b) 13
4.3 part(c) 14
5 Problem 5 (2.8 book) 15
5.1 part(a) 16
$5.2 \operatorname{part}(\mathrm{~b})$ 16
5.3 part(c) 17
$5.4 \operatorname{part}(\mathrm{~d})$ 18
6 Problem 6 (2.10 book) 19

1 Problem 1 (1.1 book)

1.1 Determine the spring stiffness that is equivalent to the action of the four springs in the sketch.

k_{3} and k_{2} are in parallel, hence the effective stiffness is

$$
k_{23}=k_{2}+k_{3}
$$

k_{23} and k_{1} are now in series, hence the effective stiffness is

$$
\frac{1}{k_{123}}=\frac{1}{k_{1}}+\frac{1}{k_{23}}=\frac{k_{23}+k_{1}}{k_{1} k_{23}}=\frac{k_{2}+k_{3}+k_{1}}{k_{1}\left(k_{2}+k_{3}\right)}=\frac{k_{2}+k_{3}+k_{1}}{k_{1} k_{2}+k_{1} k_{3}}
$$

Therefore

$$
k_{123}=\frac{k_{1} k_{2}+k_{1} k_{3}}{k_{2}+k_{3}+k_{1}}
$$

k_{123} and k_{4} are now in parallel, hence the effective stiffness is

$$
\begin{aligned}
k_{1234} & =k_{4}+k_{123} \\
& =k_{4}+\frac{k_{1} k_{2}+k_{1} k_{3}}{k_{2}+k_{3}+k_{1}}
\end{aligned}
$$

Hence the final effective stiffness is

$$
k_{e q}=\frac{k_{4}\left(k_{2}+k_{3}+k_{1}\right)+k_{1} k_{2}+k_{1} k_{3}}{k_{2}+k_{3}+k_{1}}
$$

2 Problem 2

Problem 2: Find the equation of motion of the system pictured below. The mass of the block is m and the mass of the beams and springs is negligible. Assume that all of the displacements are very small. (Recall that the displacement of the tip of a cantilever beam, $\Delta_{\text {tip }}$, is related to the force at the tip by: $\left.\mathrm{F}_{\text {tip }}=\left(3 \mathrm{EI} / \mathrm{L}^{3}\right) \Delta_{\text {tip }}\right)$

We start by drawing a free body diagram and taking displacement of mass from the static equilibrium position. Let the displacement of the mass be x and positive pointing upwards.

Let Δ_{1} be the downward deflection at right end of the bottom beam. Let Δ_{2} be the downward deflection at right end of top beam. The free body diagram is

Applying equilibrium of vertical forces $\sum F_{v}=0$ for mass m and noting that inertial forces opposes motion, results in the equation of motion

$$
\begin{equation*}
m x^{\prime \prime}+k\left(x-\Delta_{1}\right)=F \tag{1}
\end{equation*}
$$

To find an expression for Δ_{1} in terms of x, we apply equilibrium of vertical forces at the right end of the lower beam ${ }^{11}$

$$
\begin{equation*}
k\left(x-\Delta_{1}\right)=k_{b} \Delta_{1}+k\left(\Delta_{1}-\Delta_{2}\right) \tag{2}
\end{equation*}
$$

Similarly, applying equilibrium of vertical forces at the right end of the top beam

$$
\begin{equation*}
k\left(\Delta_{1}-\Delta_{2}\right)=k_{b} \Delta_{2} \tag{3}
\end{equation*}
$$

Solving for Δ_{1}, Δ_{2} from Eqs 233(2 equations, 2 unknowns) gives

$$
\Delta_{1}=\frac{k\left(k+k_{b}\right)}{k^{2}+3 k k_{b}+k_{b}^{2}} x
$$

Substituting the above value into Eq 1 results in the equation of motion

$$
m x^{\prime \prime}+k x\left(1-\frac{k\left(k+k_{b}\right)}{k^{2}+3 k k_{b}+k_{b}^{2}}\right)=F
$$

[^0]
3 Problem 3

EXERCISE 2.3

Use the properties in this trace to determine
(a) The initial values of x and \dot{x}.
(b) The value of t at which the minimum value of x first occurs.
(c) The maximum positive value of \dot{x} and the earliest value of t at which this maximum occurs.
(d) The maximum positive value of \ddot{x} and the earliest value of t at which this maximum occurs.

Assuming periodic motion, the period is $T=6 \mathrm{~ms}$, or $6 \times 10^{-3} \mathrm{sec}$. Hence $\omega=\frac{\pi}{3} \mathrm{rad} / \mathrm{ms}$ Representing this as a cosine signal with phase gives

$$
x(t)=A \cos (\omega t+\theta)
$$

Then

$$
\begin{align*}
x(t) & =\operatorname{Re}[A+\cos (\omega t+\theta)] \\
& =\operatorname{Re}\left[A e^{i \theta} e^{i \omega t}\right] \\
& =\operatorname{Re}\left[\bar{A} e^{i \omega t}\right] \tag{4}
\end{align*}
$$

Where now $\hat{A}=A e^{i \theta}$. Using phasor diagram

Hence from the diagram we see that for $x\left(t_{0}\right)$ to be zero when $t_{0}=1 \mathrm{~ms}$, we need to have

$$
\omega t_{0}+\theta=\frac{\pi}{2}
$$

But $\omega=\frac{\pi}{3} \mathrm{rad} / \mathrm{ms}$, hence

$$
\theta=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}
$$

To find A we see that the maximum absolute value of $x(t)$ is 20 mm hence $A=20 \mathrm{~mm}$ or 20×10^{-3} meter. The equation of $x(t)$ when substituting all numerical values becomes

$$
\begin{equation*}
x(t)=20 \cos \left(\frac{\pi}{3} t+\frac{\pi}{6}\right) \tag{5}
\end{equation*}
$$

Where units used are radians, milliseconds and mm. This is a plot of the above function

```
parms = f -> 1/(6 10^-3);
Plot[0.02 Cos[2 Pi f t + (Pi/6)] /. parms, {t,0,0.005},
    AxesLabel -> {t,x[t]}, ImageSize -> 300]
```


$3.1 \operatorname{part}(a)$

At $t=0$, from $4 x(0)=\operatorname{Re}[\hat{A}]=A \cos (\theta)=20 \cos \left(\frac{\pi}{6}\right)$ hence

$$
x(0)=17.321 \mathrm{~mm}
$$

From $4 x^{\prime}(t)=\operatorname{Re}\left[\omega \hat{A} e^{i \omega t}\right]$ hence $x^{\prime}(0)=\operatorname{Re}[\omega \hat{A}]=\omega A \cos (\theta)=20 \frac{\pi}{3} \cos \left(\frac{\pi}{6}\right)$ giving

$$
x^{\prime}(0)=18.138 \mathrm{~m} / \mathrm{sec}
$$

$3.2 \operatorname{part}(\mathrm{~b})$

This can be solved using calculus ${ }^{2}$

$$
\begin{aligned}
x^{\prime}(t) & =-2 \pi f A \sin (2 \pi f t+\theta) \\
0 & =-2 \pi f A \sin \left(2 \pi f t+\frac{\pi}{6}\right) \\
& =-\left(\frac{2 \pi}{6 \times 10^{-3}}\right)\left(20 \times 10^{-3}\right) \sin \left(\frac{2 \pi}{6 \times 10^{-3}} t+\frac{\pi}{6}\right) \\
0 & =\sin \left(\frac{2 \pi}{6 \times 10^{-3}} t+\frac{\pi}{6}\right)
\end{aligned}
$$

We solve for t and find $t=2.5 \mathrm{~ms}$. But this can be solved more easily by looking at the phasor diagram

[^1]

The minimum $x(t)$ (in negative sense and not in absolute value sense) occurs when $\omega t_{\text {min }}+$ $\theta=\pi$, hence $t_{\min }=\frac{\pi-\theta}{\omega}$, therefore

$$
t_{\min }=2.5
$$

$3.3 \operatorname{part}(\mathrm{c})$

This is solved in a similar way by treating the speed as the rotating vector in complex plan. Since $x^{\prime}(t)=\operatorname{Re}\left(A \omega e^{i\left(\omega t+\theta+\frac{\pi}{2}\right)}\right)$ then in complex plan as follows

The difference is that the velocity vector has phase of $\theta+\frac{\pi}{2}$ instead of θ as was the case with the position vector, and the amplitude is $A \omega$ instead of A. Hence the first time the
speed vector will have the maximum value is when

$$
\theta+\frac{\pi}{2}+\omega t=2 \pi
$$

Hence

$$
\begin{aligned}
t & =\frac{2 \pi-\frac{\pi}{2}-\theta}{\omega} \\
& =\frac{2 \pi-\frac{\pi}{2}-\frac{\pi}{6}}{\frac{\pi}{3}}
\end{aligned}
$$

Hence $t=4 \mathrm{~ms}$ and the amplitude is given by $A \omega=20 \frac{\pi}{3}$ hence $A \omega=20.944$ meter $/ \mathrm{sec}$

$3.4 \operatorname{part}(d)$

Now treating the acceleration as the rotating vector in complex plan

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left(A e^{i(\theta+\omega t)}\right) \\
x^{\prime}(t) & =\operatorname{Re}\left(i A \omega e^{i(\theta+\omega t)}\right) \\
x^{\prime \prime}(t) & =\operatorname{Re}\left(-A \omega^{2} e^{i(\theta+\omega t)}\right)
\end{aligned}
$$

But $-1=e^{i \pi}$ This adds a π to the phase resulting in

$$
x^{\prime \prime}(t)=\operatorname{Re}\left(A \omega^{2} e^{i(\theta+\omega t+\pi)}\right)
$$

Representing $x^{\prime \prime}(t)$ in complex plan gives

The first time the $x^{\prime \prime}(t)$ vector will have the maximum value is when

$$
\theta+\pi+\omega t=2 \pi
$$

Hence

$$
\begin{aligned}
t & =\frac{2 \pi-\pi-\theta}{\omega} \\
& =\frac{\pi-\frac{\pi}{6}}{\frac{\pi}{6}}
\end{aligned}
$$

Hence $t=2.5 \mathrm{~ms}$ and the amplitude is

$$
\begin{aligned}
A \omega^{2} & =20 \mathrm{~mm}\left(\frac{\pi}{3} \mathrm{rad} / \mathrm{msec}\right)^{2} \\
& =21.933 \times 10^{3} \text { meter } / \mathrm{sec}^{2}
\end{aligned}
$$

4 Problem 4 (2.5 book)

2.5 An oscilloscope trace indicates that the voltage output v from a sensor varies harmonically, with zeroes occurring every 8 ms . The first zero of v occurs at $t=5.5 \mathrm{~ms}$, the amplitude of the signal is 1.2 V , and $v>0$ at $t=0$.
(a) Express this signal as a complex exponential. Write the complex amplitude in polar and rectangular forms.
(b) Express the time rate of change of the voltage as a complex exponential. Write this quantity in polar and rectangular forms.

$4.1 \operatorname{part}(a)$

The function of the signal is converted to complex exponential. A sin or cos can be used to represent the signal as long as we are consistent. Assuming the signal is $x(t)=A \cos (\omega t+$ $\theta)$, plotting the general representation of the position vector in complex plan gives

The complex representation of the position vector is

$$
x(t)=\operatorname{Re}\left[A e^{i(\omega t+\theta)}\right]
$$

We are given that $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{16}$, and since $x\left(t_{0}\right)$ has first zero at $t_{0}=5.5 \mathrm{~ms}$ this means from looking at the above diagram that

$$
\theta+\omega t_{0}=\frac{\pi}{2}
$$

Hence $\theta=\frac{\pi}{2}-\left(\omega t_{0}\right)=\frac{\pi}{2}-\left(\frac{\pi}{8} \frac{55}{10}\right)$ which gives

$$
\theta=\frac{-3 \pi}{16} \text { radians }
$$

Hence the signal is

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[A e^{i(\omega t+\theta)}\right] \\
& =\operatorname{Re}\left[1.2 e^{i\left(\frac{\pi}{8} t-\frac{3 \pi}{16}\right)}\right] \\
& =\operatorname{Re}\left[1.2 e^{-i \frac{3 \pi}{16}} e^{i \frac{\pi}{8} t}\right] \\
& =\operatorname{Re}\left[\hat{A} e^{i \frac{\pi}{8} t}\right]
\end{aligned}
$$

Where $\hat{A}=1.2 e^{-i \frac{3 \pi}{16}}$ is the complex amplitude in polar coordinates. In rectangular coordinates it becomes

$$
\begin{aligned}
\hat{A} & =1.2 e^{-i \frac{3 \pi}{16}} \\
& =1.2\left(\cos \left(\frac{3 \pi}{16}\right)-i \sin \left(\frac{3 \pi}{16}\right)\right) \\
& =1.2(0.831-i 0.5556) \\
& =0.9977-i 0.6667
\end{aligned}
$$

Hence

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[(0.998-i 0.668)\left(\cos \frac{\pi}{8} t+i \sin \frac{\pi}{8} t\right)\right] \\
& =\operatorname{Re}\left[\left(0.998 \cos \frac{\pi}{8} t+0.668 \sin \frac{\pi}{8} t\right)+\right. \\
& \left.i\left(0.998 \sin \frac{\pi}{8} t-0.668 \cos \frac{\pi}{8} t\right)\right]
\end{aligned}
$$

Here is a plot of the signal for 20 ms

```
w = Pi/8;
f = 1.2 Cos[w t - 3 Pi/16];
Plot[f, {t, 0, 20}, AxesLabel -> {t, x[t]},
    ImageSize -> 300,
    GridLines -> Automatic,
    GridLinesStyle-> {{Dashed,Gray},{Dashed,Gray}},
    PlotStyle -> Red]
```


$4.2 \operatorname{part}(b)$

From above it was found that

$$
x(t)=\operatorname{Re}\left[A e^{i(\omega t+\theta)}\right]
$$

Hence

$$
\begin{aligned}
x^{\prime}(t) & =\operatorname{Re}\left[i \omega A e^{i(\omega t+\theta)}\right] \\
& =\operatorname{Re}\left[e^{i \frac{\pi}{2}} \omega A e^{i \theta} e^{i \omega t}\right] \\
& =\operatorname{Re}\left[\omega A e^{i\left(\frac{\pi}{2}+\theta\right)} e^{i \omega t}\right] \\
& =\operatorname{Re}\left[\hat{A} e^{i \omega t}\right]
\end{aligned}
$$

Where $\hat{A}=\omega A e^{i\left(\frac{\pi}{2}+\theta\right)}$ Replacing numerical values gives $\hat{A}=\frac{\pi}{8}(1.2) e^{i\left(\frac{\pi}{2}-\frac{3}{16} \pi\right)}=0.471 e^{i 0.983}$ and

$$
\begin{aligned}
x^{\prime}(t) & =\operatorname{Re}\left[0.471 e^{i 0.983} e^{i \omega t}\right] \\
& =\operatorname{Re}\left[0.471 e^{i 0.983} e^{i \frac{\pi}{8} t}\right] \\
& =\operatorname{Re}\left[0.471 e^{i 0.983} e^{i 0.3923 t}\right]
\end{aligned}
$$

In rectangular coordinates, the above becomes

$$
\begin{aligned}
x^{\prime}(t)= & \operatorname{Re}[0.471(\cos 0.983+i \sin 0.983) \\
& (\cos 0.3923 t+i \sin 0.3923 t)] \\
= & \operatorname{Re}[(0.261+0.392 i)(\cos 0.392 t+i \sin 0.392 t)] \\
= & \operatorname{Re}[(0.261 \cos 0.392 t-0.392 \sin 0.392 t) \\
& +i(0.261 \sin 0.392 t+0.392 \cos 0.392 t)]
\end{aligned}
$$

$4.3 \operatorname{part}(c)$

To find the maximum rate of the signal

$$
x^{\prime}(t)=\operatorname{Re}\left[\hat{A} e^{i \omega t}\right]
$$

Then the maximum $x^{\prime}(t)$ is $|\hat{A}|$ which is

$$
\begin{aligned}
|\hat{A}| & =|0.261+0.392 i| \\
& =\sqrt{0.261^{2}+0.392^{2}} \\
& =0.471
\end{aligned}
$$

Hence maximum $x^{\prime}(t)$ is $0.471 \mathrm{v} / \mathrm{ms}$ or $471 \mathrm{volt} / \mathrm{sec}$.
Maximum velocity in simple harmonic motion occurs when $x(t)=0$. This occurs at $t=5.5$ ms and at 8 ms henceforth. Hence maximum speed occurs at

$$
t=5.5+n(8)
$$

for $n=0,1,2, \cdots$ this results in

$$
t=5.5,13,5,21.5, \cdots \mathrm{~ms}
$$

Here is a plot of $x^{\prime}(t)$ in units of volt/ms

```
f = 0.261 Cos[0.392 t] - 0.392 Sin[0.392 t];
Plot[f, {t, 0, 30},
    AxesLabel -> {Row[{t, "(ms)"}], x'[t]},
    ImageSize -> 300, GridLines -> Automatic,
    GridLinesStyle -> {{Dashed, Gray}, {Dashed, Gray}},
    PlotStyle -> Red]
```


5 Problem 5 (2.8 book)

2.8 Suppose $q=0.01 \sin (50 t)-0.02 \cos (50 t-$ 0.3π).
(a) Write q in complex exponential form. What is the complex amplitude?
(b) What is the time interval separating instants at which $q=0$?
(c) What is the earliest positive t at which $q=0$?
(d) What is the largest value of q that will occur, and what is the earliest positive t at which this maximum occurs?

$5.1 \operatorname{part}(a)$

This is a plot of the signal

```
f = 0.01 Sin[50 t] - 0.02 Cos[50 t - 0.3 Pi];
```

Plot[f, \{t, 0, 0.2\},
AxesLabel \rightarrow \{Row[\{t , " (sec)" $\}$], $x[t]\}$,
ImageSize -> 300,
GridLines -> Automatic, GridLinesStyle-> \{\{Dashed, Gray\}, \{Dashed, Gray\}\}, PlotStyle -> Red]

$$
\begin{aligned}
q & =0.01 \sin (50 t)-0.02 \cos (50 t-0.3 \pi) \\
& =\operatorname{Re}\left[\frac{0.01}{i} e^{i 50 t}-0.02 e^{i(50 t-0.3 \pi)}\right] \\
& =\operatorname{Re}\left[0.01 e^{-i \frac{\pi}{2}} e^{i 50 t}-0.02 e^{i 50 t} e^{-i 0.3 \pi}\right] \\
& =\operatorname{Re}\left[\left(0.01 e^{-i \frac{\pi}{2}}-0.02 e^{-i 0.3 \pi}\right) e^{i 50 t}\right] \\
& =\operatorname{Re}\left[\hat{A} e^{i 50 t}\right]
\end{aligned}
$$

Hence the complex amplitude is

$$
\hat{A}=0.01 e^{-i \frac{\pi}{2}}-0.02 e^{-i 0.3 \pi}
$$

$5.2 \operatorname{part}(\mathrm{~b})$

From above, we see that

$$
\omega=50 \mathrm{rad} / \mathrm{sec}
$$

Hence $f=\frac{50}{2 \pi} \mathrm{~Hz}$, or the period $T=\frac{2 \pi}{50}=0.126 \mathrm{sec}$, therefore the time period separating the zeros is $\frac{0.126}{2}=0.063 \mathrm{sec}$ or 63 ms

$5.3 \operatorname{part}(c)$

The complex phase \hat{A} can be found by adding the vector $0.01 e^{-i \frac{\pi}{2}}$ and $-0.02 e^{-i \frac{3 \pi}{10}}$ by completing the parallelogram as shown in this diagram. $\hat{A}=-0.02 \cos 0.7 \pi+i(-0.01+0.02 \sin 0.7 \pi)$, hence the angle α that \hat{A} makes with the horizontal is

$$
\begin{aligned}
\tan ^{-1}\left(\frac{-0.01+0.02 \sin 0.7 \pi}{-0.02 \cos 0.7 \pi}\right) & =\arctan (0.526) \\
& =0.484 \text { radian } \\
& =27.73 \text { degree }
\end{aligned}
$$

and the amplitude is

$$
\sqrt{(-0.01+0.02 \sin 0.7 \pi)^{2}+(0.02 \cos 0.7 \pi)^{2}}=0.0133 \mathrm{~V}
$$

To find the earliest time q will be zero, we need to find the time the complex position vector will take to rotate and reach the imaginary axis.

Hence we need to solve

$$
\begin{aligned}
\pi-\alpha+\omega t_{0} & =\frac{3}{2} \pi \\
t_{0} & =\frac{\frac{3}{2} \pi-\pi+0.48402}{50} \\
& =0.0411 \mathrm{~s}
\end{aligned}
$$

Therefore

$$
t=41.1 \mathrm{~ms}
$$

5.4 $\operatorname{part}(d)$

The largest value of q is the absolute value of its complex amplitude. We found this above as

$$
|\hat{A}|=0.0133 \text { Volt }
$$

To find when this occur first time, the time the position vector will align with the real axis in the positive direction is found. Hence solving for t_{0} from

$$
\begin{aligned}
\pi-\alpha+\omega t_{0} & =2 \pi \\
t_{0} & =\frac{2 \pi-\pi+0.484}{50}
\end{aligned}
$$

Gives $t=72.5 \mathrm{~ms}$. Another way would be to take derivative of $q t$) and set that to zero and solve for first t which satisfy the equation.

6 Problem 6 (2.10 book)

2.10 Two parts of the harmonic motion of a system are $x_{1}=8 \sin (10 t-5 \pi / 6), x_{2}=12$ $\cos (10 t+\phi)$. Find the phase angle ϕ for which $x=x_{1}+x_{2}$ is a pure sine function. What is the amplitude of x in that case?

$$
\begin{aligned}
& x_{1}=8 \sin \left(10 t-\frac{5}{6} \pi\right) \\
& x_{2}=12 \cos (10 t+\phi)
\end{aligned}
$$

Let $\omega=10$, hence

$$
\begin{align*}
x & =x_{1}+x_{2} \\
& =\operatorname{Re}\left[\frac{8}{i} e^{i\left(\omega t-\frac{5}{6} \pi\right)}\right]+\operatorname{Re}\left[12 e^{i(\omega t+\phi)}\right] \\
& =\operatorname{Re}\left[\frac{8}{i} e^{i\left(\omega t-\frac{5}{6} \pi\right)}+12 e^{i(\omega t+\phi)}\right] \\
& =\operatorname{Re}\left[8 e^{-i \frac{\pi}{2}} e^{i\left(\omega t-\frac{5}{6} \pi\right)}+12 e^{i(\omega t+\phi)}\right] \\
& =\operatorname{Re}\left[8 e^{-i \frac{\pi}{2}} e^{i \omega t} e^{-i \frac{5}{6} \pi}+12 e^{i \omega t} e^{i \phi}\right] \\
& =\operatorname{Re}\left[\left(8 e^{-i\left(\frac{4}{3} \pi\right)}+12 e^{i \phi}\right) e^{i \omega t}\right] \\
& =\operatorname{Re}\left[\hat{A} e^{i \omega t}\right] \tag{6}
\end{align*}
$$

Where

$$
\begin{aligned}
\hat{A} & =8 e^{-i\left(\frac{4}{3} \pi\right)}+12 e^{i \phi} \\
& =(-4+6.928 i)+12(\cos \phi+i \sin \phi) \\
& =(-4+12 \cos \phi)+i(6.928+\sin \phi)
\end{aligned}
$$

Hence Eq 6 becomes

$$
x=\operatorname{Re}\left[\{(-4+12 \cos \phi)+i(6.928+\sin \phi)\} e^{i \omega t}\right]
$$

To convert to sin we multiply and divide by i hence

$$
\begin{align*}
x & \left.=\operatorname{Re}[\{(-4+12 \cos \phi)+i(6.928+\sin \phi)\}\} \frac{e^{i \omega t}}{i}\right] \\
& =\operatorname{Re}\left[\{-(6.928+\sin \phi)+i(-4+12 \cos \phi)\} \frac{e^{i \omega t}}{i}\right] \tag{7}
\end{align*}
$$

The complex number $-(6.928+\sin \phi)+i(-4+12 \cos \phi)$ can be written in polar form as $k e^{i \beta}$ where $K=\sqrt{(6.928+\sin \phi)^{2}+(-4+12 \cos \phi)^{2}}$ and $\beta=\tan ^{-1}\left(\frac{-4+12 \cos \phi}{-(6.928+\sin \phi)}\right)$, hence Eq 7becomes

$$
\begin{aligned}
x & =\operatorname{Re}\left[k e^{i \beta} \frac{e^{i \omega t}}{i}\right] \\
& =\operatorname{Re}\left[k \frac{e^{i(\omega t+\beta)}}{i}\right] \\
& =k \sin (\omega t+\beta)
\end{aligned}
$$

or in full form

$$
x=\sqrt{(6.928+\sin \phi)^{2}+(-4+12 \cos \phi)^{2}} \quad \sin \left(\omega t+\tan ^{-1}\left(\frac{-4+12 \cos \phi}{-(6.928+\sin \phi)}\right)\right)
$$

For pure sine function we need $\frac{-4+12 \cos \phi}{-(6.928+\sin \phi)}=0$ or $12 \cos \phi=4$ or $\cos \phi=\frac{1}{3}$, hence

$$
\begin{aligned}
\phi & =1.23096 \text { radian } \\
& =70.529^{\circ}
\end{aligned}
$$

The amplitude can also be found from the complex amplitude above when $\phi=1.23096$ as follows

$$
\begin{aligned}
\left|8 e^{-i\left(\frac{4}{3} \pi\right)}+12 e^{i 1.23096}\right| & =\left|-6.592 \times 10^{-6}+18.242 i\right| \\
& =\sqrt{\left(-6.592 \times 10^{-6}\right)^{2}+(18.242)^{2}} \\
& =18.242
\end{aligned}
$$

[^0]: ${ }^{1} k_{b}$ is beam stiffness against vertical displacement at the end and is given as $k_{b}=\frac{3 E I}{L^{3}}$

[^1]: ${ }^{2}$ Taking derivative of $x(t)$ and setting the result to zero and solving for t

