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HW 5, ME 440 Intermediate Vibration, Fall 2017

Nasser M. Abbasi

December 30, 2019
ME 440 

Intermediate Vibrations 

 

Homework #5 

due Thursday, October 19, 2017 

 

Problem 1 

The stepped cylinder is connected to a spring of stiffness k2 and an inextensible cable.  The other end of the 

inextensible cable is attached to mass m1.  The stepped cylinder rolls without slip on the fixed surface.  The 

mass m1 rolls on 2 massless cylinders.  Assume the system will be limited to small displacements.  The total 

mass of the stepped cylinder is m2 and it’s mass moment of inertia about point O is I0. 

 
a) In preparation for using Newton’s Second Law, sketch the free-body diagram(s) and inertial diagram for this 

system. 

b) Using Newton’s Laws exclusively, determine the differential equation of motion for small angular 

oscillations of the mass m1 (in terms of the generalized coordinate x). 
 

 

 

 

Problem 2 

Repeat Problem 1 but use Tmax = Umax to find the natural frequency of the system. 

 

0.1 Problem 1
0.1.1 Part (A)

We start by assuming motion to the right, such that the small disk 𝑚2 rotates clockwise as
shown below. So the 𝑘2 spring is stretched by amount 𝑎𝜃 which come due to pure rotation,
and it also stretch by 𝑟𝜃 due to disk translation to the right at same time, therefore the
spring 𝑘1 will stretch by amount (𝑎 + 𝑟) 𝜃 and the 𝑘1 spring will be compressed by amount
𝑥.

θ

k2

o
r

a

aθ

stretched spring

m2Io

x

k1

compressed
spring

m1

rθ
this part of spring extension
comes from disk translation
to the right

this part of spring extension
comes from disk pure
rotation

Therefore total extension of
spring k2 is the sum of these
two extensions, which is
(a+ r)θ

1
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2

Based on the above, the following is the free body diagram for 𝑚2 and 𝑚1 and the cor-
responding kinematic diagrams. This assumes small angle 𝜃 and that springs remain
straight.

θ
k2(a+ r)θ

o
r

a

m2Io

x

k1x
m1

F

N2
m2g

D

T T

N1
m1g

θ

o
r

a

m2Io D

Ioθ̈

FBD

Inertia

m1
mẍ

m2(rθ̈)

FBD

Inertia

0.1.2 Part (B)

Since cable is inextensible, then the constraint is that 𝑥 = 𝑟𝜃. Starting from the FBD for 𝑚1

�𝐹𝑥 = 𝑚1�̈�
−𝑇 − 𝑘1𝑥 = 𝑚1�̈�
𝑚1�̈� + 𝑘1𝑥 = −𝑇 (1)

We do not need to resolve forces in vertical direction, since no motion is in that direction.
To find 𝑇, which is the tension in cable, we go back to 𝑚2 and find 𝑇.

We can do this part in two ways, either by taking moments around the instantaneous center
of zero velocity which is point 𝐷 at bottom of the small cylinder shown in the diagram, or
we can take moments around the C.M. of the disk and then use another equation to solve
for the friction 𝐹. We will show both methods, and that they give the same result.

Method one, using instantaneous center of zero velocity

Take moments around point 𝐷 as shown in figure in order to not have to account for the
friction force 𝐹 and the 𝑁2 force on 𝑚2 and using positive as anti-clockwise gives

�𝑀𝐷 = −𝐼𝐷�̈�

𝑘2 (𝑎 + 𝑟) 𝜃 (𝑎 + 𝑟) − 𝑇𝑟 = −

parallel axes

��������������𝐼𝑜 + 𝑚2𝑟2��̈�

𝑇 =
𝑘2 (𝑎 + 𝑟)2 𝜃 + �𝐼𝑜 + 𝑚2𝑟2� �̈�

𝑟
But due to constraint, then 𝜃 = 𝑥

𝑟 , �̈� = �̈�
𝑟 . Hence the above can be written as

𝑇 =
𝑘2

𝑥
𝑟
(𝑎 + 𝑟)2 + �𝐼𝑜 + 𝑚2𝑟2�

�̈�
𝑟

𝑟

=
𝑥𝑘2 (𝑎 + 𝑟)2

𝑟2
+
�𝐼𝑜 + 𝑚2𝑟2� �̈�

𝑟2
(2)
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3

Substituting (2) into (1) gives

𝑚1�̈� + 𝑘1𝑥 = −
⎛
⎜⎜⎜⎜⎝
𝑥𝑘2 (𝑎 + 𝑟)2

𝑟2
+
�𝐼𝑜 + 𝑚2𝑟2� �̈�

𝑟2

⎞
⎟⎟⎟⎟⎠

𝑚1�̈� +
�𝐼𝑜 + 𝑚2𝑟2� �̈�

𝑟2
+ 𝑘1𝑥 +

𝑥𝑘2 (𝑎 + 𝑟)2

𝑟2
= 0

�̈�
⎛
⎜⎜⎜⎜⎝𝑚1 +

�𝐼𝑜 + 𝑚2𝑟2�
𝑟2

⎞
⎟⎟⎟⎟⎠ + 𝑥

⎛
⎜⎜⎜⎝𝑘1 +

𝑘2 (𝑎 + 𝑟)2

𝑟2

⎞
⎟⎟⎟⎠ = 0

�̈�
⎛
⎜⎜⎜⎜⎝
𝑚1𝑟2 + �𝐼𝑜 + 𝑚2𝑟2�

𝑟2

⎞
⎟⎟⎟⎟⎠ + 𝑥

⎛
⎜⎜⎜⎝
𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)2

𝑟2

⎞
⎟⎟⎟⎠ = 0

Hence

�̈� �𝑚1𝑟2 + �𝐼𝑜 + 𝑚2𝑟2�� + 𝑥 �𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)2� = 0

In standard form

�̈� + 𝑥
𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
= 0 (3)

Or

�̈� + 𝜔2
𝑛𝑥 = 0

Where

𝜔2
𝑛 =

𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
Method two, moments around center of mass

Using this method. We start by taking moments around the center of mass of the disk 𝑚2
and using positive as anti-clockwise gives

�𝑀𝑜 = −𝐼𝑜�̈�
(𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎 − 𝐹𝑟 = −𝐼𝑜�̈�

𝐹 =
1
𝑟
�𝐼𝑜�̈� + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� (4)

Now resolving forces in the 𝑥 direction for 𝑚2, gives (with positive to the right)

�𝐹𝑥 = 𝑚2𝑟�̈�
𝑇 − 𝑘2 (𝑎 + 𝑟) 𝜃 − 𝐹 = 𝑚2𝑟�̈� (5)

Plugging (4) into (5) gives 𝑇

𝑇 − 𝑘2 (𝑎 + 𝑟) 𝜃 −
1
𝑟
�𝐼𝑜�̈� + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� = 𝑚2𝑟�̈�

Solving for 𝑇 gives

𝑇 = 𝑚2𝑟�̈� +
1
𝑟
�𝐼𝑜�̈� + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� + 𝑘2 (𝑎 + 𝑟) 𝜃

We now use the constraint that 𝑥 = 𝑟𝜃 to write everything in 𝑥. Hence 𝜃 = 𝑥
𝑟 , �̈� = �̈�

𝑟 and the
above now becomes

𝑇 = 𝑚2𝑟
�̈�
𝑟
+
1
𝑟
�𝐼𝑜

�̈�
𝑟
+ �𝑘2 (𝑎 + 𝑟)

𝑥
𝑟
� 𝑎� + 𝑘2 (𝑎 + 𝑟)

𝑥
𝑟

= 𝑚2�̈� +
1
𝑟2

(𝐼𝑜�̈� + (𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)
𝑥
𝑟

Now that we found 𝑇, we go back to the equation of motion for 𝑚1 in (1) and substitute
the above into it, the result becomes

𝑚1�̈� + 𝑘1𝑥 = −𝑇

= − �𝑚2�̈� +
1
𝑟2

(𝐼𝑜�̈� + (𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)
𝑥
𝑟 �
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Collecting terms

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑘1𝑥 +
1
𝑟2

((𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)
𝑥
𝑟
= 0

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
1
𝑟2

(𝑘2 (𝑎 + 𝑟) 𝑎) + 𝑘2 (𝑎 + 𝑟)
1
𝑟 �

= 0

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2

[(𝑎 + 𝑟) 𝑎 + 𝑟 (𝑎 + 𝑟)]� = 0

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2

�𝑎2 + 𝑟𝑎 + 𝑎𝑟 + 𝑟2�� = 0

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2

�𝑎2 + 2𝑎𝑟 + 𝑟2�� = 0

�̈� �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2

(𝑎 + 𝑟)2� = 0

Or

�̈� �𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜� + 𝑥 �𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)2� = 0

�̈� + 𝑥
𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
= 0

Which is the same equation of motion found in the first method.

0.2 Problem 2
In Rayleigh energy method, we ignore any friction, and assume motion is simple harmonic
motion (which is valid, since there is no damping).

The Kinetic energy 𝑇 of the system is (since disk rolls with no slip)

𝑇 =

disk

���������������������1
2
𝐼𝑜�̇�2 +

1
2
𝑚2𝑣2𝑐𝑔 +

cart

�������1
2
𝑚1�̇�2

But 𝑣𝑐𝑔 = 𝑟�̇�, hence the above becomes

𝑇 =
1
2
𝐼𝑜�̇�2 +

1
2
𝑚2 �𝑟�̇��

2
+
1
2
𝑚1�̇�2

But due to constraint, then 𝜃 = 𝑥
𝑟 , then �̇� = �̇�

𝑟 and the above becomes

𝑇 =
1
2
𝐼𝑜 �

�̇�
𝑟
�
2
+
1
2
𝑚2 �𝑟

�̇�
𝑟
�
2
+
1
2
𝑚1�̇�2

=
1
2
𝐼𝑜
�̇�2

𝑟2
+
1
2
𝑚2�̇�2 +

1
2
𝑚1�̇�2

=
1
2
�̇�2 �

𝐼𝑜
𝑟2

+ 𝑚2 + 𝑚1� (1)

The potential energy is

𝑈 =
1
2
𝑘2 ((𝑎 + 𝑟) 𝜃)2 +

1
2
𝑘1𝑥2

=
1
2
𝑘2 �(𝑎 + 𝑟)

𝑥
𝑟
�
2
+
1
2
𝑘1𝑥2

=
1
2
𝑘2 (𝑎 + 𝑟)2

𝑥2

𝑟2
+
1
2
𝑘1𝑥2 (2)

To find 𝑇max and 𝑈max, we now assume 𝑚1 undergoes simple harmonic motion given by
𝑥 (𝑡) = 𝑋max sin (𝜔𝑛𝑡). Hence �̇� = 𝑋max𝜔𝑛 cos𝜔𝑛𝑡. Therefore

�̇�max = 𝑋max𝜔𝑛

𝑥max = 𝑋max
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5

Therefore using these into (1) and (2) gives

𝑇max =
1
2
(�̇�max)

2 �
𝐼𝑜
𝑟2

+ 𝑚2 + 𝑚1�

𝑈max =
1
2
𝑘2 (𝑎 + 𝑟)2

𝑥2max
𝑟2

+
1
2
𝑘1𝑥2max

Or

𝑇max =
1
2
(𝑋max𝜔𝑛)

2 �
𝐼𝑜
𝑟2

+ 𝑚2 + 𝑚1�

𝑈max =
1
2
𝑋2

max

⎛
⎜⎜⎜⎝
𝑘2 (𝑎 + 𝑟)2

𝑟2
+ 𝑘1

⎞
⎟⎟⎟⎠

Hence

𝑇max = 𝑈max

1
2
(𝑋max𝜔𝑛)

2 �
𝐼𝑜
𝑟2

+ 𝑚2 + 𝑚1� =
1
2
𝑋2

max

⎛
⎜⎜⎜⎝
𝑘2 (𝑎 + 𝑟)2

𝑟2
+ 𝑘1

⎞
⎟⎟⎟⎠

𝜔2
𝑛 �

𝐼𝑜
𝑟2

+ 𝑚2 + 𝑚1� =
𝑘2 (𝑎 + 𝑟)2 + 𝑟2𝑘1

𝑟2

Solving for 𝜔2
𝑛

𝜔2
𝑛 =

𝑘2 (𝑎 + 𝑟)2 + 𝑟2𝑘1
𝐼𝑜 + 𝑟2 (𝑚2 + 𝑚1)

Therefore the equation of motion for 𝑚2 is

�̈� + 𝜔2
𝑛𝑥 = 0

�̈� +
𝑘2 (𝑎 + 𝑟)2 + 𝑟2𝑘1
𝐼𝑜 + 𝑟2 (𝑚2 + 𝑚1)

𝑥 = 0

Comparing this to the solution found in first problem, we see they are the same. The
Rayleigh energy method was much simpler in this case. But we have to ignore any friction,
and assume motion is harmonic, which is reasonable, since this is single degree of freedom
system.
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