HW 4, ME 440 Intermediate Vibration, Fall 2017

Nasser M. Abbasi
December 30, 2019

0.1 Problem 1

Problem 1

The pulley is in fixed axis rotation about Point O. Using energy concepts and θ as the generalized coordinate, determine
a) the natural frequency of the system shown below, and
b) the equation of motion for the system, in terms of the parameters provided.

0.1.1 Part a

Using Rayleigh method, we need to find $T_{\max }$ and $U_{\max }$ where T is the kinetic energy of the system and U is the potential energy and then solve for ω_{n} by setting $T_{\max }=U_{\max }$.

Kinetic energy is

$$
T=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} J_{o} \dot{\theta}^{2}
$$

But $x=r_{1} \theta$, therefore $\dot{x}=r_{1} \dot{\theta}$ and the above becomes

$$
\begin{equation*}
T=\frac{1}{2} m\left(r_{1} \dot{\theta}\right)^{2}+\frac{1}{2} J_{o} \dot{\theta}^{2} \tag{1}
\end{equation*}
$$

And potential energy only comes from the spring, since we assume x is measured from static equilibrium. Hence

$$
\begin{align*}
U & =\frac{1}{2} k x^{2} \\
& =\frac{1}{2} k\left(r_{2} \theta\right)^{2} \tag{2}
\end{align*}
$$

To get ω_{n} into (1) and (2), we now assume that motion is harmonic, hence $\theta=\theta_{\max } \sin \left(\omega_{n} t\right)$, Therefore $\dot{\theta}=\theta_{\max } \omega_{n} \cos \left(\omega_{n} t\right)$ and rewriting (1,2) using these expressions results in

$$
\begin{aligned}
T & =\frac{1}{2} m\left(r_{1} \theta_{\max } \omega_{n} \cos \left(\omega_{n} t\right)\right)^{2}+\frac{1}{2} J_{o}\left(\theta_{\max } \omega_{n} \cos \left(\omega_{n} t\right)\right)^{2} \\
U & =\frac{1}{2} k\left(r_{2}\left(\theta_{\max } \sin \left(\omega_{n} t\right)\right)\right)^{2}
\end{aligned}
$$

Hence, maximum is when $\theta=\theta_{\max }$ and $\dot{\theta}=\theta_{\max } \omega_{n}$ and the above becomes

$$
\begin{aligned}
T_{\max } & =\frac{1}{2} m r_{1}^{2} \theta_{\max }^{2} \omega_{n}^{2}+\frac{1}{2} J_{o} \theta_{\max }^{2} \omega_{n}^{2} \\
U_{\max } & =\frac{1}{2} k r_{2}^{2} \theta_{\max }^{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
T_{\max } & =U_{\max } \\
\frac{1}{2} m r_{1}^{2} \theta_{\max }^{2} \omega_{n}^{2}+\frac{1}{2} J_{o} \theta_{\max }^{2} \omega_{n}^{2} & =\frac{1}{2} k r_{2}^{2} \theta_{\max }^{2} \\
m r_{1}^{2} \omega_{n}^{2}+J_{o} \omega_{n}^{2} & =k r_{2}^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \omega_{n}^{2}=\frac{k r_{2}^{2}}{m r_{1}^{2}+J_{o}} \\
& \omega_{n}=\sqrt{\frac{k r_{2}^{2}}{m r_{1}^{2}+J_{o}}}
\end{aligned}
$$

0.1.2 Part b

The equation of motion is given by

$$
\frac{d}{d t}(T+U)=0
$$

We found T, U in part (a), therefore the above becomes

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} m\left(r_{1} \dot{\theta}\right)^{2}+\frac{1}{2} J_{o} \dot{\theta}^{2}+\frac{1}{2} k\left(r_{2} \theta\right)^{2}\right) & =0 \\
m r_{1}^{2} \dot{\theta} \ddot{\theta}+J_{o} \dot{\theta} \ddot{\theta}+k r_{2}^{2} \theta \dot{\theta} & =0
\end{aligned}
$$

For non trivial motion $\dot{\theta} \neq 0$ for all time, hence we can divide throughout by $\dot{\theta}$ and obtain

$$
\begin{aligned}
m r_{1}^{2} \ddot{\theta}+J_{o} \ddot{\theta}+k r_{2}^{2} \theta & =0 \\
\ddot{\theta}\left(m r_{1}^{2}+J_{o}\right)+k r_{2}^{2} \theta & =0 \\
\ddot{\theta}+\frac{k r_{2}^{2}}{m r_{1}^{2}+J_{o}} \theta & =0
\end{aligned}
$$

The above is the equation of motion.

0.2 Problem 2

Problem 2

An underdamped shock absorber is to be designed for motorcycle of mass 200 kg . When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting displacement-time curve is to be as illustrated below. Determine the necessary stiffness and damping constants of the shock absorber if the damped period of vibration is to be 2 seconds and the amplitude x_{1} is to be reduced to $1 / 4$ in one half cycle (i.e., $x_{1.5}=x_{1} / 4$). Also find the minimum initial velocity that leads to a maximum displacement of 250 mm .

First part

The first step is to determine damping ratio ζ. This is done using logarithmic decrement.
Since $X_{1.5}=\frac{1}{4} X_{1}$ and $X_{2}=\frac{1}{4} X_{1.5}$ then

$$
\begin{aligned}
X_{2} & =\frac{1}{4}\left(\frac{1}{4} X_{1}\right) \\
& =\frac{1}{16} X_{1}
\end{aligned}
$$

Using

$$
\frac{X_{1}}{X_{2}}=\frac{e^{-\zeta \omega_{n} t_{1}}}{e^{-\zeta \omega_{n}\left(t_{1}+t_{2}\right)}}
$$

Where $t_{2}=t_{1}+\tau_{d}$ and τ_{d} is damped period. Therefore the above becomes

$$
\begin{aligned}
\frac{X_{1}}{\frac{1}{16} X_{1}} & =\frac{e^{-\zeta \omega_{n} t_{1}}}{e^{-\zeta \omega_{n}\left(t_{1}+\tau_{d}\right)}}=\frac{e^{-\zeta \omega_{n} t_{1}}}{e^{-\zeta \omega_{n} t_{1}} e^{-\zeta \omega_{n} \tau_{d}}}=e^{\zeta \omega_{n} \tau_{d}} \\
\ln (16) & =\zeta \omega_{n} \tau_{d}
\end{aligned}
$$

Taking log of both sides gives

$$
\begin{equation*}
\ln (16)=\zeta \omega_{n} \tau_{d} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
\tau_{d} & =\frac{2 \pi}{\omega_{d}} \\
& =\frac{2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}
\end{aligned}
$$

And (1) simplifies to

$$
\begin{aligned}
& \ln (16)=\zeta \omega_{n} \frac{2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
& 2.7726=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}
\end{aligned}
$$

Squaring both sides and solving for ζ gives

$$
\begin{aligned}
(2.7726)^{2}\left(1-\zeta^{2}\right) & =4 \pi^{2} \zeta^{2} \\
\zeta^{2}\left(4 \pi^{2}+7.6873\right) & =7.6873 \\
\zeta^{2} & =\frac{7.6873}{4 \pi^{2}+7.6873}
\end{aligned}
$$

Taking the positive root results in

$$
\begin{aligned}
\zeta & =\sqrt{\frac{7.6873}{4 \pi^{2}+7.6873}} \\
& =0.40371
\end{aligned}
$$

Now that ζ is know, ω_{n} can be found, since we are told that $\tau_{d}=2$ seconds. Using

$$
\tau_{d}=\frac{2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}
$$

Then solving for ω_{n} from the above gives

$$
\begin{aligned}
2 & =\frac{2 \pi}{\omega_{n} \sqrt{1-0.40371^{2}}} \\
\omega_{n} & =\frac{\pi}{\sqrt{1-0.40371^{2}}} \\
& =3.4339 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Now we are ready to find the stiffness coefficient k and damping coefficient c. Using

$$
\zeta=\frac{c}{2 \omega_{n} m}
$$

Then

$$
\begin{aligned}
c & =2 \zeta \omega_{n} m \\
& =2(0.40371)(3.4339)(200) \\
& =554.52 \mathrm{~N}-\mathrm{s} / \mathrm{m}
\end{aligned}
$$

But since

$$
\omega_{n}^{2}=\frac{k}{m}
$$

Then k is now found

$$
\begin{aligned}
k & =\omega_{n}^{2} m \\
& =(3.4339)^{2}(200) \\
& =2358.3 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Second part
Maximum displacement occurs at time t_{1} as given by (from textbook)

$$
\sin \omega_{d} t_{1}=\sqrt{1-\zeta^{2}}
$$

Hence

$$
\begin{aligned}
\omega_{d} t_{1} & =\arcsin \left(\sqrt{1-\zeta^{2}}\right) \\
t_{1} & =\frac{1}{\omega_{n} \sqrt{1-\zeta^{2}}} \arcsin \left(\sqrt{1-\zeta^{2}}\right) \\
& =\frac{1}{3.4339 \sqrt{1-0.40371^{2}}} \arcsin \left(\sqrt{1-0.40371^{2}}\right) \\
& =0.36772 \mathrm{sec}
\end{aligned}
$$

Since

$$
\begin{equation*}
x(t)=X e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t\right) \tag{2}
\end{equation*}
$$

Then at maximum displacement, where $x=0.25 \mathrm{~m}$, the above becomes

$$
\begin{aligned}
x_{\max }\left(t_{1}\right) & =X e^{-\zeta \omega_{n} t_{1}} \sin \left(\omega_{d} t_{1}\right) \\
\frac{x_{\max } e^{\zeta \omega_{n} t_{1}}}{\sin \left(\omega_{d} t_{1}\right)} & =X
\end{aligned}
$$

Plug-in numerical values to solve for maximum displacement X gives

$$
\begin{aligned}
X & =\frac{0.25 \exp (0.40371 \times 3.4339 \times 0.36772)}{\sin \left(\left(3.4339 \sqrt{1-0.40371^{2}}\right)(0.36772)\right)} \\
& =0.45495 \mathrm{~m}
\end{aligned}
$$

From (2), the velocity is found

$$
\begin{aligned}
\dot{x}(t) & =-\zeta \omega_{n} X e^{-\zeta \omega_{n} t} \sin \left(\omega_{d} t\right)+X e^{-\zeta \omega_{n} t} \omega_{d} \cos \left(\omega_{d} t\right) \\
& =X e^{-\zeta \omega_{n} t}\left(\omega_{d} \cos \left(\omega_{d} t\right)-\zeta \omega_{n} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

At $t=0$ the above gives

$$
\begin{aligned}
\dot{x}(0) & =X \omega_{d} \\
& =X\left(\omega_{n} \sqrt{1-\zeta^{2}}\right)
\end{aligned}
$$

Plug-in in numerical values

$$
\begin{aligned}
\dot{x}(0) & =0.45495\left(3.4339 \sqrt{1-0.40371^{2}}\right) \\
& =1.4293 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

