
HW 10, ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

The system shown consists of a wheel of radius R = 5 in. rolling on a horizontal surface. A bar AB of length R = 33 in. is pin-connected to the center of the wheel and to a slider A that is constrained to move along a vertical guide. PoinC is the bar's midpoint. If the wheel rolls without slip with a constant counterclockwise angular velocity of 15 rad/s, determine the velocity of the slider A when $\theta = 48^{\circ}$.

Since the wheel rolls without slip with angular velocity $\omega_{disk} = 15$ rad/sec and its radius is $r = \frac{5}{12}$ ft, then the center of the wheel moves to the left (since disk is rolling with counter clock wise) with velocity

$$V_B = r\omega_{disk}$$
$$= \left(\frac{5}{12}\right)(15)$$
$$= 6.25 \text{ ft/sec}$$

In vector format

$$\vec{V}_B = -6.25\hat{\imath} + 0\hat{\jmath}$$

For the point A

$$\vec{V}_{A} = \vec{V}_{B} + \vec{\omega}_{AB} \times \vec{r}_{A/B}$$

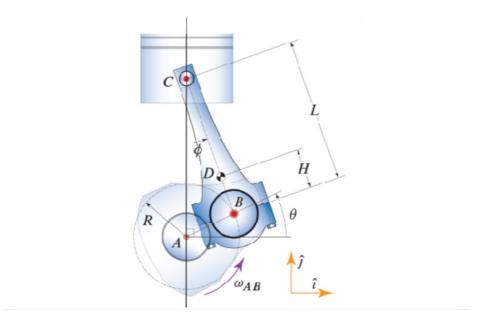
$$= \left(-6.25\hat{\imath} + 0\hat{\jmath}\right) + \omega_{AB}\hat{k} \times \left(-L\cos\theta\hat{\imath} + L\sin\theta\hat{\jmath}\right)$$

$$= -6.25\hat{\imath} - \omega_{AB}L\cos\theta\hat{\jmath} - \omega_{AB}L\sin\theta\hat{\imath}$$

$$= \hat{\imath}\left(-6.25 - \omega_{AB}L\sin\theta\right) + \hat{\jmath}\left(-\omega_{AB}L\cos\theta\right)$$
(1)

Since point A can only move in vertical direction, then its $\hat{\imath}$ component above must be zero. Therefore

$$-6.25 - \omega_{AB}L\sin\theta = 0$$
$$\omega_{AB} = \frac{-6.25}{L\sin\theta}$$
Numerically $\omega_{AB} = \frac{-6.25}{\left(\frac{33}{12}\right)\sin\left(48\left(\frac{\pi}{180}\right)\right)} = -3.058 \text{ rad/sec.}$

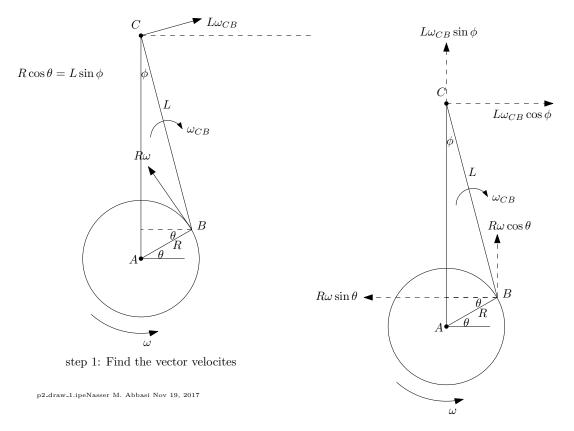

Now from (1) we find \vec{V}_A since now we know ω_{AB}

$$\vec{V}_A = \hat{j} \left(-\omega_{AB} L \cos \theta \right)$$
$$= \hat{j} \left(\frac{6.25}{L \sin \theta} L \cos \theta \right)$$
$$= \hat{j} \left(\frac{6.25}{\tan \theta} \right)$$

Since $\theta = 48^0$ then the above becomes

$$\vec{V}_A = \frac{6.25}{\tan\left(48\left(\frac{\pi}{180}\right)\right)}\hat{j}$$

= 5.627525 \hat{j}
= 5.628 \hat{j} ft/sec


0.2 Problem 2

For the slider–crank mechanism shown, let R = 2.3 in., L = 5.3 in., and H = 1.5 in. Also, at the instant shown, let $\theta = 26^{\circ}$ and $\omega_{AB} = 4,890$ rpm.

Determine the velocity of the piston at the instant shown. $v_{\mathbf{C}} = \int \hat{j} \mathbf{f} \mathbf{f} / \mathbf{s}$

The first step is to find the vector velocities of point B and C and then resolve them along the x, y directions as follows

step 2: Resolve along x and y directions

Now we look at point C. We see that its x component of the velocity is

$$Vc_x = L\omega_{CB}\cos\phi - R\omega\sin\theta$$

This is just read from the diagram. In other words, the *x* component of the velocity of *B* is added. Since *C* can only move in the vertical direction, then $Vc_x = 0$. We use this to solve for ω_{CB}

$$\omega_{CB} = \frac{R\omega\sin\theta}{L\cos\phi} \tag{1}$$

Everything on the right above is known. We find ϕ using $R \cos \theta = L \sin \phi$, hence

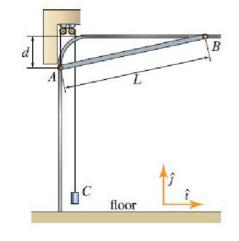
$$\phi = \arcsin\left(\frac{R\cos\theta}{L}\right)$$
$$= \arcsin\left(\frac{(2.3)\cos\left(26\frac{\pi}{180}\right)}{5.3}\right)$$
$$= 22.957^{0}$$

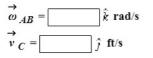
And $\omega = 4890 \left(\frac{2\pi}{60}\right) = 512.0796$ rad/sec. Hence from (1)

$$\omega_{CB} = \frac{(2.3) (512.0796) \sin \left(26 \frac{\pi}{180}\right)}{(5.3) \cos \left(22.957 \left(\frac{\pi}{180}\right)\right)}$$
$$= 105.7955 \text{ rad/sec}$$

In vector form

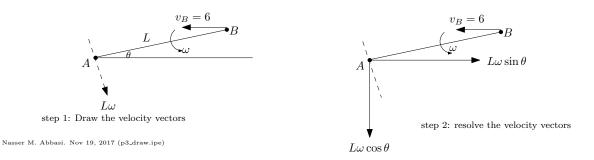
$$\vec{\omega}_{CB} = 105.7955\hat{k}$$


From the diagram, we see that the vertical component of the velocity of point C is


$$Vc_y = L\omega_{CB} \sin \phi + R\omega \cos \theta$$

= (5.3) (105.7955) sin (22.957 ($\frac{\pi}{180}$)) + (2.3) (512.0796) cos (26 $\frac{\pi}{180}$)
= 1277.286 in/sec
= 106.441 ft/sec

$$\vec{V}c = 106.441\hat{j}$$


0.3 Problem 3

At the instant shown, an overhead garage door is being shut with point *B* moving to the left within the horizontal part of the door guide at a speed of 6 ft/s, while point is moving vertically downward. Determine the angular velocity of the door and the velocity of the counterweight *C* at this instant if L = 6 ft and d = 1.8 ft.

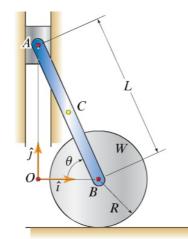
The first step is to find the vector velocities of point A and B and then resolve them along the x, y directions as follows

Point *A* will have velocity in *x* direction of

$$V_{A,x} = L\omega\sin\theta - V_{Bx}$$

But $\sin \theta = \frac{d}{L} = \frac{1.8}{6} = 0.3$, hence $\theta = \arcsin(0.3) = 17.458^{\circ}$. Since A can only move in vertical direction, then the above is zero. We use this to find ω

$$L\omega \sin \theta - V_{Bx} = 0$$
$$\omega = \frac{V_{Bx}}{L \sin \theta}$$
$$= \frac{6}{6 \sin \left(17.458 \left(\frac{\pi}{180}\right)\right)}$$
$$= 3.333 \text{ rad/sec}$$


$$V_{Ay} = -L\omega \cos \theta$$

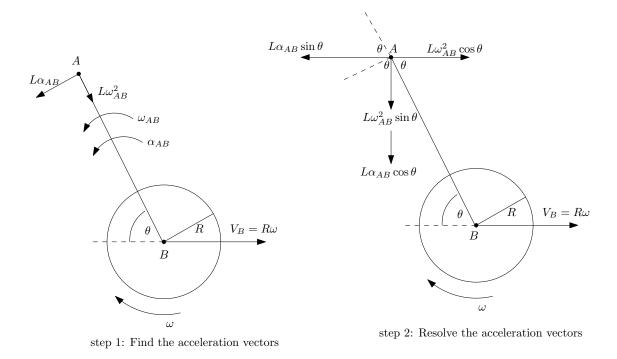
= -6 (3.333) cos 17.458 $\left(\frac{\pi}{180}\right)$
= -19.076 83 ft/sec

In vector format

$$\vec{V}_A = -19.077\hat{j}$$

This is the same velocity as weight C but C will be going up. Hence $\vec{V}_C = 19.077 \hat{\jmath}$

0.4 Problem 4



The system shown consists of a wheel of radius R = 1.58 m rolling without slip on a horizontal surface. A bar, AB, of length L = 3.43 m is pin-connected to the center of the wheel and to a slider, A, constrained to move along a vertical guide. Point C is the bar's midpoint.

If the wheel is rolling clockwise with a constant angular speed of 2.1 rad/s, determine the angular acceleration of the bar when $\theta = 69^{\circ}$.

The first step is to find the acceleration vectors of point A and B and then resolve them along the x, y directions as follows

p4_draw.ipeNasser M. Abbasi Nov 19, 2017

step 2: Resolve along x and y directions

To find ω_{AB} we need to resolve velocity vectors and set the *x* component of the velocity of *A* to zero to solve for ω_{AB} . If we do that as before, we get

$$V_{B_r} - L\omega_{AB}\sin\theta = 0 \tag{1}$$

The above is just the x component of \vec{V}_A . We know V_B which is velocity of center of wheel. It is

$$V_{B_x} = R\omega_{disk}$$

= 1.58 (2.1)
= 3.318 m/s

And to the right. Hence $\vec{V}_B = 3.318\hat{\imath}$. Now we use (1) to solve for ω_{AB}

$$\omega_{AB} = \frac{V_{Bx}}{L\sin\theta} = \frac{3.318}{(3.43)\sin(69\frac{\pi}{180})} = 1.0362 \text{ rad/sec}$$

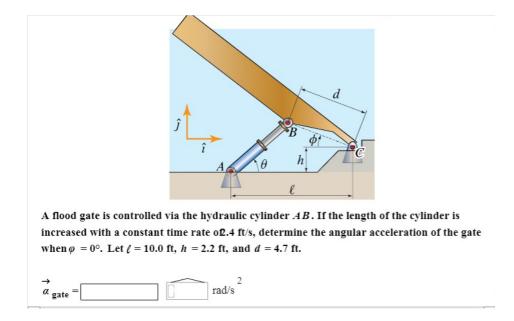
Hence $\vec{\omega}_{AB} = 1.0362\hat{k}$. Now we have all the information to solve for α_{AB} . The *x* component of \vec{a}_A is zero, since *A* does not move in *x* direction. Hence from the figure, we see that

$$L\omega_{AB}^2\cos\theta - L\alpha_{AB}\sin\theta = 0$$

There is no acceleration to transfer from point *B* since *B* is not accelerating. Solving the above for α_{AB} gives

$$\alpha_{AB} = \frac{L\omega_{AB}^2 \cos \theta}{L \sin \theta}$$
$$= \frac{\omega_{AB}^2}{\tan \theta}$$
$$= \frac{1.0362^2}{\tan \left(69\frac{\pi}{180}\right)}$$
$$= 0.41216 \text{ rad/sec}^2$$

In vector format $\vec{a}_{AB} = 0.41216\hat{k}$. Hence the vertical component of the acceleration \vec{a}_A is

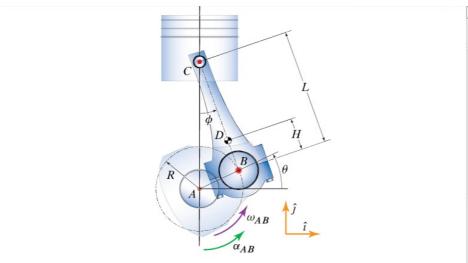

(from the diagram)

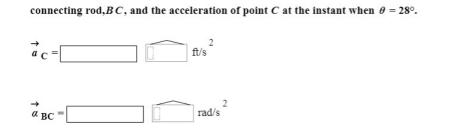
$$a_{Ay} = -L\omega_{AB}^2 \sin \theta - L\alpha_{AB} \cos \theta$$

= -(3.43) (1.0362²) sin (69 $\frac{\pi}{180}$) - (3.43) (0.41216) cos (69 $\frac{\pi}{180}$)
= -3.945 m/s²

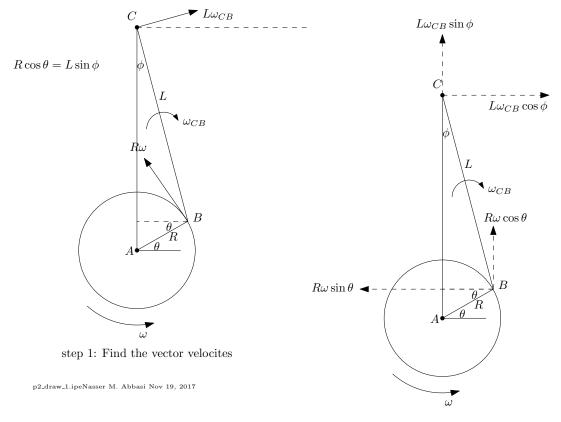
In vector format

$$\vec{a}_A = 0\hat{\imath} - 3.945\hat{\jmath}$$


0.5 Problem 5


$$\vec{\alpha}_{BC} = 7.507 \hat{k} \text{ rad/sec}^2$$

Need to type the solution. This uses constraints method.


0.6 Problem 6

For the slider–crank mechanism shown above, let R = 2.1 in., L = 5.8 in., and H = 1.3 in. Assuming that $\omega_{AB} = 5,030$ rpm and is constant, determine the angular acceleration of the

We need to first find ω_{BC} . This follows similar approach to problem 2. The first step is to find the vector velocities of point *B* and *C* and then resolve them along the *x*, *y* directions as follows

step 2: Resolve along x and y directions

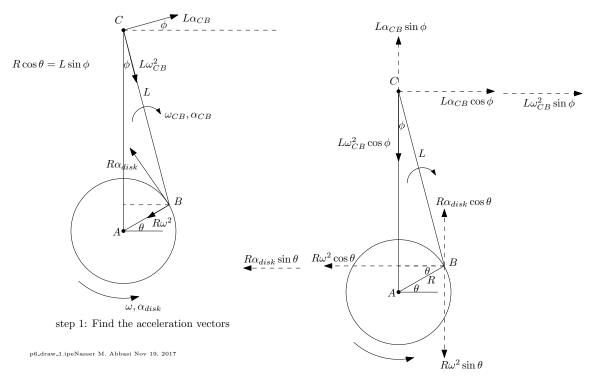
Now we look at point C. We see that its x component of the velocity is

$Vc_x = L\omega_{CB}\cos\phi - R\omega\sin\theta$

This is just read from the diagram. In other words, the *x* component of the velocity of *B* is added. Since *C* can only move in the vertical direction, then $Vc_x = 0$. We use this to solve for ω_{CB}

$$\omega_{CB} = \frac{R\omega\sin\theta}{L\cos\phi} \tag{1}$$

Everything on the right above is known. We find ϕ using $R\cos\theta=L\sin\phi,$ hence


$$\phi = \arcsin\left(\frac{R\cos\theta}{L}\right)$$
$$= \arcsin\left(\frac{(2.1)\cos\left(28\frac{\pi}{180}\right)}{5.8}\right)$$
$$= 0.3254 \text{ radians}$$
$$= 18.6441^{0}$$

And $\omega = 5030 \left(\frac{2\pi}{60}\right) = 526.7404 \text{ rad/sec. Hence from (1)}$ $\omega_{CB} = \frac{(2.1) (526.7404) \sin \left(28 \frac{\pi}{180}\right)}{(5.8) \cos (0.3254)}$ = 94.495 rad/sec

In vector form

$$\vec{\omega}_{CB} = 94.495\hat{k}$$

Now we draw the acceleration vectors and resolve them

step 2: Resolve along x and y directions

The x component of the acceleration of point C is zero. Hence from the diagram

 $L\alpha_{CB}\cos\phi+L\omega_{CB}^2\sin\phi-R\alpha_{disk}\sin\theta-R\omega^2\cos\theta=0$

Solving for α_{CB}

$$\alpha_{CB} = \frac{R\alpha_{disk}\sin\theta + R\omega^2\cos\theta - L\omega_{CB}^2\sin\phi}{L\cos\phi}$$

Since $\alpha_{disk} = 0$ since we are told ω is constant, then the above simplifies to

$$\alpha_{CB} = \frac{R\omega^2 \cos \theta - L\omega_{CB}^2 \sin \phi}{L \cos \phi}$$

Using numerical values gives

$$\alpha_{CB} = \frac{(2.1)(526.7404)^2 \cos\left(28\frac{\pi}{180}\right) - (5.8)(94.49471)^2 \sin(0.3254)}{(5.8)\cos(0.3254)}$$

= 90598.94 rad/sec²

In vector form

$$\vec{\alpha}_{CB} = -90598.94 \hat{k}$$

The acceleration of point C is only in vertical direction. From diagram

$$\begin{aligned} a_{C,y} &= L\alpha_{CB}\sin\phi - L\omega_{CB}^2\cos\phi - R\omega^2\sin\theta \\ &= (5.8) \left(90598.95\right)\sin\left(0.325\,4\right) - (5.8) \left(94.495\right)^2\cos\left(0.325\,4\right) - (2.1) \left(526.740\,4\right)^2\sin\left(28\frac{\pi}{180}\right) \\ &= -154624.9 \text{ in/sec}^2 \\ &= -12885.41 \text{ ft/sec}^2 \end{aligned}$$

Hence in vector form

$$\vec{a}_C = -12885.37 \hat{j} \text{ ft/sec}^2$$