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December 30, 2019

ME 440 

Intermediate Vibrations 

 

Homework #10 

due Thursday, December 7th, 2017 

 
 
Problem 1. Use Newton’s Law to determine the equation of motion.  Solve for the natural 
frequencies and mode shapes without using a computer (solve by hand).  Use your hand written 
solution to write out the 2x2 modal matrix (normalized) and the 2x2  matrix. 
 
Problem 2.  Solve for the natural frequencies and mode shapes using Matlab.  (Include a screen 
shot of your Matlab output.) 

 

The sphere of mass m is attached to the end of a cantilevered beam that is fixed to 

a carriage of mass 2m as shown in the figure below.  The generalized coordinates 

of the system are the absolute displacements x1 and x2 of the carriage and sphere, 

respectively.  Determine (a) the mass and stiffness matrices of the system, and (b) 

the system’s natural circular frequencies and modal matrix [u] if k = 200 lb / in. 

and m = 2 lbs
2
 / in. 

 
 

Partial answer: 2 = 16.68 rad/s 

 

Problem 3. 
 

Determine the flexibility matrix of the uniform beam shown in the figure below.  Disregard the mass of the 

beam compared to the concentrated masses fastened on the beam and assume the beam has a stiffness of EI 

and that all li = l. 

  

 

0.1 Problem 1
To make it easier to obtain the equation of motions, the top mass 𝑚 is modeled as attached
to spring of sti�ness 𝑘 which is in turn attached to an infinitely sti� vertical massless beam.
This way the vibration of the mass 𝑚 at the top can be more easily modeled.
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x2

x1

Simplified model of the original system

This is an infinitly stiff
beam and remains
vertical. Stiffness is
modeled by the spring
above. This is also the
equilibrium position of x2

Spring of stiffness k,
assumed to remain
horizontal

m
vibration of x2

x2 − x1

2m
2k 2k

Based on the above diagram, we now obtain the free body diagram as follows. In this, we
assume that 𝑥2 > 𝑥1 and both as positive. Hence spring 𝑘 attached to 𝑚 is in tension.

m

2mg
2kx1 2kx1

k(x2 − x1)k(x2 − x1)

Fx

Fx

N

Fy

Fy

massless
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The top mass 𝑚 vibrates in horizontal direction only. Hence this assumes the spring will
remain horizontal and we must assume that 𝑥2−𝑥1 remain small for this model to be realistic.

From this free body diagram we see now that the reaction force 𝐹𝑥 is equal to 𝑘 (𝑥2 − 𝑥1). (By
resolving forces in the 𝑥 direction for the massless beam).

Therefore

𝐹𝑥 = 𝑘 (𝑥2 − 𝑥1)

And the equation of motion for 𝑥2 is

𝑚�̈�2 = −𝑘 (𝑥2 − 𝑥1)
𝑚�̈�2 + 𝑘𝑥2 − 𝑘𝑥1 = 0 (1)

The equation of motion for the cart is

2𝑚�̈�1 = −4𝑘𝑥1 + 𝐹𝑥
2𝑚�̈�1 = −4𝑘𝑥1 + 𝑘 (𝑥2 − 𝑥1)

2𝑚�̈�1 + 5𝑘𝑥1 − 𝑘𝑥2 = 0 (2)

Writing (1) and (2) in matrix form
⎡
⎢⎢⎢⎢⎢⎣
2𝑚 0
0 𝑚

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
5𝑘 −𝑘
−𝑘 𝑘

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Or ⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

The first step is to find the eigenvalues (which are the square of the natural frequency) for
the system.

Let

𝐴 = 𝑀−1𝐾

=

⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎥⎦
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But
⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦

−1

=
1

det (𝑀)

⎡
⎢⎢⎢⎢⎢⎣
2 0
0 4

⎤
⎥⎥⎥⎥⎥⎦

=
1
8

⎡
⎢⎢⎢⎢⎢⎣
2 0
0 4

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
4 0
0 1

2

⎤
⎥⎥⎥⎥⎥⎦

Hence

𝐴 =

⎡
⎢⎢⎢⎢⎢⎣

1
4 0
0 1

2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎥⎦

Now we will find the eigenvalues of 𝐴 (these will be the 𝜔2
𝑛 values). To find the eigenvalues

of 𝐴, we solve

det ([𝐴] − 𝜆 [𝐼]) = 0

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣
𝜆 0
0 𝜆

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ =

�
250 − 𝜆 −50
−100 100 − 𝜆

� =

(250 − 𝜆) (100 − 𝜆) − 5000 = 0
𝜆2 − 350𝜆 + 20 000 = 0

Hence

𝜆 =
−𝑏
2𝑎

± √
𝑏2 − 4𝑎𝑐
2𝑎

=
350
2
± √

3502 − 4 (20 000)
2

= 175 ± 103.08
= {71.92, 278.08}

Therefore, the eigenvalues are

𝜆 = 𝜔2
𝑛 = {71.92, 278.08} (3)

The natural frequencies of the system are the sqrt of the eigenvalues. Therefore

𝜔𝑛 = �√71.92,√278.08�

= {8.4806, 16.676}
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Hence

𝜔𝑛(1) = 8.4806 rad/sec
𝜔𝑛(2) = 16.676 rad/sec

The next step is to find the eigenvectors. These are also called the shape vectors, or the 𝑢
vectors. Each eigenvalue will generate one eigenvector. We need to solve

[𝐴] {𝑢} = 𝜆 {𝑢}

For each eigenvalue, we find the corresponding eigenvector.

For 𝜆 = 71.92, we obtain the equation
⎡
⎢⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭
= 71.92

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭

From first equation

250𝑢11 − 50𝑢21 = 71.92𝑢11
We always let 𝑢11 = 1. Therefore

250 − 50𝑢21 = 71.92

𝑢21 =
250 − 71.92

50
= 3.5616

Therefore, the first eigenvector is

�⃗�1 =

⎧⎪⎪⎨
⎪⎪⎩

1
3.5616

⎫⎪⎪⎬
⎪⎪⎭

For 𝜆 = 278.08, we obtain the equation
⎡
⎢⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭
= 278.08

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭

From first equation

250𝑢12 − 50𝑢22 = 278.08𝑢12
We always let 𝑢12 = 1. Hence

250 − 50𝑢22 = 278.08

𝑢22 =
250 − 278.08

50
= −0.561 6

Therefore, the second eigenvector is

�⃗�2 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.561 6

⎫⎪⎪⎬
⎪⎪⎭
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Therefore the modal matrix [𝑢] is

𝑢 =

⎡
⎢⎢⎢⎢⎢⎣

1 1
3.5616 −0.5616

⎤
⎥⎥⎥⎥⎥⎦

And Ω matrix is

Ω =

⎡
⎢⎢⎢⎢⎢⎣
𝜔2
𝑛(1) 0
0 𝜔2

𝑛(2)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
71.92 0
0 278.08

⎤
⎥⎥⎥⎥⎥⎦

And the system of equations written in principle coordinates 𝑞 is
��̈�� + [Ω] �𝑞� = {0}

⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1 (𝑡)
�̈�2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
71.92 0
0 278.08

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1 (𝑡)
�̈�2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

which is now decoupled. The solution in normal coordinates is
⎧⎪⎪⎨
⎪⎪⎩
𝑥1 (𝑡)
𝑥2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= 𝐴1

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭

cos �𝜔𝑛(1)𝑡 − 𝜙1� + 𝐴2

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭

cos �𝜔𝑛(2)𝑡 − 𝜙2�

= 𝐴1

⎧⎪⎪⎨
⎪⎪⎩

1
3.5616

⎫⎪⎪⎬
⎪⎪⎭

cos �8.481𝑡 − 𝜙1� + 𝐴2

⎧⎪⎪⎨
⎪⎪⎩

1
−0.561 6

⎫⎪⎪⎬
⎪⎪⎭

cos �16.676𝑡 − 𝜙2�

0.1.1 Appendix

This is derivation of the same equations of motions using energy method. (In this example,
this method is much simpler to use to find equation of motions). The kinetic energy of the
system is

𝑇 =
1
2
𝑚�̇�22 +

1
2
(2𝑚) �̇�21

And the potential energy comes only from the springs, since we assumed the top mass 𝑚
remain horizontal as it vibrates back and forth

𝑈 =
1
2
4𝑘𝑥21 +

1
2
𝑘 (𝑥2 − 𝑥1)

2

Therefore the Lagrangian is

Γ = 𝑇 − 𝑈

=
1
2
𝑚�̇�22 + 𝑚�̇�21 −

1
2
(4𝑘) 𝑥21 −

1
2
𝑘 (𝑥2 − 𝑥1)

2
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EQM for 𝑥1

𝑑
𝑑𝑡 �

𝜕Γ
�̇�1
� −

𝜕Γ
𝑥1

= 0

𝑑
𝑑𝑡
(2𝑚�̇�1) − (−4𝑘𝑥1 + 𝑘 (𝑥2 − 𝑥1)) = 0

2𝑚�̈�1 − (−4𝑘𝑥1 + 𝑘𝑥2 − 𝑘𝑥1) = 0
2𝑚�̈�1 − (−5𝑘𝑥1 + 𝑘𝑥2) = 0
2𝑚�̈�1 + 5𝑘𝑥1 − 𝑘𝑥2 = 0 (1)

EQM for 𝑥2

𝑑
𝑑𝑡 �

𝜕Γ
�̇�2
� −

𝜕Γ
𝑥2

= 0

𝑑
𝑑𝑡
(𝑚�̇�2) − (−𝑘 (𝑥2 − 𝑥1)) = 0

𝑚�̈�2 − (−𝑘𝑥2 + 𝑘𝑥1) = 0
𝑚�̈�2 + 𝑘𝑥2 − 𝑘𝑥1 = 0 (2)

In Matrix form (1,2) becomes
⎡
⎢⎢⎢⎢⎢⎣
2𝑚 0
0 𝑚

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
5𝑘 −𝑘
−𝑘 𝑘

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Which is the same exact result obtained earlier.
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0.2 Problem 2
The Matlab code is the following� �

1 %Solve HW 10, problem 2 using Matlab
2 %Nasser M. Abbasi, ME 440, Fall 2017
3 %see HW 10 for more details.
4

5 m = 2;
6 k = 200;
7

8 mass_mat = [2*m 0;
9 0 m]
10

11 stiffness_mat = [5*k -k;
12 -k k]
13

14 A_mat = inv(mass_mat) * stiffness_mat
15

16 [eig_vectors, eig_values] = eig(A_mat);
17

18 natural_frequencies = sqrt(diag( eig_values))
19

20 eig_vectors(:,1) = eig_vectors(:,1)/eig_vectors(1,1);
21 eig_vectors(:,2) = eig_vectors(:,2)/eig_vectors(1,2);
22

23 eig_vectors� �
The output is� �

1

2 mass_mat =
3 4 0
4 0 2
5

6 stiffness_mat =
7 1000 -200
8 -200 200
9

10 A_mat =
11 250 -50
12 -100 100
13

14 natural_frequencies =
15 16.6757
16 8.4807
17

18 eig_vectors =
19 1.0000 1.0000
20 -0.5616 3.5616� �
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0.3 Problem 3

ME 440 

Intermediate Vibrations 

 

Homework #10 

due Thursday, December 7th, 2017 

 
 
Problem 1. Use Newton’s Law to determine the equation of motion.  Solve for the natural 
frequencies and mode shapes without using a computer (solve by hand).  Use your hand written 
solution to write out the 2x2 modal matrix (normalized) and the 2x2  matrix. 
 
Problem 2.  Solve for the natural frequencies and mode shapes using Matlab.  (Include a screen 
shot of your Matlab output.) 

 

The sphere of mass m is attached to the end of a cantilevered beam that is fixed to 

a carriage of mass 2m as shown in the figure below.  The generalized coordinates 

of the system are the absolute displacements x1 and x2 of the carriage and sphere, 

respectively.  Determine (a) the mass and stiffness matrices of the system, and (b) 

the system’s natural circular frequencies and modal matrix [u] if k = 200 lb / in. 

and m = 2 lbs
2
 / in. 

 
 

Partial answer: 2 = 16.68 rad/s 

 

Problem 3. 
 

Determine the flexibility matrix of the uniform beam shown in the figure below.  Disregard the mass of the 

beam compared to the concentrated masses fastened on the beam and assume the beam has a stiffness of EI 

and that all li = l. 

  

 

Definitions For sti�ness matrix [𝐾], element 𝑘𝑖𝑗 means: Apply unit displacement at location
𝑗 and measure the force at location 𝑖. While for flexibility matrix [𝑎], its element 𝑎𝑖𝑗 means:
Apply unit force at location 𝑗 and measure the displacement at location 𝑖.

To solve this problem, this part of handout is used

Since [𝑎] is symmetric, only lower triangle part needs to be found (or upper triangle).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11
𝑎21 𝑎22
𝑎31 𝑎32 𝑎33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To find 𝑎11, a unit force is put at location 𝑚1 and displacement at 𝑚1 is measured. To find
𝑎21, a unit force is put at location 𝑚1 and displacement at 𝑚2 is measured and so on. The
formulas in the above hand out are used for this. To speed this process and make less
error, a small function is written to do the computation. Here is the function and the result
generated for 𝑎11, 𝑎21, 𝑎32,𝑎22,𝑎32,𝑎33
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Define the function to find a_ij

getFlexibility[x_, a_, b_] := Piecewise


b
2

6 E0 I0 L03
(2 b - 3 L0) x

3
+ 3 L0 (L0 - b) x

2
, x ≤ a,


b
2

6 E0 I0 L03
(2 b - 3 L0) x

3
+ 3 L0 (L0 - b ) x

2
+
L03

b
2
(x - a)

3 , x > a;

Call the function to find each element in lower triangle

In[43]:= L0 = 4 L;

a = L; b = 3 L; x = L;

flex[1, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[45]=
9 L3

64 E0 I0

In[48]:= a = L; b = 3 L; x = 2 L;

flex[2, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[49]=
L3

6 E0 I0

In[50]:= a = L; b = 3 L; x = 3 L;

flex[3, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[51]=
13 L3

192 E0 I0

In[52]:= a = 2 L; b = 2 L; x = 2 L;

flex[2, 2] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[53]=
L3

3 E0 I0

In[54]:= a = 2 L; b = 2 L; x = 3 L;

flex[3, 2] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[55]=
L3

6 E0 I0

In[56]:= a = 3 L; b = L; x = 3 L;

flex[3, 3] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[57]=
9 L3

64 E0 I0
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Therefore, using this result, the lower triangle is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
64
1
6

1
3

13
192

1
6

9
64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿3

𝐸𝐼

Hence by symmetry

[𝑎] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
64

1
6

13
192

1
6

1
3

1
6

13
192

1
6

9
64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿3

𝐸𝐼
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