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1 HW 8

1.1 Problem 5.10.1

220 Chapter 5. Sturm-Liouville Eigenvalue Problems

where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

The Fourier sin series of 𝑓 (𝑥) = 1 on 0 ≤ 𝑥 ≤ 𝐿 is given by

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Where

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
(−1) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
(+1) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿

⎛
⎜⎜⎜⎜⎝− �−

𝐿
𝑛𝜋

cos �𝑛𝜋
𝐿
𝑥��

0

−𝐿
+ �−

𝐿
𝑛𝜋

cos �𝑛𝜋
𝐿
𝑥��

𝐿

0

⎞
⎟⎟⎟⎟⎠

=
1
𝐿 �

𝐿
𝑛𝜋 �

cos �𝑛𝜋
𝐿
𝑥��

0

−𝐿
−
𝐿
𝑛𝜋 �

cos �𝑛𝜋
𝐿
𝑥��

𝐿

0
�

=
1
𝐿 �

𝐿
𝑛𝜋

[cos (0) − cos (𝑛𝜋)] − 𝐿
𝑛𝜋

[cos (𝑛𝜋) − cos (0)]�

=
1
𝐿 �

𝐿
𝑛𝜋

[1 − cos (𝑛𝜋)] − 𝐿
𝑛𝜋

[cos (𝑛𝜋) − 1]�

We see that 𝑏𝑛 = 0 for 𝑛 = 2, 4, 6,⋯ , and 𝑏𝑛 odd for 𝑛 = 1, 3, 5,⋯ so we can simplify the above to be

𝑏𝑛 =
1
𝐿 �

𝐿
𝑛𝜋

[1 − (−1)] −
𝐿
𝑛𝜋

[−1 − 1]�

=
1
𝐿 �

𝐿
𝑛𝜋

[2] −
𝐿
𝑛𝜋

[−2]�

=
1
𝐿 �

4𝐿
𝑛𝜋�

=
4
𝑛𝜋

Equation (1) becomes

𝑓 (𝑥) ∼
∞
�

𝑛=1,3,5,⋯

4
𝑛𝜋

sin �𝑛𝜋
𝐿
𝑥� (2)

mean-square error is, from textbook, page 213, is given by equation 5.10.11

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎 (𝑥) 𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯
𝛼2𝑛�

𝐿

0
𝜙2
𝑛𝜎 (𝑥) 𝑑𝑥 (5.10.11)

In this problem, 𝜙𝑛 = sin �𝑛𝜋𝐿 𝑥� and 𝛼𝑛 = 𝑎𝑛 =
4
𝑛𝜋 . The above equation becomes

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎 (𝑥) 𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯
�
4
𝑛𝜋�

2

�
𝐿

0
sin2 �

𝑛𝜋
𝐿
𝑥� 𝜎 (𝑥) 𝑑𝑥

= �
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯

16
𝑛2𝜋2 �

𝐿

0
sin2 �

𝑛𝜋
𝐿
𝑥� 𝜎𝑑𝑥

For 𝜎 = 1 we know that

�
𝐿

0
sin2 �

𝑛𝜋
𝐿
𝑥� 𝜎𝑑𝑥 =

𝐿
2

Hence 𝐸 becomes

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯

16
𝑛2𝜋2

𝐿
2
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But ∫
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 for 𝜎 = 1 is just ∫

𝐿

0
12𝑑𝑥 = 𝐿, and the above becomes

𝐸 = 𝐿 −
𝐿
2
16
𝜋2

∞
�

𝑛=1,3,5,⋯

1
𝑛2

= 𝐿 −
8𝐿
𝜋2

∞
�

𝑛=1,3,5,⋯

1
𝑛2

We need to find 𝑁 so that 𝐸 = 0.01𝐿. The above becomes

0.01𝐿 = 𝐿 −
8𝐿
𝜋2

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

We need now to solve for 𝑁 in the above

0.01𝐿 − 𝐿 = −
8𝐿
𝜋2

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

0.99𝐿 �
𝜋2

8𝐿�
=

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

1.2214 =
𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

A small Mathematica program written which prints the RHS sum for each 𝑛, and was visually
checked when it reached 1.2214, here is the result

In[53]:= data = Table[{i, Sum[1/ n^2, {n, 1, i, 2}]}, {i, 1, 50, 2}] // N;

Grid[Join[{{"n", "sum"}}, data], Frame → All]

Out[54]=

n sum
1. 1.
3. 1.11111
5. 1.15111
7. 1.17152
9. 1.18386
11. 1.19213
13. 1.19805
15. 1.20249
17. 1.20595
19. 1.20872
21. 1.21099
23. 1.21288
25. 1.21448
27. 1.21585
29. 1.21704
31. 1.21808
33. 1.219
35. 1.21982
37. 1.22055
39. 1.2212
41. 1.2218
43. 1.22234
45. 1.22283
47. 1.22329
49. 1.2237

Counting the number of terms needed to reach 1.2214, we see there are 21 terms (21 rows in the
table, since only odd entries are counted, the table above skips the even 𝑛 values in the sum since
these are all zero).
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1.2 Problem 5.10.2 (b)

220 Chapter 5. Sturm-Liouville Eigenvalue Problems

where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

Parseval’s equality is given by equation 5.10.14, page 214 in textbook

�
𝑏

𝑎
𝑓2𝜎𝑑𝑥 =

∞
�
𝑛=1

𝑎2𝑛�
𝑏

𝑎
𝜙2
𝑛𝜎𝑑𝑥 (5.10.14)

The books uses 𝛼𝑛 instead of 𝑎𝑛, but it is the same, these are the coe�cients in the Fourier series
for 𝑓 (𝑥). We now need to find the cosine Fourier series for 𝑓 (𝑥) = 𝑥. This is given by

𝑓 (𝑥) = 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥�

Where

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
(−𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
(+𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿 �
−�

0

−𝐿
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

But

�
0

−𝐿
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 = −

−1 + (−1)𝑛

𝑛2𝜋2 𝐿2

�
𝐿

0
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 =

−1 + (−1)𝑛

𝑛2𝜋2 𝐿2

Hence

𝑎𝑛 =
1
𝐿 �
2
−1 + (−1)𝑛

𝑛2𝜋2 𝐿2�

=
2𝐿
𝜋2

�−1 + (−1)𝑛�
𝑛2

Looking at few terms to see the pattern

𝑎𝑛 =
2𝐿
𝜋2 �

−2
1
, 0,

−2
32
, 0,

−2
52
,⋯�

Therefore, we can write 𝑎𝑛 as

𝑎𝑛 =
−4𝐿
𝜋2𝑛2

𝑛 = 1, 3, 5,⋯

And

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑑𝑥

=
1
2𝐿 ��

0

−𝐿
(−𝑥) 𝑑𝑥 +�

𝐿

0
(+𝑥) 𝑑𝑥�

=
1
2𝐿

⎡
⎢⎢⎢⎢⎣− �

𝑥2

2 �
0

−𝐿
+ �

𝑥2

2 �
𝐿

0

⎤
⎥⎥⎥⎥⎦

=
1
2𝐿 �

− �0 −
𝐿2

2 �
+ �

𝐿2

2
− 0��

=
1
2𝐿 �

𝐿2

2
+
𝐿2

2 �

=
𝐿
2

Hence the Fourier series is

𝑓 (𝑥) =
𝐿
2
+

∞
�

𝑛=1,3,5,⋯

−4𝐿
𝜋2𝑛2

cos �𝑛𝜋
𝐿
𝑥�

We now go back to equation 5.10.14 (but need to add 𝑎0 to it, since there is this extra term with
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cosine Fourier series)

�
𝑏

𝑎
𝑓2𝜎𝑑𝑥 = 𝑎20�

𝑏

𝑎
12𝑑𝑥 +

∞
�
𝑛=1

𝑎2𝑛�
𝑏

𝑎
𝜙2
𝑛𝜎𝑑𝑥

�
𝐿

0
𝑥2𝑑𝑥 = �

𝐿
2 �

2

�
𝐿

0
𝑑𝑥 +

∞
�

𝑛=1,3,5,⋯
�
−4𝐿
𝜋2𝑛2 �

2

�
𝐿

0
cos2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

�
𝑥3

3 �
𝐿

0
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

16𝐿2

𝜋4𝑛4 �
𝐿

0
cos2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Since ∫
𝐿

0
cos2 �𝑛𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 the above becomes

𝐿3

3
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

16𝐿2

𝜋4𝑛4
𝐿
2

𝐿3

3
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

8𝐿3

𝜋4𝑛4

𝐿3

3
=
𝐿3

4
+
8𝐿3

𝜋4

∞
�

𝑛=1,3,5,⋯

1
𝑛4

Simplifying

1
3
=
1
4
+
8
𝜋4

∞
�

𝑛=1,3,5,⋯

1
𝑛4

∞
�

𝑛=1,3,5,⋯

1
𝑛4

= �
1
3
−
1
4�

𝜋4

8
∞
�

𝑛=1,3,5,⋯

1
𝑛4

=
𝜋4

96

Hence
𝜋4

96
= 1 +

1
34
+
1
54
+
1
74
+⋯

Which agrees with the book solution given in back of book.

1.3 Problem 5.10.6

220 Chapter 5. Sturm-Liouville Eigenvalue Problems

where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

5.10. Approximation Properties 221

then for normalized eigenfunctions

fb
0"fgv dx = E an/jne

n=1

a generalization of Parseval's equality.

5.10.7. Using Exercises 5.10.5 and 5.10.6, prove that

00
Az df

-unan= -pfdx
n=1

b

r ll

+
fbLp( )

z-9f2I dx. (5.10.15)

a L

[Hint Let g = L(f ), assuming that term-by-term differentiation is justified.]

5.10.8. According to Schwarz's inequality (proved in Exercise 2.3.10), the absolute
value of the pointwise error satisfies

M

"0

_ z

1/2 ao
z

11,2

flx) - E anon anon -_ > IAnlan
n=1 In=M+1 n=M+1 n=M+1 (A'll00

(5.10.16)
Furthermore, Chapter 9 introduces a Green's function G(x, xo), which is
shown to satisfy

00
±n - -G(x, x). (5.10.17)-
An

Using (5.10.15), (5.10.16), and (5.10.17), derive an upper bound for the
pointwise error (in cases in which the generalized Fourier series is pointwise
convergent). Examples and further discussion of this are given by Wein-
berger [1995].

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
�
∞
�
𝑛=1

𝛼𝑛𝜙𝑛� �
∞
�
𝑛=1

𝛽𝑛𝜙𝑛� 𝜎𝑑𝑥

= �
𝑏

𝑎
�𝛼1𝜙1 + 𝛼2𝜙2 +⋯� �𝛽1𝜙1 + 𝛽2𝜙2 +⋯�𝜎𝑑𝑥 (1)

But

�𝛼1𝜙1 + 𝛼2𝜙2 +⋯� �𝛽1𝜙1 + 𝛽2𝜙2 +⋯� = 𝛼1𝛽1𝜙2
1 + 𝛼1𝛽2𝜙1𝜙2 + 𝛼1𝛽3𝜙1𝜙3 +⋯

+ 𝛼2𝛽1𝜙2𝜙1 + 𝛼2𝛽2𝜙2
2 + 𝛼2𝛽3𝜙1𝜙3 +⋯

+ 𝛼3𝛽1𝜙3𝜙1 + 𝛼3𝛽2𝜙3𝜙2 + 𝛼3𝛽3𝜙2
3 +⋯

⋮

Which means when expanding the product of the two series, only the terms on the diagonal (the
terms with 𝛼𝑖𝛽𝑗𝜙𝑖𝜙𝑗 with 𝑖 = 𝑗) will survive. This due to orthogonality. To show this more clearly, we
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put the above expansion back into the integral (1) and break up the integral into sum of integrals

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
𝛼1𝛽1𝜙2

1𝜎𝑑𝑥 +�
𝑏

𝑎
𝛼1𝛽2𝜙1𝜙2𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼1𝛽3𝜙1𝜙3𝜎𝑑𝑥 +⋯

+�
𝑏

𝑎
𝛼2𝛽1𝜙2𝜙1𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼2𝛽2𝜙2

2𝜎𝑑𝑥 +�
𝑏

𝑎
𝛼2𝛽3𝜙1𝜙3𝜎𝑑𝑥 +⋯

+�
𝑏

𝑎
𝛼3𝛽1𝜙3𝜙1𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼3𝛽2𝜙3𝜙2𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼3𝛽3𝜙2

3𝜎𝑑𝑥 +⋯

⋮

The above simplifies to

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
𝛼1𝛽1𝜙2

1𝜎𝑑𝑥 +�
𝑏

𝑎
𝛼2𝛽2𝜙2

2𝜎𝑑𝑥 +�
𝑏

𝑎
𝛼3𝛽3𝜙2

3𝜎𝑑𝑥 +⋯�
𝑏

𝑎
𝛼𝑛𝛽𝑛𝜙2

𝑛𝜎𝑑𝑥 +⋯

Since all other terms vanish due to orthogonality of eigenfunctions. The above simplifies to

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 =

∞
�
𝑛=1

�
𝑏

𝑎
𝛼𝑛𝛽𝑛𝜙2

𝑛𝜎𝑑𝑥

=
∞
�
𝑛=1

�𝛼𝑛𝛽𝑛�
𝑏

𝑎
𝜙2
𝑛𝜎𝑑𝑥�

Because the eigenfunctions are normalized, then ∫
𝑏

𝑎
𝜙2
𝑛𝜎𝑑𝑥 = 1 and the above reduces to the result

needed

�
𝑏

𝑎
𝑓𝑔𝜎 𝑑𝑥 =

∞
�
𝑛=1

𝛼𝑛𝛽𝑛

1.4 Problem 7.3.4

7.3. Vibrating Rectangular Membrane

7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.

287

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.

1.4.1 part(a)

Let 𝑢 = 𝑋 (𝑥) 𝑌 �𝑦� 𝑇 (𝑡). Substituting this back into the PDE gives

𝑇′′𝑋𝑌 = 𝑐2 (𝑋′′𝑌𝑇 + 𝑌′′𝑋𝑇)

Dividing by 𝑋𝑌𝑇 ≠ 0 gives
1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
+
𝑌′′

𝑌
Since left side depends on 𝑡 only and right side depends on �𝑥, 𝑦� only, then both must be equal to
some constant, say −𝜆

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

We obtain the following

𝑇′′ + 𝑐2𝜆𝑇 = 0
𝑋′′

𝑋
= −𝜆 −

𝑌′′

𝑌
Again, looking at the second ODE above, we see that the left side depends on 𝑥 only, and the right
side on 𝑦 only. Then they must be equal to some constant, say −𝜇 and we obtain

𝑋′′

𝑋
= �−𝜆 −

𝑌′′

𝑌 � = −𝜇
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Which results in two ODE’s. The first is

𝑋′′ + 𝜇𝑋 = 0
𝑋 (0) = 0
𝑋 (𝐿) = 0

And the second is

𝜆 +
𝑌′′

𝑌
= 𝜇

𝑌′′ = 𝑌𝜇 − 𝜆𝑌

𝑌′′ + 𝑌 �𝜆 − 𝜇� = 0

With B.C.

𝑌′ (0) = 0
𝑌′ (𝐻) = 0

Starting with the 𝑋 ODE since it is simpler, the solution is

𝑋 = 𝑐1 cos �√𝜇𝑥� + 𝑐2 sin �√𝜇𝑥�

Applying 𝑋 (0) = 0 gives

0 = 𝑐1
Hence solution is

𝑋 = 𝑐2 sin �√𝜇𝑥�

Applying 𝑋 (𝐿) = 0 gives

0 = 𝑐2 sin �√𝜇𝐿�

For non-trivial solution

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

And the eigenfunctions are

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥�

We now solve the 𝑌 ODE.

𝑌′′ + �𝜆 − 𝜇𝑛� 𝑌 = 0

Assuming that �𝜆 − 𝜇� > 0 for all 𝜆, 𝜇, (we know this is the only case, since only positive 𝜆 − 𝜇𝑛 will
be possible when B.C. are homogeneous Dirichlet). Then, for �𝜆 − 𝜇� > 0, the solution is

𝑌 �𝑦� = 𝑐1 cos ��𝜆 − 𝜇𝑛𝑦� + 𝑐2 sin ��𝜆 − 𝜇𝑛𝑦�

𝑌′ = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝑦� + 𝑐2�𝜆 − 𝜇𝑛 cos ��𝜆 − 𝜇𝑛𝑦�

Applying B.C. 𝑌′ (0) = 0 the above becomes

0 = 𝑐2�𝜆 − 𝜇𝑛
Hence 𝑐2 = 0 and the solution becomes

𝑌 = 𝑐1 cos ��𝜆 − 𝜇𝑛𝑦�

𝑌′ = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝑦�

Applying second B.C. 𝑌′ (𝐻) = 0 gives

0 = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝐻�

For non-trivial solution we want

sin ��𝜆 − 𝜇𝑛𝐻� = 0

�𝜆𝑛𝑚 − 𝜇𝑛 = 𝑚
𝜋
𝐻

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛 𝑚 = 0, 1, 2,⋯

Hence the eigenfunctions are

𝑌𝑛𝑚 = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯ , 𝑛 = 1, 2, 3,⋯
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For each 𝑛,𝑚, we find solution of 𝑇′′ + 𝑐2𝜆𝑛𝑚𝑇 = 0.The solution is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

Putting all these results together gives

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

�𝐴𝑛𝑚 cos �𝑐�𝜆𝑛,𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛,𝑚𝑡�� sin �
𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

We now apply initial conditions to find 𝐴𝑛𝑚, 𝐵𝑛𝑚. At 𝑡 = 0

𝑢 �𝑥, 𝑦, 0� = 0

=
∞
�
𝑛=1

∞
�
𝑚=0

𝐴𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Hence

𝐴𝑛𝑚 = 0

And the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Taking derivative of the solution w.r.t. time 𝑡 gives
𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=1

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0 the above becomes

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Multiplying both sides by sin �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋
𝐻𝑦� and integrating gives

�
𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚

∞
�
𝑛=1

∞
�
𝑚=0

�
𝐿

0
�

𝐻

0
sin2 �

𝑛𝜋
𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚�
𝐿

0
�

𝐻

0
sin2 �

𝑛𝜋
𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 �
𝐿
2 � �

𝐻
2 �

Hence

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 1, 2, 3,⋯

𝑇𝑛𝑚 (𝑡) = 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦
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1.4.2 Part (b)

In this case we have

𝑋′′ + 𝜇𝑋 = 0
𝑋′ (0) = 0
𝑋′ (𝐿) = 0

And the second spatial ODE is

𝜆 +
𝑌′′

𝑌
= 𝜇

𝑌′′ = 𝑌𝜇 − 𝜆𝑌

𝑌′′ + 𝑌 �𝜆 − 𝜇� = 0

With B.C.

𝑌′ (0) = 0
𝑌′ (𝐻) = 0

Starting with the 𝑋 ODE. The solution is

𝑋 = 𝑐1 cos �√𝜇𝑥� + 𝑐2 sin �√𝜇𝑥�

𝑋′ = −𝑐1√𝜇 sin �√𝜇𝑥� + 𝑐2√𝜇 cos �√𝜇𝑥�

First B.C. gives

0 = 𝑐2√𝜇

Hence 𝑐2 = 0 and the solution becomes

𝑋 = 𝑐1 cos �√𝜇𝑥�

𝑋′ = −𝑐1√𝜇 sin �√𝜇𝑥�

Second B.C. gives

0 = −𝑐1√𝜇 sin �√𝜇𝐿�

Hence

√𝜇𝐿 = 𝑛𝜋

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 0, 1, 2,⋯

Now for the 𝑌 solution. This is the same as part (a).

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦�

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛

= �𝑚
𝜋
𝐻
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 0, 1, 2,⋯

For each 𝑛,𝑚, we find solution of 𝑇′′+𝑐2𝜆𝑛𝑚𝑇 = 0.When 𝑛 = 0,𝑚 = 0, 𝜆𝑛𝑚 = 0 and the ODE becomes

𝑇′′ = 0

With solution

𝑇 = 𝐴𝑡 + 𝐵

And total solution is

𝑢 �𝑥, 𝑦, 𝑡� = 𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

= 𝑇00 (𝑡) 𝑋00 (𝑥) 𝑌00 �𝑦�

= (𝐴𝑡 + 𝐵)

Since 𝑋00 (𝑥) = 1 and 𝑌00 �𝑦� = 1. Applying initial conditions gives

𝑢 �𝑥, 𝑦, 0� = 0 = 𝐵

Therefore the solution is 𝑢 �𝑥, 𝑦, 𝑡� = 𝐴𝑡. Applying second initial conditions gives

𝐴 = 𝛼 �𝑥, 𝑦�

Hence the time solution for 𝑛 = 𝑚 = 0 is

𝑇00 = 𝑡𝛼 �𝑥, 𝑦�
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For each 𝑛,𝑚, other than 𝑛 = 𝑚 = 0, the time solution of 𝑇′′ + 𝑐2𝜆𝑛𝑚𝑇 = 0 is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

Putting all these results together, we obtain

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=0

∞
�
𝑚=0

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=0

∞
�
𝑚=0

�𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

=
∞
�
𝑛=0

∞
�
𝑚=0

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=0

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

The di�erence in part(b) from part(a), is that the space solutions eigenfunctions are now all
cosine instead of cosine and sine. When the eigenfunction is cos the sum starts from zero. When
eigenfunction is sin the sum starts from 1. Now initial conditions are applied as in part (a).

𝑢 �𝑥, 𝑦, 0� = 0 =
∞
�
𝑛=0

∞
�
𝑚=0

𝐴𝑛𝑚 cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Hence 𝐴𝑛𝑚 = 0. And the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=0

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Taking derivative of the solution w.r.t. time

𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=0

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0 the above becomes

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=0

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Multiplying both sides by cos �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋
𝐻𝑦� and integrating gives

�
𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚

∞
�
𝑛=0

∞
�
𝑚=0

�
𝐿

0
�

𝐻

0
cos2 �𝑛𝜋

𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 �
𝐿
2 � �

𝐻
2 �

Hence

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 (𝑥) = cos �𝑛𝜋
𝐿
𝑥� 𝑛 = 0, 1, 2,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 0, 1, 2,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 0, 1, 2,⋯

𝑇𝑛𝑚 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

𝑡𝛼 �𝑥, 𝑦� 𝑛 = 𝑚 = 0
𝐵𝑛𝑚 sin �𝑐√𝜆𝑛𝑚𝑡� otherwise

𝑢 �𝑥, 𝑦, 𝑡� =

⎧⎪⎪⎨
⎪⎪⎩

𝑡𝛼 �𝑥, 𝑦� 𝑛 = 𝑚 = 0
∑∞

𝑛=1
∑∞

𝑚=1 𝐵𝑛𝑚 sin �𝑐√𝜆𝑛𝑚𝑡� cos �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋
𝐻𝑦� otherwise

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦
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1.4.3 Part (c)

Same problem, but using the following boundary conditions

𝑢 �0, 𝑦, 𝑡� = 0

𝑢 �𝐿, 𝑦, 𝑡� = 0

𝑢 (𝑥, 0, 𝑡) = 0
𝑢 (𝑥,𝐻, 𝑡) = 0

Since the boundary conditions are homogeneous Dirichlet then the 𝑋 (𝑥) ODE solution is

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

And 𝑌 �𝑦� ODE solution is

𝑌𝑛𝑚 �𝑦� = sin �𝑚𝜋
𝐻
𝑦�

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛

= �𝑚
𝜋
𝐻
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯

And the time solution is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� 𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯

Hence the total solution is

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0

0 =
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Hence 𝐴𝑛𝑚 = 0 and the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Taking derivative

𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚𝑐�𝜆𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚𝑐�𝜆𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Therefore, using orthogonality in 2D, we find

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦
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Summary of solution

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 1, 2, 3,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯

𝑇𝑛𝑚 (𝑡) = 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

1.5 Problem 7.3.6

7.3. Vibrating Rectangular Membrane

7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.

287

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.

288 Chapter 7. Higher Dimensional PDEs

V Figure 7.3.3

7.3.7. If possible, solve Laplace's equation

2 2

°2u _ 8x2 + 8y2 + az22 = 0,

in a rectangular-shaped region, 0 < x < L, 0 < y < W, 0 < z < H, subject
to the boundary conditions

(a) Tx- (0, y, z) = 0,

(L, y, z) = 0,

(b) u(0,y,z) = 0,

u(L, y, z) = 0,

* (c) (0, y, z) = 0,

(L,y,z) = f(y,z),

u(L, y, z) = g(y, z),

u(x,0,z) = 0,

u(x, W, z) = 0,

u(x, 0, z) = 0,

u(x, W, z) = f(x,z),

ey(x,0,z) = 0,

ou(x, W, z) = 0,

P(x,0,z) = 0,

(x, W, z) = 0,

u(x,y,0) = f(x,y)

u(x, y, H) = 0

u(x,y,0) = 0,

u(x, y, H) = 0

8U(x,y,0) = 0

(x, y, H) = 0

(x, y, 0) = 0rz-

R- (x,y,H) = 0

Appendix to 7.3: Outline of Alternative Method to Separate
Variables
An alternative (and equivalent) method to separate variables for

82u u
,9t2 - c2 (&2U

8x2 + 9y2
oy2

)
is to assume product solutions of the form

u(x, y, t) = f (x)g(y)h(t)

(7.3.33)

(7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by c2 f (x)g(y)h(t), we obtain

1 1d2h 1d2f 1d2g
c2 h dt2 - f dx2 + g dye (7.3.35)

1.5.1 Part (a)

∇ 2𝑢 =
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

+
𝜕2𝑢
𝜕𝑧2

= 0

Let 𝑢 = 𝑋𝑌𝑍 where 𝑋 ≡ 𝑋 (𝑥) , 𝑌 ≡ 𝑌 �𝑦� , 𝑍 ≡ 𝑍 (𝑧). Substituting this back in the above gives

𝑋′′𝑌𝑍 + 𝑌′′𝑋𝑍 + 𝑍′′𝑋𝑌 = 0

Dividing by 𝑋𝑌𝑍 ≠ 0 gives
𝑋′′

𝑋
+
𝑌′′

𝑌
+
𝑍′′

𝑍
= 0

𝑋′′

𝑋
+
𝑌′′

𝑌
= −

𝑍′′

𝑍
Since the left side depends on 𝑥, 𝑦 only and the right side depends on 𝑧 only and they are equal,
they must both be the same constant. Say −𝜆, and we write

𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆 (1)

𝑍′′

𝑍
= 𝜆
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The problem asks to separate the 𝑧 variable, then the ODE for this variable is

𝑍′′ − 𝜆𝑍 = 0 (2)

With boundary conditions

𝑍′ (0) = 0

𝑍 (𝐻) = 𝑓 �𝑥, 𝑦�

1.5.2 Part(b)

We will continue separation from part(a). From (1) in part (a)

𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

We now need to separate 𝑋,𝑌. Therefore
𝑋′′

𝑋
= −𝜆 −

𝑌′′

𝑌
As the left side depends on 𝑥 only and right side depends on 𝑦 only and both are equal, then they
are equal to some constant, say −𝜇

𝑋′′

𝑋
= −𝜇

−𝜆 −
𝑌′′

𝑌
= −𝜇

The 𝑥 ODE becomes

𝑋′′ + 𝜇𝑋 = 0 (1)

𝑋 (0) = 0
𝑋 (𝐿) = 0

And the 𝑦 ODE becomes

−
𝑌′′

𝑌
= −𝜇 + 𝜆

𝑌′′ + �𝜆 − 𝜇�𝑌 = 0 (2)

With B.C.

𝑌 (0) = 0
𝑌 (𝑊) = 0

Now that we have the three ODE’s we start solving them. Starting with the 𝑥 ODE (1). The solution
is

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

For each 𝑛 there is solution for the 𝑦 ODE

𝑌𝑛𝑚 = sin �𝑚𝜋
𝑊
𝑦�

𝜆𝑛𝑚 − 𝜇𝑛 = �
𝑚𝜋
𝑊
�
2

𝑚 = 1, 2, 3,⋯

Or

𝜆𝑛𝑚 = �
𝑚𝜋
𝑊
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

And for each 𝑛 and for each 𝑚 there is a solution for the 𝑧 ODE we found in part (a), which is

𝑍′′ − 𝜆𝑛𝑚𝑍 = 0
𝑍′ (0) = 0

The solution is, since 𝜆𝑛𝑚 > 0 is

𝑍 = 𝑐1 cosh ��𝜆𝑛𝑚𝑧� + 𝑐2 sinh ��𝜆𝑛𝑚𝑧�

𝑍′ = 𝑐1�𝜆𝑛𝑚 sinh ��𝜆𝑛𝑚𝑧� + 𝑐2�𝜆𝑛𝑚 cosh ��𝜆𝑛𝑚𝑧�

Applying B.C. 𝑍′ (0) = 0 gives

0 = 𝑐2�𝜆𝑛𝑚
Hence 𝑐2 = 0 and the solution becomes

𝑍 = 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝑧�
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Putting all these solutions together, we obtain

𝑢 �𝑥, 𝑦, 𝑧� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝑧�

Only now we apply the last boundary condition 𝑢 �𝑥, 𝑦,𝐻� = 𝑓 �𝑥, 𝑦� to find 𝑐𝑛𝑚.

𝑓 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝐻�

Applying 2D orthogonality gives

�
𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝐻��

𝐿

0
�

𝑊

0
sin2 �

𝑛𝜋
𝐿
𝑥� sin2 �

𝑚𝜋
𝑊
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝐻� �
𝐿
2 � �

𝑊
2 �

Hence

𝑐𝑛𝑚 =
∫𝐿

0
∫𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋𝐿 𝑥� sin �𝑚𝜋𝑊 𝑦� 𝑑𝑥𝑑𝑦

cosh �√𝜆𝑛𝑚𝐻� �
𝐿
2
� �𝑊

2
�

=
4

𝐿𝑊 cosh �√𝜆𝑛𝑚𝐻�
�

𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝑌𝑛𝑚 = sin �𝑚𝜋
𝑊
𝑦�

𝜆𝑛𝑚 = �
𝑚𝜋
𝑊
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

𝑢 �𝑥, 𝑦, 𝑧� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝑧�

𝑐𝑛𝑚 =
4

𝐿𝑊 cosh �√𝜆𝑛𝑚𝐻�
�

𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦

1.6 Problem 7.4.2
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this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]

Equation 7.4.7 is

∇ 2𝜙 + 𝜆𝜙 = 0

𝜙 �0, 𝑦� = 0

𝜙 �𝐿, 𝑦� = 0

𝜙 (𝑥, 0) = 0
𝜙 (𝑥,𝐻) = 0

And 7.4.6 is

𝜆 =

−∮𝜙∇𝜙 ⋅ 𝑛̂𝑑𝑠 +�
𝑅

�∇𝜙�2 𝑑𝑥𝑑𝑦

�
𝑅

𝜙2𝑑𝑥𝑑𝑦

∮𝜙∇𝜙 ⋅ 𝑛̂𝑑𝑠 = 0 as we are told 𝜙 = 0 on the boundary and this integration is for the boundary only.

Hence 𝜆 simplifies to

𝜆 =

�
𝑅

�∇𝜙�2 𝑑𝑥𝑑𝑦

�
𝑅

𝜙2𝑑𝑥𝑑𝑦

The numerator can not be negative, since the integrand �∇𝜙�2 is not negative. Similarly, the de-
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nominator has positive integrand, because 𝜙 can not be identically zero, as it is an eigenfunction.
Hence we conclude that 𝜆 ≥ 0.

1.7 Problem 7.4.3

294 Chapter 7. Higher Dimensional PDEs

this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]

1.7.1 part (a)

∇ ⋅ (𝑢∇𝑣) = 𝑢∇ 2𝑣 + ∇𝑢 ⋅ ∇𝑣 (1)

∇ ⋅ (𝑣∇𝑢) = 𝑣∇ 2𝑢 + ∇𝑣 ⋅ ∇𝑢 (2)

Equation (1)-(2) leads to

∇ ⋅ (𝑢∇𝑣) − ∇ ⋅ (𝑣∇𝑢) = �𝑢∇ 2𝑣 + ∇𝑢 ⋅ ∇𝑣� − �𝑣∇ 2𝑢 + ∇𝑣 ⋅ ∇𝑢�

∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) = 𝑢∇ 2𝑣 − 𝑣∇ 2𝑢 + ∇𝑢 ⋅ ∇𝑣 − ∇𝑣 ⋅ ∇𝑢

But ∇𝑢 ⋅ ∇𝑣 = ∇𝑣 ⋅ ∇𝑢 so the above reduces to

∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) = 𝑢∇ 2𝑣 − 𝑣∇ 2𝑢

Therefore

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 =�∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) 𝑑𝑥𝑑𝑦 (3)

But the RHS of the above is of the form �(∇ ⋅ 𝐴) 𝑑𝑥𝑑𝑦 where 𝐴 = (𝑢∇𝑣 − 𝑣∇𝑢) here. Which we

can apply divergence theorem on it and obtain ∮(𝐴 ⋅ 𝑛̂) 𝑑𝑠. Therefore, using divergence theorem

on the RHS of (3), then (3) can be written as

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 = ∮(𝑢∇𝑣 − 𝑣∇𝑢) ⋅ 𝑛̂𝑑𝑠

Which is what is required to show.

1.7.2 Part(b)

Equation 7.4.5 is

�
𝑅

𝜙𝜆1𝜙𝜆2𝑑𝑥𝑑𝑦 = 0 if 𝜆1 ≠ 𝜆2 (7.4.5)

From part (a), we found

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 = ∮(𝑢∇𝑣 − 𝑣∇𝑢) ⋅ 𝑛̂𝑑𝑠 (1)

But we know that, since both 𝑢, 𝑣 satisfy the multidimensional eigenvalue problem on same domain,
then

∇ 2𝑣 + 𝜆𝑣𝑣 = 0 (2)

𝛽1𝑣 + 𝛽2 (∇𝑣 ⋅ 𝑛̂) = 0 (3)

And similarly

∇ 2𝑢 + 𝜆𝑢𝑢 = 0 (4)

𝛽1𝑢 + 𝛽2 (∇𝑢 ⋅ 𝑛̂) = 0 (5)

Now we will use (2,3,4,5) into (1) to obtain 7.4.5. From (2), we see that ∇ 2𝑣 = −𝜆𝑣𝑣 and from (4)
∇ 2𝑢 = −𝜆𝑢𝑢 and from (3) ∇𝑣 ⋅ 𝑛̂ = − 𝛽1

𝛽2
𝑣 and from (5) ∇𝑢 ⋅ 𝑛̂ = − 𝛽1

𝛽2
𝑢. Substituting all of these back

into (1) gives

�(𝑢 (−𝜆𝑣𝑣) − 𝑣 (−𝜆𝑢𝑢)) 𝑑𝑥𝑑𝑦 = ∮𝑢 (∇𝑣 ⋅ 𝑛̂) − 𝑣 (∇𝑢 ⋅ 𝑛̂) 𝑑𝑠

�(−𝜆𝑣𝑢𝑣 + 𝜆𝑢𝑣𝑢) 𝑑𝑥𝑑𝑦 = ∮𝑢�−
𝛽1
𝛽2
𝑣� − 𝑣 �−

𝛽1
𝛽2
𝑢� 𝑑𝑠

�(𝜆𝑢 − 𝜆𝑣) 𝑢𝑣 𝑑𝑥𝑑𝑦 = ∮
𝛽1
𝛽2
[−𝑢𝑣 + 𝑢𝑣] 𝑑𝑠

(𝜆𝑢 − 𝜆𝑣)�𝑢𝑣 𝑑𝑥𝑑𝑦 = 0 (6)
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We now use (6) the above to show that 7.4.5 is correct. In (6), if we replace 𝑢 = 𝜙𝜆1, 𝑣 = 𝜙𝜆1 and
𝜆𝑢 = 𝜆1, 𝜆𝑣 = 𝜆2 then (6) becomes

(𝜆1 − 𝜆2)��𝜙𝜆1𝜙𝜆1� 𝑑𝑥𝑑𝑦 = 0

We see now that for 𝜆1 ≠ 𝜆2, then ��𝜙𝜆1𝜙𝜆1� 𝑑𝑥𝑑𝑦 = 0. Which is what we asked to show.
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