Solving example, lecture Nov 30, 2017,ME 240

Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

Example 2: The pendulum consists of a $m_{R}=10 \mathrm{~kg}$ uniform slender rod and a sphere of mass $m_{S}=15 \mathrm{~kg}$. If the pendulum is subjected to a moment of $M=50 \mathrm{~N}-\mathrm{m}$, and has an angular velocity of $\omega=3 \mathrm{rad} / \mathrm{s}$ when $\theta=45^{\circ}$, determine the reaction force from pin O

The FBD and inertia diagram is

Where $M=m_{\text {disk }}+m_{b a r}$ and H is location of system center of mass. Total mass is $M=$ $15+10=25 \mathrm{~kg}$.

$$
\begin{aligned}
H & =\frac{m_{\text {sphere }}(L+R)+m_{\text {rod }}\left(\frac{L}{2}\right)}{m_{\text {sphere }}+m_{\text {rod }}} \\
& =\frac{15(0.6+0.1)+10(0.3)}{15+10} \\
& =0.54 \mathrm{~m}
\end{aligned}
$$

And

$$
\begin{aligned}
I_{o} & =I_{\text {sphere }_{0}}+I_{\text {bar }_{0}} \\
& =\left(\frac{2}{5} m_{\text {sphere }} R^{2}+m_{\text {sphere }}(L+R)^{2}\right)+\frac{1}{3} m_{\text {bar }} L^{2} \\
& =\left(\frac{2(15)(0.1)^{2}}{5}+15(0.6+0.1)^{2}\right)+\frac{1}{3}(10)(0.6)^{2} \\
& =8.61 \mathrm{~kg}-\mathrm{m}^{2}
\end{aligned}
$$

From FBD we obtain 3 equations.

$$
\begin{aligned}
F_{x} & =M a_{x} \\
F_{y}-M g & =M a_{y} \\
-\tau-(M g \cos \theta) H & =I_{o} \alpha
\end{aligned}
$$

Or

$$
\begin{aligned}
F_{x} & =25 a_{x} \\
F_{y}-(25)(9.81) & =25 a_{y} \\
-50-\left((25)(9.81) \cos \left(45\left(\frac{\pi}{180}\right)\right)\right)(0.54) & =(8.61) \alpha
\end{aligned}
$$

Or

$$
\begin{align*}
F_{x} & =25 a_{x} \tag{1}\\
F_{y}-245.25 & =25 a_{y} \tag{2}\\
-16.684 & =\alpha \tag{3}
\end{align*}
$$

3 equations with 4 unknowns: $F_{x}, F_{y}, a_{x}, a_{y}$. But looking at this diagram, which relates a_{x}, a_{y} to α.

We see that

$$
\begin{aligned}
a_{y} & =H \omega^{2} \sin \theta+H \alpha \cos \theta \\
& =(0.54)(3)^{2} \sin \left(45\left(\frac{\pi}{180}\right)\right)+(0.54)(-16.684) \cos \left(45\left(\frac{\pi}{180}\right)\right) \\
& =-2.934 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
a_{x} & =H \alpha \sin \theta-H \omega^{2} \cos \theta \\
& =(0.54)(-16.684) \sin \left(45\left(\frac{\pi}{180}\right)\right)-(0.54)\left(3^{2}\right) \cos \left(45\left(\frac{\pi}{180}\right)\right) \\
& =-9.807 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Using these in $(1,2)$, we find the reaction forces

$$
\begin{aligned}
F_{x} & =25 a_{x} \\
& =25(-9.807) \\
& =-245.175 \mathrm{~N}
\end{aligned}
$$

And

$$
\begin{aligned}
F_{y}-245.25 & =25 a_{y} \\
F_{y}-245.25 & =25(-2.934) \\
F_{y} & =171.9 \mathrm{~N}
\end{aligned}
$$

Total reaction force is $\sqrt{F_{y}^{2}+F_{x}^{2}}=\sqrt{(171.9)^{2}+(-245.175)^{2}}=299.4334 \mathrm{~N}$

