HW7, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1 HW 7 2
1.1 Problem 5.6.1 (a) 2
1.1.1 part (a) 2
1.2 Problem 5.6.2 3
1.3 Problem 5.6.4 4
1.3.1 Part (a) 4
1.3.2 Part (b) 4
1.4 Problem 5.9.1 (b) 7
1.5 Problem 5.9.2 8

1 HW 7

1.1 Problem 5.6.1 (a)

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound for the lowest eigenvalue of
(a) $\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi=0$ with $\frac{d \phi}{d x}(0)=0$ and $\phi(1)=0$
(b) $\frac{d^{2} \phi}{d x^{2}}+(\lambda-x) \phi=0$ with $\frac{d \phi}{d x}(0)=0$ and $\frac{d \phi}{d x}(1)+2 \phi(1)=0$
*(c) $\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0$ with $\phi(0)=0$ and $\frac{d \phi}{d x}(1)+\phi(1)=0$ (See Exercise 5.8.10.)

1.1.1 part (a)

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi & =0 \\
\phi^{\prime}(0) & =0 \\
\phi(1) & =0
\end{aligned}
$$

Putting the equation in the form

$$
\frac{d^{2} \phi}{d x^{2}}-x^{2} \phi=-\lambda \phi
$$

And comparing it to the standard Sturm-Liouville form

$$
p \frac{d^{2} \phi}{d x^{2}}+p^{\prime} \frac{d \phi}{d x}+q \phi=-\lambda \sigma \phi
$$

Shows that

$$
\begin{aligned}
p & =1 \\
q & =-x^{2} \\
\sigma & =1
\end{aligned}
$$

Now the Rayleigh quotient is

$$
\lambda=\frac{-\left(p \phi \phi^{\prime}\right)_{0}^{1}+\int_{0}^{1} p\left(\phi^{\prime}\right)^{2}-q \phi^{2} d x}{\int_{0}^{1} \sigma \phi^{2} d x}
$$

Substituting known values, and since $\phi^{\prime}(0)=0, \phi(1)=0$ the above simplifies to

$$
\lambda=\frac{\int_{0}^{1}\left(\phi^{\prime}\right)^{2}+x^{2} \phi^{2} d x}{\int_{0}^{1} \phi^{2} d x}
$$

Now we can say that

$$
\begin{equation*}
\lambda_{\min }=\lambda_{1} \leq \frac{\int_{0}^{1}\left(\phi^{\prime}\right)^{2}+x^{2} \phi^{2} d x}{\int_{0}^{1} \phi^{2} d x} \tag{1}
\end{equation*}
$$

We now need a trial solution $\phi_{\text {trial }}$ to use in the above, which needs only to satisfy boundary conditions to use to estimate lowest $\lambda_{\text {min }}$. The simplest such function will do. The boundary conditions are $\phi^{\prime}(0)=0, \phi(1)=0$. We see for example that $\phi_{\text {trial }}(x)=x^{2}-1$ works, since $\phi_{\text {trial }}^{\prime}(x)=2 x$,
and $\phi_{\text {trial }}^{\prime}(0)=0$ and $\phi_{\text {trial }}(1)=1-1=0$. So will use this in (1)

$$
\begin{aligned}
\lambda_{\min } & =\lambda_{1} \leq \frac{\int_{0}^{1}(2 x)^{2}+x^{2}\left(x^{2}-1\right)^{2} d x}{\int_{0}^{1}\left(x^{2}-1\right)^{2} d x} \\
& =\frac{\int_{0}^{1}(2 x)^{2}+x^{2}\left(x^{4}-2 x^{2}+1\right) d x}{\int_{0}^{1}\left(x^{4}-2 x^{2}+1\right) d x} \\
& =\frac{\int_{0}^{1} 4 x^{2}+x^{6}-2 x^{4}+x^{2} d x}{\int_{0}^{1}\left(x^{4}-2 x^{2}+1\right) d x} \\
& =\frac{\int_{0}^{1} 3 x^{2}+x^{6} d x}{\int_{0}^{1} x^{4}-2 x^{2}+1 d x} \\
& =\frac{\left(x^{3}+\frac{1}{7} x^{7}\right)_{0}^{1}}{\left(\frac{1}{5} x^{5}-\frac{2}{3} x^{3}+x\right)_{0}^{1}}=\frac{\left(1+\frac{1}{7}\right)}{\left(\frac{1}{5}-\frac{2}{3}+1\right)} \\
& =\frac{15}{7} \\
& =2.1429
\end{aligned}
$$

Hence

$$
\lambda_{1} \leq 2.1429
$$

1.2 Problem 5.6.2

5.6.2. Consider the eigenvalue problem

$$
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi=0
$$

subject to $\frac{d \phi}{d x}(0)=0$ and $\frac{d \phi}{d x}(1)=0$. Show that $\lambda>0$ (be sure to show that $\lambda \neq 0$).

$$
\begin{aligned}
\frac{d^{2} \phi}{d x^{2}}+\left(\lambda-x^{2}\right) \phi & =0 \\
\phi^{\prime}(0) & =0 \\
\phi^{\prime}(1) & =0
\end{aligned}
$$

Putting the equation in the form

$$
\frac{d^{2} \phi}{d x^{2}}-x^{2} \phi=-\lambda \phi
$$

And comparing it to the standard Sturm-Liouville form

$$
p \frac{d^{2} \phi}{d x^{2}}+p^{\prime} \frac{d \phi}{d x}+q \phi=-\lambda \sigma \phi
$$

Shows that

$$
\begin{aligned}
p & =1 \\
q & =-x^{2} \\
\sigma & =1
\end{aligned}
$$

Now the Rayleigh quotient is

$$
\lambda=\frac{-\left(p \phi \phi^{\prime}\right)_{0}^{1}+\int_{0}^{1} p\left(\phi^{\prime}\right)^{2}-q \phi^{2} d x}{\int_{0}^{1} \sigma \phi^{2} d x}
$$

Substituting known values, and since $\phi^{\prime}(0)=0, \phi(1)=0$ the above simplifies to

$$
\lambda=\frac{\int_{0}^{1}\left(\phi^{\prime}\right)^{2}+x^{2} \phi^{2} d x}{\int_{0}^{1} \phi^{2} d x}
$$

Since eigenfunction ϕ can not be identically zero, the denominator in the above expression can only be positive, since the integrand is positive. So we need now to consider the numerator term only:

$$
\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x+\int_{0}^{1} x^{2} \phi^{2} d x
$$

For the second term, again, this can only be positive since ϕ can not be zero. For the first term, there are two cases. If ϕ^{\prime} zero or not. If it is not zero, then the term is positive and we are done. This means $\lambda>0$. if $\phi^{\prime}=0$ then $\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x=0$ and also conclude $\lambda>0$ thanks to the second term $\int_{0}^{1} x^{2} \phi^{2}$ being positive. So we conclude that λ can only be positive.

1.3 Problem 5.6.4

Problem
Consider eigenvalue problem $\frac{d}{d r}\left(r \frac{d \phi}{d r}\right)=-\lambda r \phi, 0<r<1$ subject to B.C. $|\phi(0)|<\infty$ (you may also assume $\frac{d \phi}{d r}$ bounded). And $\frac{d \phi}{d r}(1)=0$. (a) prove that $\lambda \geq 0$. (b) Solve the boundary value problem. You may assume eigenfunctions are known. Derive coefficients using orthogonality.
Notice: Correction was made to problem per class email. Book said to show that $\lambda>0$ which is error changed to $\lambda \geq 0$.

1.3.1 Part (a)

From the problem we see that $p=r, q=0, \sigma=r$. The Rayleigh quotient is

$$
\begin{align*}
\lambda & =\frac{-\left(p \phi \phi^{\prime}\right)_{0}^{1}+\int_{0}^{1} p\left(\phi^{\prime}\right)^{2}-q \phi^{2} d r}{\int_{0}^{1} \sigma \phi^{2} d r} \\
& =\frac{-\left(r \phi \phi^{\prime}\right)_{0}^{1}+\int_{0}^{1} r\left(\phi^{\prime}\right)^{2} d r}{\int_{0}^{1} r \phi^{2} d r} \tag{1}
\end{align*}
$$

The term $-\left(r \phi \phi^{\prime}\right)_{0}^{1}$ expands to

$$
-\left((1) \phi(1) \phi^{\prime}(1)-(0) \phi(0) \phi^{\prime}(0)\right)
$$

Since $\phi^{\prime}(1)=0$, the above is zero and Equation(1) reduces to

$$
\lambda=\frac{\int_{0}^{1} r\left(\phi^{\prime}\right)^{2} d r}{\int_{0}^{1} r \phi^{2} d r}
$$

The denominator above can only be positive, as an eigenfunction ϕ can not be identically zero. For the numerator, we have to consider two cases.
case 1 If $\phi^{\prime} \neq 0$ then we are done. The numerator is positive and we conclude that $\lambda>0$.
case 2 If $\phi^{\prime}=0$ then ϕ is constant and this means $\lambda=0$ is possible hence $\lambda \geq 0$. Now we need to show ϕ being constant is also possible. Since $\phi^{\prime}(1)=0$, then for $\phi^{\prime}=0$ to be true everywhere, it should also be $\phi^{\prime}(0)=0$ which means $\phi(0)$ is some constant. We are told that $|\phi(0)|<\infty$. Hence means $\phi(0)$ is constant is possible value (since bounded). Hence $\phi^{\prime}=0$ is possible.

Therefore $\lambda \geq 0$. QED.

1.3.2 Part (b)

The ODE is

$$
\begin{align*}
r \phi^{\prime \prime}+\phi^{\prime}+\lambda r \phi & =0 \quad 0<r<1 \tag{1}\\
\mid \phi(0) & \mid<\infty \\
\phi^{\prime}(1) & =0
\end{align*}
$$

In standard form the ODE is $\phi^{\prime \prime}+\frac{1}{r} \phi^{\prime}+\lambda \phi=0$. This shows that $r=0$ is a regular singular point. Therefore we try

$$
\phi(r)=\sum_{n=0}^{\infty} a_{n} r^{r+\alpha}
$$

Hence

$$
\begin{aligned}
\phi^{\prime}(r) & =\sum_{n=0}^{\infty}(n+\alpha) a_{n} r^{n+\alpha-1} \\
\phi^{\prime \prime}(r) & =\sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} r^{n+\alpha-2}
\end{aligned}
$$

Substituting back into the ODE gives

$$
\begin{aligned}
& r \sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} r^{n+\alpha-2}+\sum_{n=0}^{\infty}(n+\alpha) a_{n} r^{n+\alpha-1}+\lambda r \sum_{n=0}^{\infty} a_{n} r^{n+\alpha}=0 \\
& \sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} r^{n+\alpha-1}+\sum_{n=0}^{\infty}(n+\alpha) a_{n} r^{n+\alpha-1}+\lambda \sum_{n=0}^{\infty} a_{n} r^{n+\alpha+1}=0
\end{aligned}
$$

To make all powers of r the same, we subtract 2 from the power of last term, and add 2 to the index, resulting in

$$
\sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} r^{n+\alpha-1}+\sum_{n=0}^{\infty}(n+\alpha) a_{n} r^{n+\alpha-1}+\lambda \sum_{n=2}^{\infty} a_{n-2} r^{n+\alpha-1}=0
$$

For $n=0$ we obtain

$$
\begin{aligned}
(\alpha)(\alpha-1) a_{0} r^{\alpha-1}+(\alpha) a_{0} r^{\alpha-1} & =0 \\
(\alpha)(\alpha-1) a_{0}+(\alpha) a_{0} & =0 \\
a_{0}\left(\alpha^{2}-\alpha+\alpha\right) & =0 \\
a_{0} \alpha^{2} & =0
\end{aligned}
$$

But $a_{0} \neq 0$ (we always enforce this condition in power series solution), which implies

$$
\alpha=0
$$

Now we look at $n=1$, which gives

$$
\text { (1) } \begin{aligned}
(1-1) a_{1} r^{n+\alpha-1}+(1) a_{1} r^{n+\alpha-1} & =0 \\
a_{1} & =0
\end{aligned}
$$

For $n \geq 2$, now all terms join in, and we get a recursive relation

$$
\text { (n)(n-1) } \begin{aligned}
a_{n} r^{n-1}+(n) a_{n} r^{n-1}+\lambda a_{n-2} r^{n-1} & =0 \\
(n)(n-1) a_{n}+(n) a_{n}+\lambda a_{n-2} & =0 \\
a_{n} & =\frac{-\lambda a_{n-2}}{(n)(n-1)+n} \\
& =\frac{-\lambda}{n^{2}} a_{n-2}
\end{aligned}
$$

For example, for $n=2$, we get

$$
a_{2}=\frac{-\lambda}{2^{2}} a_{0}
$$

All odd powers of n result in $a_{n}=0$. For $n=4$

$$
a_{4}=\frac{-\lambda}{4^{2}} a_{2}=\frac{-\lambda}{4^{2}}\left(\frac{-\lambda}{2^{2}} a_{0}\right)=\frac{\lambda^{2}}{\left(2^{2}\right)\left(4^{2}\right)} a_{0}
$$

And for $n=6$

$$
a_{6}=\frac{-\lambda}{6^{2}} a_{4}=\frac{-\lambda}{6^{2}} \frac{\lambda^{2}}{\left(2^{2}\right)\left(4^{2}\right)} a_{0}=\frac{-\lambda^{3}}{\left(2^{2}\right)\left(4^{2}\right)\left(6^{2}\right)} a_{0}
$$

And so on. The series is

$$
\begin{align*}
\phi(r) & =\sum_{n=0}^{\infty} a_{n} r^{n} \\
& =a_{0}+0+a_{2} r^{2}+0+a_{4} r^{4}+0+a_{6} r^{6}+\cdots \\
& =a_{0}-\frac{\lambda r^{2}}{2^{2}} a_{0}+\frac{\lambda^{2} r^{4}}{\left(2^{2}\right)\left(4^{2}\right)} a_{0}-\frac{\lambda^{3} r^{6}}{\left(2^{2}\right)\left(4^{2}\right)\left(6^{2}\right)^{2}} a_{0}+\cdots \\
& =a_{0}\left(1-\frac{(\sqrt{\lambda} r)^{2}}{2^{2}}+\frac{(\sqrt{\lambda} r)^{4}}{\left(2^{2}\right)\left(4^{2}\right)}-\frac{(\sqrt{\lambda} r)^{6}}{\left(2^{2}\right)\left(4^{2}\right)\left(6^{2}\right)}+\cdots\right) \tag{2}
\end{align*}
$$

From tables, Bessel function of first kind of order zero, has series expansion given by

$$
\begin{align*}
J_{o}(z) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{z}{2}\right)^{2 n} \\
& =1-\left(\frac{z}{2}\right)^{2}+\frac{1}{(2)^{2}}\left(\frac{z}{2}\right)^{4}-\frac{1}{((2)(3))^{2}}\left(\frac{z}{2}\right)^{6}+\cdots \\
& =1-\frac{z^{2}}{2^{2}}+\frac{1}{2^{2} 4^{2}} z^{4}-\frac{1}{2^{2} 3^{2} 2^{6}} z^{6}+\cdots \\
& =1-\frac{z^{2}}{2^{2}}+\frac{z^{4}}{2^{2} 4^{2}}-\frac{z^{6}}{2^{2} 4^{2} 6^{2}}+\cdots \tag{3}
\end{align*}
$$

By comparing (2),(3) we see a match between $J_{o}(z)$ and $\phi(r)$, if we let $z=\sqrt{\lambda} r$ we conclude that

$$
\phi_{1}(r)=a_{0} J_{0}(\sqrt{\lambda} r)
$$

We can now normalized the above eigenfunction so that $a_{0}=1$ as mentioned in class. But it is not needed. The above is the first solution. We now need second solution. For repeated roots, the second solution will be

$$
\phi_{2}(r)=\phi_{1}(r) \ln (r)+r^{\alpha} \sum_{n=0}^{\infty} b_{n} r^{n}
$$

But $\alpha=0$, hence

$$
\phi_{2}(r)=\phi_{1}(r) \ln (r)+\sum_{n=0}^{\infty} b_{n} r^{n}
$$

Hence the solution is

$$
\phi(r)=c_{1} \phi_{1}(r)+c_{2} \phi_{2}(r)
$$

Since $\phi(0)$ is bounded, then $c_{2}=0$ (since $\ln (0)$ not bounded at zero), and the solution becomes (where a_{0} is now absorbed with the constant c_{1})

$$
\begin{aligned}
\phi(r) & =c_{1} \phi_{1}(r) \\
& =c J_{0}(\sqrt{\lambda} r)
\end{aligned}
$$

The boundedness condition has eliminated the second solution altogether. Now we apply the second boundary conditions $\phi^{\prime}(1)=0$ to find allowed eigenvalues. Since

$$
\phi^{\prime}(r)=-c J_{1}(\sqrt{\lambda} r)
$$

Then $\phi^{\prime}(1)=0$ implies

$$
0=-c J_{1}(\sqrt{\lambda})
$$

The zeros of this are the values of $\sqrt{\lambda}$. Using the computer, these are the first few such values.

$$
\begin{aligned}
& \sqrt{\lambda_{1}}=3.8317 \\
& \sqrt{\lambda_{2}}=7.01559 \\
& \sqrt{\lambda_{3}}=10.1735
\end{aligned}
$$

or

$$
\begin{aligned}
\lambda_{1} & =14.682 \\
\lambda_{2} & =49.219 \\
\lambda_{3} & =103.5 \\
& \vdots
\end{aligned}
$$

Hence

$$
\begin{align*}
\phi_{n}(r) & =c_{n} J_{0}\left(\sqrt{\lambda_{n}} r\right) \tag{4}\\
\phi(r) & =\sum_{n=1}^{\infty} \phi_{n}(r) \\
& =\sum_{n=1}^{\infty} c_{n} J_{0}\left(\sqrt{\lambda_{n}} r\right)
\end{align*}
$$

To find c_{n}, we use orthogonality. Per class discussion, we can now assume this problem was part of initial value problem, and that at $t=0$ we had initial condition of $f(r)$, therefore, we now write

$$
f(r)=\sum_{n=1}^{\infty} c_{n} J_{0}\left(\sqrt{\lambda_{n}} r\right)
$$

Multiplying both sides by $J_{0}\left(\sqrt{\lambda_{m}} r\right) \sigma$ and integrating gives (where $\sigma=r$)

$$
\begin{aligned}
\int_{0}^{1} \sum_{n=1}^{\infty} f(r) J_{0}\left(\sqrt{\lambda_{m}} r\right) r d r & =\sum_{n=1}^{\infty} \int_{0}^{1} c_{n} J_{0}\left(\sqrt{\lambda_{m}} r\right) J_{0}\left(\sqrt{\lambda_{n}} r\right) r d r \\
& =\int_{0}^{1} c_{m} J_{0}^{2}\left(\sqrt{\lambda_{m}} r\right) r d r \\
& =c_{m} \int_{0}^{1} J_{0}^{2}\left(\sqrt{\lambda_{m}} r\right) r d r \\
& =c_{m} \Omega
\end{aligned}
$$

Where Ω is some constant. Therefore

$$
c_{n}=\frac{\int^{1} \sum_{n=1}^{\infty} f(r) J_{0}\left(\sqrt{\lambda_{m}} r\right) r d r}{\Omega}
$$

And $\phi(r)$

$$
\sum_{n=1}^{\infty} c_{n} J_{0}\left(\sqrt{\lambda_{n}} r\right)
$$

With the eigenvalues given as above, which have to be computed for each n using the computer.

1.4 Problem 5.9.1 (b)

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigenfunctions for

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+[\lambda \sigma(x)+q(x)] \phi=0
$$

if the boundary conditions are
(a) $\frac{d \phi}{d x}(0)=0$ and $\frac{d \phi}{d x}(L)=0$
*(b) $\phi(0)=0 \quad$ and $\quad \frac{d \phi}{d x}(L)=0$
(c) $\phi(0)=0$ and $\frac{d \phi}{d x}(L)+h \phi(L)=0$

From textbook, equation 5.9.8, we are given that for large λ

$$
\begin{align*}
\phi(x) & \approx(\sigma p)^{\frac{-1}{4}} \exp \left(\pm i \sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right) \\
& =(\sigma p)^{\frac{-1}{4}}\left(c_{1} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)+c_{2} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)\right) \tag{1}
\end{align*}
$$

Where c_{1}, c_{2} are the two constants of integration since this is second order ODE. For $\phi(0)=0$, the integral $\int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t=\int_{0}^{0} \sqrt{\frac{\sigma(t)}{p(t)}} d t=0$ and the above becomes

$$
\begin{aligned}
0 & =\phi(0) \\
& =(\sigma p)^{\frac{-1}{4}}\left(c_{1} \cos (0)+c_{2} \sin (0)\right) \\
& =c_{1}(\sigma p)^{\frac{-1}{4}}
\end{aligned}
$$

Hence $c_{1}=0$ and (1) reduces to

$$
\phi(x)=c_{2}(\sigma p)^{\frac{-1}{4}} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)
$$

Hence

$$
\begin{aligned}
\phi^{\prime}(x) & =c_{2}(\sigma p)^{\frac{-1}{4}} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)\left(\frac{d}{d x} \sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right) \\
& =c_{2}(\sigma p)^{\frac{-1}{4}} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)\left(\sqrt{\lambda} \sqrt{\frac{\sigma(x)}{p(x)}}\right) \\
& =c_{2}(\sigma p)^{\frac{-1}{4}} \sqrt{\frac{\lambda \sigma}{p}} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)
\end{aligned}
$$

Since $\phi^{\prime}(L)=0$ then

$$
0=c_{2}(\sigma p)^{\frac{-1}{4}} \sqrt{\frac{\lambda \sigma}{p}} \cos \left(\sqrt{\lambda} \int_{0}^{L} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)
$$

Which means, for non-trivial solution, that

$$
\sqrt{\lambda_{n}} \int_{0}^{L} \sqrt{\frac{\sigma(t)}{p(t)}} d t=\left(n-\frac{1}{2}\right) \pi
$$

Therefore, for large λ, (i.e. large n) the estimate is

$$
\begin{aligned}
\sqrt{\lambda_{n}} & =\frac{\left(n-\frac{1}{2}\right) \pi}{\int_{0}^{L} \sqrt{\frac{\sigma(t)}{p(t)}} d t} \\
\lambda_{n} & =\left(\frac{\left(n-\frac{1}{2}\right) \pi}{\int_{0}^{L} \sqrt{\frac{\sigma(t)}{p(t)}} d t}\right)^{2}
\end{aligned}
$$

1.5 Problem 5.9.2

5.9.2. Consider

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda(1+x) \phi=0
$$

subject to $\phi(0)=0$ and $\phi(1)=0$. Roughly sketch the eigenfunctions for λ large. Take into account amplitude and period variations.

$$
\phi^{\prime \prime}+\lambda(1+x) \phi=0
$$

Comparing the above to Sturm-Liouville form

$$
\left(p \phi^{\prime}\right)^{\prime}+q \phi=-\lambda \sigma \phi
$$

Shows that

$$
\begin{aligned}
p & =1 \\
q & =0 \\
\sigma & =1+x
\end{aligned}
$$

Now, from textbook, equation 5.9.8, we are given that for large λ

$$
\begin{align*}
\phi(x) & \approx(\sigma p)^{\frac{-1}{4}} \exp \left(\pm i \sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right) \\
& =(\sigma p)^{\frac{-1}{4}}\left(c_{1} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)+c_{2} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)\right) \tag{1}
\end{align*}
$$

Where c_{1}, c_{2} are the two constants of integration since this is second order ODE. For $\phi(0)=0$, the
integral $\int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t=\int_{0}^{0} \sqrt{\frac{\sigma(t)}{p(t)}} d t=0$ and the above becomes

$$
\begin{aligned}
0 & =\phi(0) \\
& =(\sigma p)^{\frac{-1}{4}}\left(c_{1} \cos (0)+c_{2} \sin (0)\right) \\
& =c_{1}(\sigma p)^{\frac{-1}{4}}
\end{aligned}
$$

Hence $c_{1}=0$ and (1) reduces to

$$
\phi(x)=c_{2}(\sigma p)^{\frac{-1}{4}} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)
$$

Applying the second boundary condition $\phi(1)=0$ on the above gives

$$
\begin{aligned}
0 & =\phi(1) \\
& =c_{2}(\sigma p)^{\frac{-1}{4}} \sin \left(\sqrt{\lambda} \int_{0}^{1} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right)
\end{aligned}
$$

Hence for non-trivial solution we want, for large positive integer n

$$
\begin{aligned}
\sqrt{\lambda} \int_{0}^{1} \sqrt{\frac{\sigma(t)}{p(t)}} d t & =n \pi \\
\sqrt{\lambda} & =\frac{n \pi}{\int_{0}^{1} \sqrt{\frac{\sigma(t)}{p(t)}} d t} \\
& =\frac{n \pi}{\int_{0}^{1} \sqrt{1+t} d t}
\end{aligned}
$$

But $\int_{0}^{1} \sqrt{1+t} d t=1.21895$, hence

$$
\begin{aligned}
\sqrt{\lambda} & =\frac{n \pi}{1.21895}=2.5773 n \\
\lambda & =6.6424 n^{2}
\end{aligned}
$$

Therefore, solution for large λ is

$$
\begin{aligned}
\phi(x) & =c_{2}(\sigma p)^{\frac{-1}{4}} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right) \\
& =c_{2}(\sigma p)^{\frac{-1}{4}} \sin \left(2.5773 n \int_{0}^{x} \sqrt{\frac{\sigma(t)}{p(t)}} d t\right) \\
& =c_{2}(1+x)^{\frac{-1}{4}} \sin \left(2.5773 n \int_{0}^{x} \sqrt{1+t} d t\right) \\
& =c_{2}(1+x)^{\frac{-1}{4}} \sin \left(2.5773 n\left(-\frac{2}{3}+\frac{2}{3}(1+x)^{\frac{3}{2}}\right)\right)
\end{aligned}
$$

To plot this, let us assume $c_{2}=1$ (we have no information given to find c_{2}). What value of n to use? Will use different values of n in increasing order. So the following is plot of

$$
\phi(x)=(1+x)^{\frac{-1}{4}} \sin \left(2.5773 n\left(-\frac{2}{3}+\frac{2}{3}(1+x)^{\frac{3}{2}}\right)\right)
$$

For $x=0 \cdots 1$ and for $n=10,20,30, \cdots, 80$.

