my cheat sheet, ME 440 Intermediate Vibration, Fall 2017

Nasser M. Abbasi
December 30, 2019

0.1 Solution to undamped forced harmonic

0.1.1 Input is $F_{0} \cos \omega t$

$$
m \ddot{x}+k x=F_{0} \cos \omega t
$$

This model is single degree of freedom system, undamped, with forced harmonice input. Its solution is given by

$$
x(t)=x_{h}(t)+x_{p}(t)
$$

Where $x_{p}(t)$ is particular solution and $x_{h}(t)$ is homogenous solution. We know that

$$
x_{h}(t)=c_{1} \cos \omega_{n} t+c_{2} \sin \omega_{n} t
$$

And assuming $x_{p}(t)=X \cos \omega t$ for the case $\underline{\omega \neq \omega_{n}}$ Pluggin this into the ODE, we find that

$$
X=\frac{x_{s t}}{1-r^{2}}
$$

Where $r=\frac{\omega}{\omega_{n}}$ and $x_{s t}=\frac{F_{0}}{k_{\text {eq }}}$ the static deflection. Hence the solution becomes

$$
\begin{equation*}
x(t)=\overbrace{c_{1} \cos \omega_{n} t+c_{2} \sin \omega_{n} t}^{\text {homogeneous }}+\overbrace{\frac{x_{s t}}{1-r^{2}} \cos \omega t}^{\text {particular }} \tag{1}
\end{equation*}
$$

Assuming initial conditions are $x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}$, then (1) at $t=0$ becomes

$$
\begin{aligned}
& x_{0}=c_{1}+\frac{x_{s t}}{1-r^{2}} \\
& c_{1}=x_{0}-\frac{x_{s t}}{1-r^{2}}
\end{aligned}
$$

Hence solution (1) now becomes

$$
x(t)=\left(x_{0}-\frac{x_{s t}}{1-r^{2}}\right) \cos \omega_{n} t+c_{2} \sin \omega_{n} t+\frac{x_{s t}}{1-r^{2}} \cos \omega t
$$

Taking derivative

$$
\dot{x}(t)=-\omega_{n}\left(x_{0}-\frac{x_{s t}}{1-r^{2}}\right) \sin \omega_{n} t+c_{2} \omega_{n} \cos \omega_{n} t-\omega \frac{x_{s t}}{1-r^{2}} \sin \omega t
$$

At $t=0$ the above becomes

$$
\begin{aligned}
& \dot{x}_{0}=c_{2} \omega_{n} \\
& c_{2}=\frac{\dot{x}_{0}}{\omega_{n}}
\end{aligned}
$$

Therefore the solution now becomes (again, this is for $\omega \neq \omega_{n}$)

$$
\begin{equation*}
x(t)=\left(x_{0}-\frac{x_{s t}}{1-r^{2}}\right) \cos \omega_{n} t+\frac{\dot{x}_{0}}{\omega_{n}} \sin \omega_{n} t+\frac{x_{s t}}{1-r^{2}} \cos \omega t \tag{2}
\end{equation*}
$$

0.1.2 Input is $F_{0} \sin \omega t$

$$
m \ddot{x}+k x=F_{0} \sin \omega t
$$

This model is single degree of freedom system, undamped, with forced harmonice input.

Its solution is given by

$$
x(t)=x_{h}(t)+x_{p}(t)
$$

Where $x_{p}(t)$ is particular solution and $x_{h}(t)$ is homogenous solution. We know that

$$
x_{h}(t)=c_{1} \cos \omega_{n} t+c_{2} \sin \omega_{n} t
$$

And assuming $x_{p}(t)=X \sin \omega t$ for the case $\underline{\omega \neq \omega_{n}}$ Pluggin this into the ODE, we find that

$$
X=\frac{x_{s t}}{1-r^{2}}
$$

Where $r=\frac{\omega}{\omega_{n}}$ and $x_{s t}=\frac{F_{0}}{k_{\text {eq }}}$ the static deflection. Hence the solution becomes

$$
\begin{equation*}
x(t)=\overbrace{c_{1} \cos \omega_{n} t+c_{2} \sin \omega_{n} t}^{\text {homogeneous }}+\overbrace{\frac{x_{s t}}{1-r^{2}} \sin \omega t}^{\text {particular }} \tag{1}
\end{equation*}
$$

Assuming initial conditions are $x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}$, then (1) at $t=0$ becomes

$$
x_{0}=c_{1}
$$

Hence solution (1) now becomes

$$
x(t)=x_{0} \cos \omega_{n} t+c_{2} \sin \omega_{n} t+\frac{x_{s t}}{1-r^{2}} \sin \omega t
$$

Taking derivative

$$
\dot{x}(t)=-x_{0} \sin \omega_{n} t+c_{2} \omega_{n} \cos \omega_{n} t+\omega \frac{x_{s t}}{1-r^{2}} \cos \omega t
$$

At $t=0$ the above becomes

$$
\begin{aligned}
\dot{x}_{0} & =c_{2} \omega_{n}+\omega \frac{x_{s t}}{1-r^{2}} \\
c_{2} & =\frac{\dot{x}_{0}}{\omega_{n}}-\frac{\omega}{\omega_{n}} \frac{x_{s t}}{1-r^{2}} \\
& =\frac{\dot{x}_{0}}{\omega_{n}}-\frac{r}{1-r^{2}} x_{s t}
\end{aligned}
$$

Therefore the solution now becomes (again, this is for $\omega \neq \omega_{n}$)

$$
\begin{equation*}
x(t)=x_{0} \cos \omega_{n} t+\left(\frac{\dot{x}_{0}}{\omega_{n}}-\frac{r}{1-r^{2}} x_{s t}\right) \sin \omega_{n} t+\frac{x_{s t}}{1-r^{2}} \sin \omega t \tag{2}
\end{equation*}
$$

Notice the difference in the solution. Here is summary

ODE	solution
$m \ddot{x}+k x=F_{0} \cos \omega t$	$x(t)=\left(x_{0}-\frac{x_{s t}}{1-r^{2}}\right) \cos \omega_{n} t+\frac{\dot{x}_{0}}{\omega_{n}} \sin \omega_{n} t+\overbrace{\frac{x_{s t}}{1-r^{2}} \cos \omega t}^{x_{p}}$
$m \ddot{x}+k x=F_{0} \sin \omega t$	$x(t)=x_{0} \cos \omega_{n} t+\left(\frac{\dot{x}_{0}}{\omega_{n}}-\frac{r}{1-r^{2}} x_{s t}\right) \sin \omega_{n} t+\overbrace{\frac{x_{s t}}{1-r^{2}} \sin \omega t}^{x_{p}}$

0.2 Solution to underdamped forced harmonic

ODE	particular solution only
$m \ddot{x}+c \dot{x}+k x=\frac{a_{0}}{2}$	$x_{p}(t)=\frac{a_{0}}{2} \frac{1}{k}$
$m \ddot{x}+c \dot{x}+k x=a_{n} \cos (n \omega t)$	$x_{p}(t)=\frac{a_{n}}{k} \frac{1}{\sqrt{\left(1-(n r)^{2}\right)^{2}+(2 \zeta n r)^{2}}} \cos \left(n \omega t-\phi_{n}\right)$
$m \ddot{x}+c \dot{x}+k x=b_{n} \sin (n \omega t)$	$x_{p}(t)=\frac{b_{n}}{k} \frac{1}{\sqrt{\left(1-(n r)^{2}\right)^{2}+(2 \zeta n r)^{2}}} \sin \left(n \omega t-\phi_{n}\right)$

Where

$$
\begin{aligned}
r & =\frac{\omega}{\omega_{n}} \\
\phi_{n} & =\tan ^{-1}\left(\frac{2 \zeta n r}{1-(n r)^{2}}\right)
\end{aligned}
$$

0.3 unit Impulse respones

For undamped system $m \ddot{x}+k x=\delta(t)$ the response (solution) is (notes calls these $g(t)$)

$$
g(t)=\frac{1}{m \omega_{n}} \sin \left(\omega_{n} t\right)
$$

And for an underdamped $m \ddot{x}+c \dot{x}+k x=\delta(t)$ the response is

$$
g(t)=\frac{1}{m \omega_{d}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t\right)
$$

0.4 Duhamel Integral

For arbitray forcing function $F(t)$ which can be of any forum, the response of the system to $F(t)$, assuming the system was at rest is

$$
x_{\text {conv }}(t)=\int_{0}^{t} F(\tau) g(t-\tau) d \tau
$$

0.4.1 Some definitions

DLF Dynamic locad factor. $D L F=\frac{x(t)}{x_{s t}}$. But we really only care for the maximum DLF. When the input is constant (step input), the $D L F_{\max }=2$.

Response spectrum Plots the $\mathrm{DLF}_{\text {max }}$ on the y axis vs $\frac{t}{T}$ where T is the period of the system on the x axis. This is done for typical inputs such as unit step, triangle, half sine, etc...

