my solution to some discussion problems week 11 NOV 12 to NOV 18 ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

My solution is below

0.1 Problem 63 Example 1

Linkage - Acceleration

Example 5.15: A 3-in. radius drum is rigidly attached to a $5-\mathrm{in}$. radius drum as shown. The 3 -in drum rolls without sliding on the surface shown, and a cord is wound around 5 -in. drum. At the instant shown end D of the cord has a velocity of $8 \mathrm{in} / \mathrm{s}$ and an acceleration of $30 \mathrm{in} / \mathrm{s}^{2}$, both directed to the left

Determine the accelerations of points A, B, and C of the drum.

Given

$$
\begin{aligned}
& \vec{V}_{D}=-8 \hat{\imath} \\
& \vec{a}_{D}=-30 \hat{\imath}
\end{aligned}
$$

But also (assuming cord is not extensible)

$$
\begin{aligned}
& \vec{V}_{B}=-8 \hat{\imath} \\
& \vec{a}_{B}=-30 \hat{\imath}
\end{aligned}
$$

Since the point B is also on the large disk, its velocity can be used to find the angular velocity of the disk. The disk is spining in the clockwise direction. Using $V_{B}=r \omega_{\text {disk }}$, where $r=5$ inch, then $\omega_{\text {disk }}=\frac{-8}{5}=-1.6 \mathrm{rad} / \mathrm{sec}$ or

$$
\vec{\omega}_{\text {disk }}=-1.6 \hat{k}
$$

Similarly $a_{B}=r \alpha_{\text {disk }}$ in the clockwise direction, hence $\alpha_{d i s k}=\frac{a_{B}}{r}=\frac{-30}{5}=-6 \mathrm{rad} / \mathrm{sec}^{2}$

$$
\vec{\alpha}_{d i s k}=-6 \hat{k}
$$

Now

$$
\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha}_{A B} \times \vec{r}_{A / B}-\omega_{A B}^{2} \vec{r}_{A / B}
$$

Where $\vec{r}_{A / B}=\left(r_{2}-r_{1}\right) \hat{\jmath}=(5-3) \hat{\jmath}=2 \hat{\jmath}$ and the above becomes

$$
\begin{aligned}
\vec{a}_{A} & =-30 \hat{\imath}+(-6 \hat{k} \times 2 \hat{\jmath})-(-1.6)^{2}(2 \hat{\jmath}) \\
& =-30 \hat{\imath}+(12 \hat{\imath})-5.12 \hat{\jmath} \\
& =-18 \hat{\imath}-5.12 \hat{\jmath}
\end{aligned}
$$

Now

$$
\vec{a}_{C}=\vec{a}_{O}+\vec{\alpha}_{O C} \times \vec{r}_{C / O}-\omega_{O C}^{2} \vec{r}_{C / O}
$$

Where O is the center of the disk. Since disk is not sliding, then $\vec{a}_{O}=0$ and $\vec{r}_{C / O}=5 \hat{\imath}$. The above becomes

$$
\begin{aligned}
\vec{a}_{C} & =-6 \hat{k} \times 5 \hat{\imath}-(-1.6)^{2} 5 \hat{\imath} \\
& =-30 \hat{\jmath}-12.8 \hat{\imath}
\end{aligned}
$$

0.2 Problem 63 Example 2 rev2

Linkage - Acceleration

Example 5.16: The disk at A is subjected to the angular motion (velocity and acceleration) shown.

