HW 10,ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

The system shown consists of a wheel of radius $R=\mathbf{5 i n}$. rolling on a horizontal surface. A bar $A B$ of length $R=33 \mathrm{in}$. is pin-connected to the center of the wheel and to a slider A that is constrained to move along a vertical guide. Poinc is the bar's midpoint. If the wheel rolls without slip with a constant counterclockwise angular velocity of $15 \mathrm{rad} / \mathrm{s}$, determine the velocity of the slider A when $\theta=48^{\circ}$.

Since the wheel rolls without slip with angular velocity $\omega_{\text {disk }}=15 \mathrm{rad} / \mathrm{sec}$ and its radius is $r=\frac{5}{12} \mathrm{ft}$, then the center of the wheel moves to the left (since disk is rolling with counter
clock wise) with velocity

$$
\begin{aligned}
V_{B} & =r \omega_{\text {disk }} \\
& =\left(\frac{5}{12}\right)(15) \\
& =6.25 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

In vector format

$$
\vec{V}_{B}=-6.25 \hat{\imath}+0 \hat{\jmath}
$$

For the point A

$$
\begin{align*}
\vec{V}_{A} & =\vec{V}_{B}+\vec{\omega}_{A B} \times \vec{r}_{A / B} \\
& =(-6.25 \hat{\imath}+0 \hat{\jmath})+\omega_{A B} \hat{k} \times(-L \cos \theta \hat{\imath}+L \sin \theta \hat{\jmath}) \\
& =-6.25 \hat{\imath}-\omega_{A B} L \cos \theta \hat{\jmath}-\omega_{A B} L \sin \theta \hat{\imath} \\
& =\hat{\imath}\left(-6.25-\omega_{A B} L \sin \theta\right)+\hat{\jmath}\left(-\omega_{A B} L \cos \theta\right) \tag{1}
\end{align*}
$$

Since point A can only move in vertical direction, then its $\hat{\imath}$ component above must be zero. Therefore

$$
\begin{aligned}
-6.25-\omega_{A B} L \sin \theta & =0 \\
\omega_{A B} & =\frac{-6.25}{L \sin \theta}
\end{aligned}
$$

Numerically $\omega_{A B}=\frac{-6.25}{\left(\frac{33}{12}\right) \sin \left(48\left(\frac{\pi}{180}\right)\right)}=-3.058 \mathrm{rad} / \mathrm{sec}$.
Now from (1) we find \vec{V}_{A} since now we know $\omega_{A B}$

$$
\begin{aligned}
\vec{V}_{A} & =\hat{\jmath}\left(-\omega_{A B} L \cos \theta\right) \\
& =\hat{\jmath}\left(\frac{6.25}{L \sin \theta} L \cos \theta\right) \\
& =\hat{\jmath}\left(\frac{6.25}{\tan \theta}\right)
\end{aligned}
$$

Since $\theta=48^{\circ}$ then the above becomes

$$
\begin{aligned}
\vec{V}_{A} & =\frac{6.25}{\tan \left(48\left(\frac{\pi}{180}\right)\right)} \hat{\jmath} \\
& =5.627525 \hat{\jmath} \\
& =5.628 \hat{\jmath} \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

0.2 Problem 2

For the slider-crank mechanism shown, let $R=2.3 \mathrm{in}$., $L=5.3 \mathrm{in}$., and $H=1.5 \mathrm{in}$. Also, at the instant shown, let $\theta=26^{\circ}$ and $\omega_{\mathrm{AB}}=4,890 \mathrm{rpm}$.
Determine the velocity of the piston at the instant shown.
$v_{\mathrm{C}}=$ \square $\hat{j} \mathrm{ft} / \mathrm{s}$

The first step is to find the vector velocities of point B and C and then resolve them along the x, y directions as follows

step 2: Resolve along x and y directions

Now we look at point C. We see that its x component of the velocity is

$$
V c_{x}=L \omega_{C B} \cos \phi-R \omega \sin \theta
$$

This is just read from the diagram. In other words, the x component of the velocity of B is added. Since C can only move in the vertical direction, then $V c_{x}=0$. We use this to solve for $\omega_{C B}$

$$
\begin{equation*}
\omega_{C B}=\frac{R \omega \sin \theta}{L \cos \phi} \tag{1}
\end{equation*}
$$

Everything on the right above is known. We find ϕ using $R \cos \theta=L \sin \phi$, hence

$$
\begin{aligned}
\phi & =\arcsin \left(\frac{R \cos \theta}{L}\right) \\
& =\arcsin \left(\frac{(2.3) \cos \left(26 \frac{\pi}{180}\right)}{5.3}\right) \\
& =22.957^{0}
\end{aligned}
$$

And $\omega=4890\left(\frac{2 \pi}{60}\right)=512.0796 \mathrm{rad} / \mathrm{sec}$. Hence from (1)

$$
\begin{aligned}
\omega_{C B} & =\frac{(2.3)(512.0796) \sin \left(26 \frac{\pi}{180}\right)}{(5.3) \cos \left(22.957\left(\frac{\pi}{180}\right)\right)} \\
& =105.7955 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

In vector form

$$
\vec{\omega}_{C B}=105.7955 \hat{k}
$$

From the diagram, we see that the vertical component of the velocity of point C is

$$
\begin{aligned}
V c_{y} & =L \omega_{C B} \sin \phi+R \omega \cos \theta \\
& =(5.3)(105.7955) \sin \left(22.957\left(\frac{\pi}{180}\right)\right)+(2.3)(512.0796) \cos \left(26 \frac{\pi}{180}\right) \\
& =1277.286 \mathrm{in} / \mathrm{sec} \\
& =106.441 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

In vector form

$$
\vec{V} c=106.441 \hat{\jmath}
$$

0.3 Problem 3

At the instant shown, an overhead garage door is being shut with point B moving to the left within the horizontal part of the door guide at a speed of $6 \mathrm{ft} / \mathrm{s}$, while point is moving vertically downward. Determine the angular velocity of the door and the velocity of the counterweight C at this instant if $L=6 \mathrm{ft}$ and $d=1.8 \mathrm{ft}$.

$$
\begin{aligned}
& \vec{\omega}_{A B}=\square \hat{k} \mathrm{rad} / \mathrm{s} \\
& \vec{v}_{C}=\square \hat{\mathrm{ft}} / \mathrm{s}
\end{aligned}
$$

The first step is to find the vector velocities of point A and B and then resolve them along the x, y directions as follows

Point A will have velocity in x direction of

$$
V_{A, x}=L \omega \sin \theta-V_{B x}
$$

But $\sin \theta=\frac{d}{L}=\frac{1.8}{6}=0.3$, hence $\theta=\arcsin (0.3)=17.458^{\circ}$. Since A can only move in vertical direction, then the above is zero. We use this to find ω

$$
\begin{aligned}
L \omega \sin \theta-V_{B x} & =0 \\
\omega & =\frac{V_{B x}}{L \sin \theta} \\
& =\frac{6}{6 \sin \left(17.458\left(\frac{\pi}{180}\right)\right)} \\
& =3.333 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

In vector format $\vec{\omega}=3.333 \hat{k} \mathrm{rad} / \mathrm{sec}$. Hence the velocity of A in vertical direction is

$$
\begin{aligned}
V_{A y} & =-L \omega \cos \theta \\
& =-6(3.333) \cos 17.458\left(\frac{\pi}{180}\right) \\
& =-19.07683 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

In vector format

$$
\vec{V}_{A}=-19.077 \hat{\jmath}
$$

This is the same velocity as weight C but C will be going up. Hence

$$
\vec{V}_{C}=19.077 \hat{\jmath}
$$

0.4 Problem 4

The system shown consists of a wheel of radius $R=1.58 \mathrm{~m}$ rolling without slip on a horizontal surface. A bar, $A B$, of length $L=3.43 \mathrm{~m}$ is pin-connected to the center of the wheel and to a slider, A, constrained to move along a vertical guide. Point C is the bar's midpoint.

If the wheel is rolling clockwise with a constant angular speed of $2.1 \mathbf{r a d} / \mathrm{s}$, determine the angular acceleration of the bar when $\theta=69^{\circ}$.

The first step is to find the acceleration vectors of point A and B and then resolve them along the x, y directions as follows

step 1: Find the acceleration vectors

step 2: Resolve the acceleration vectors
step 2: Resolve along x and y directions

To find $\omega_{A B}$ we need to resolve velocity vectors and set the x component of the velocity of A to zero to solve for $\omega_{A B}$. If we do that as before, we get

$$
\begin{equation*}
V_{B_{x}}-L \omega_{A B} \sin \theta=0 \tag{1}
\end{equation*}
$$

The above is just the x component of \vec{V}_{A}. We know V_{B} which is velocity of center of wheel. It is

$$
\begin{aligned}
V_{B_{x}} & =R \omega_{\text {disk }} \\
& =1.58(2.1) \\
& =3.318 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

And to the right. Hence $\vec{V}_{B}=3.318 \hat{\imath}$. Now we use (1) to solve for $\omega_{A B}$

$$
\begin{aligned}
\omega_{A B} & =\frac{V_{B x}}{L \sin \theta}=\frac{3.318}{(3.43) \sin \left(69 \frac{\pi}{180}\right)} \\
& =1.0362 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Hence $\vec{\omega}_{A B}=1.0362 \hat{k}$. Now we have all the information to solve for $\alpha_{A B}$. The x component of \vec{a}_{A} is zero, since A does not move in x direction. Hence from the figure, we see that

$$
L \omega_{A B}^{2} \cos \theta-L \alpha_{A B} \sin \theta=0
$$

There is no acceleration to transfer from point B since B is not accelerating. Solving the above for $\alpha_{A B}$ gives

$$
\begin{aligned}
\alpha_{A B} & =\frac{L \omega_{A B}^{2} \cos \theta}{L \sin \theta} \\
& =\frac{\omega_{A B}^{2}}{\tan \theta} \\
& =\frac{1.0362^{2}}{\tan \left(69 \frac{\pi}{180}\right)} \\
& =0.41216 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

In vector format $\vec{\alpha}_{A B}=0.41216 \hat{k}$. Hence the vertical component of the acceleration \vec{a}_{A} is (from the diagram)

$$
\begin{aligned}
a_{A y} & =-L \omega_{A B}^{2} \sin \theta-L \alpha_{A B} \cos \theta \\
& =-(3.43)\left(1.0362^{2}\right) \sin \left(69 \frac{\pi}{180}\right)-(3.43)(0.41216) \cos \left(69 \frac{\pi}{180}\right) \\
& =-3.945 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

In vector format

$$
\vec{a}_{A}=0 \hat{\imath}-3.945 \hat{\jmath}
$$

0.5 Problem 5

A flood gate is controlled via the hydraulic cylinder $A B$. If the length of the cylinder is increased with a constant time rate $0 \mathrm{D} .4 \mathrm{ft} / \mathrm{s}$, determine the angular acceleration of the gate when $\varphi=0^{\circ}$. Let $\ell=10.0 \mathrm{ft}, h=2.2 \mathrm{ft}$, and $d=4.7 \mathrm{ft}$.

$$
\vec{\alpha}_{B C}=7.507 \hat{k} \mathrm{rad} / \mathrm{sec}^{2}
$$

Need to type the solution. This uses constraints method.

0.6 Problem 6

For the slider-crank mechanism shown above, let $R=\mathbf{2 . 1} \mathrm{in} ., L=\mathbf{5 . 8} \mathrm{in}$., and $H=\mathbf{1 . 3} \mathbf{i n}$. Assuming that $\omega_{\mathrm{AB}}=\mathbf{5 , 0 3} \mathbf{~ r p m}$ and is constant, determine the angular acceleration of the
connecting rod, $B C$, and the acceleration of point C at the instant when $\theta=28^{\circ}$.
\square

t^{2}
 $\mathrm{rad} / \mathrm{s}^{2}$

We need to first find $\omega_{B C}$. This follows similar approach to problem 2. The first step is to find the vector velocities of point B and C and then resolve them along the x, y directions as follows

step 2: Resolve along x and y directions

Now we look at point C. We see that its x component of the velocity is

$$
V c_{x}=L \omega_{C B} \cos \phi-R \omega \sin \theta
$$

This is just read from the diagram. In other words, the x component of the velocity of B is added. Since C can only move in the vertical direction, then $V c_{x}=0$. We use this to solve for $\omega_{C B}$

$$
\begin{equation*}
\omega_{C B}=\frac{R \omega \sin \theta}{L \cos \phi} \tag{1}
\end{equation*}
$$

Everything on the right above is known. We find ϕ using $R \cos \theta=L \sin \phi$, hence

$$
\begin{aligned}
\phi & =\arcsin \left(\frac{R \cos \theta}{L}\right) \\
& =\arcsin \left(\frac{(2.1) \cos \left(28 \frac{\pi}{180}\right)}{5.8}\right) \\
& =0.3254 \text { radians } \\
& =18.6441^{\circ}
\end{aligned}
$$

And $\omega=5030\left(\frac{2 \pi}{60}\right)=526.7404 \mathrm{rad} / \mathrm{sec}$. Hence from (1)

$$
\begin{aligned}
\omega_{C B} & =\frac{(2.1)(526.7404) \sin \left(28 \frac{\pi}{180}\right)}{(5.8) \cos (0.3254)} \\
& =94.495 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

In vector form

$$
\vec{\omega}_{C B}=94.495 \hat{k}
$$

Now we draw the acceleration vectors and resolve them

step 1: Find the acceleration vectors
p6_draw_1.ipeNasser M. Abbasi Nov 19, 2017

step 2: Resolve along x and y directions

The x component of the acceleration of point C is zero. Hence from the diagram

$$
L \alpha_{C B} \cos \phi+L \omega_{C B}^{2} \sin \phi-R \alpha_{\text {disk }} \sin \theta-R \omega^{2} \cos \theta=0
$$

Solving for $\alpha_{C B}$

$$
\alpha_{C B}=\frac{R \alpha_{\text {disk }} \sin \theta+R \omega^{2} \cos \theta-L \omega_{C B}^{2} \sin \phi}{L \cos \phi}
$$

Since $\alpha_{d i s k}=0$ since we are told ω is constant, then the above simplifies to

$$
\alpha_{C B}=\frac{R \omega^{2} \cos \theta-L \omega_{C B}^{2} \sin \phi}{L \cos \phi}
$$

Using numerical values gives

$$
\begin{aligned}
\alpha_{C B} & =\frac{(2.1)(526.7404)^{2} \cos \left(28 \frac{\pi}{180}\right)-(5.8)(94.49471)^{2} \sin (0.3254)}{(5.8) \cos (0.3254)} \\
& =90598.94 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

In vector form

$$
\vec{\alpha}_{C B}=-90598.94 \hat{k}
$$

The acceleration of point C is only in vertical direction. From diagram

$$
\begin{aligned}
a_{C, y} & =L \alpha_{C B} \sin \phi-L \omega_{C B}^{2} \cos \phi-R \omega^{2} \sin \theta \\
& =(5.8)(90598.95) \sin (0.3254)-(5.8)(94.495)^{2} \cos (0.3254)-(2.1)(526.7404)^{2} \sin \left(28 \frac{\pi}{180}\right) \\
& =-154624.9 \mathrm{in} / \mathrm{sec}^{2} \\
& =-12885.41 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

Hence in vector form

$$
\vec{a}_{\mathrm{C}}=-12885.37 \hat{\jmath} \mathrm{ft} / \mathrm{sec}^{2}
$$

