quizz 8, ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

The particle A, which has mass 3 kg , is moving in the coordinate system shown above. A is currently at position $\mathrm{X}=1.5, \mathrm{Y}=5.8, \mathrm{Z}=-1.2 \mathrm{~m}$ relative to the origin O , and is moving with velocity $\vec{v}=4.1 \mathrm{i}+4.4 \mathrm{j}+5.3 \mathrm{k} \mathrm{m} / \mathrm{s}$.

What is the magnitude of the angular momentum of particle A about the origin $O\left(\mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2 / \mathrm{s}\right)$?
Report your answer to the nearest whole number.

Let \bar{h}_{O} be the angular momentum of A w.r.t to O. Therefore apply the definition

$$
\begin{aligned}
\bar{h}_{O} & =\bar{r}_{A / O} \times m \bar{v}_{A} \\
& =3\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1.5 & 5.8 & -1.2 \\
4.1 & 4.4 & 5.3
\end{array}\right| \\
& =3(36.02 \hat{\imath}-12.87 \hat{\jmath}-17.18 \hat{k}) \\
& =108.06 \hat{\imath}-38.61 \hat{\jmath}-51.54 \hat{k}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\bar{h}_{O}\right| & =\sqrt{108^{2}+38.61^{2}+51.54^{2}} \\
& =125.794 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{sec}
\end{aligned}
$$

0.2 Problem 2

By conservation of angular momentum

$$
\begin{aligned}
r_{0} m v_{A} & =2.29 r_{0} m v_{2} \\
v_{2} & =\frac{v_{A}}{2.29} \\
& =\frac{9.87}{2.29} \\
& =4.31 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

0.3 Problem 3

Particles A (mass 9.8 kg) and B (mass 8.3 kg) are on a massless rod with length $\mathrm{L}=5.0$ meters which spins about the origin O . There is a linear motor at the origin that can move the bar back and forth relative to the origin, without applying a moment to the system. Initially particle B is at the origin O and particle A is traveling with a speed of $\mathrm{V}_{\mathrm{A}}=3.70 \mathrm{~m} / \mathrm{s}$ (shown above).

The linear motor at O slowly moves the rod, so that A moves toward O and B moves away from O. There are no other forces or moments.

When the rod is centered at O (as seen above), what is the velocity of $B(\mathrm{~m} / \mathrm{s})$?
Report your answer to two decimal places.
\square

Angular momentum initially

$$
\begin{align*}
\bar{h}_{1} & =\bar{r}_{A / O} \times m_{A} \bar{v}_{A} \\
& =9.8\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
5 & 0 & 0 \\
0 & -3.7 & 0
\end{array}\right| \\
& =-181.3 \hat{k} \tag{1}
\end{align*}
$$

In new state, we first note that $\left|\bar{v}_{A_{2}}\right|=\left|\bar{v}_{B}\right|$ since both are the same radius from origin. This means $\left|v_{A_{y}}\right|=\left|v_{B_{y}}\right|$ since they move only in y direction. Then

$$
\begin{align*}
\bar{h}_{2} & =\bar{r}_{A / O} \times m_{A} \bar{v}_{A_{2}}+\bar{r}_{B / O} \times m_{B} \bar{v}_{B} \\
& =9.8\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2.5 & 0 & 0 \\
0 & -v_{A_{y}} & 0
\end{array}\right|+8.3\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2.5 & 0 & 0 \\
0 & v_{B_{y}} & 0
\end{array}\right| \\
& =9.8\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2.5 & 0 & 0 \\
0 & -v_{B_{y}} & 0
\end{array}\right|+8.3\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2.5 & 0 & 0 \\
0 & v_{B_{y}} & 0
\end{array}\right| \\
& =-46.5 v_{B_{y}} \hat{k} \tag{2}
\end{align*}
$$

Since (1) and (2) are equal (conservation of angular momentum) then

$$
v_{B_{y}}=\frac{-181.3}{-46.5}=3.899 \mathrm{~m} / \mathrm{s}
$$

