HW6, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1	нw	5	2
	1.1	Problem 5.3.2	2
		1.1.1 Part (a)	2
		1.1.2 Part (b)	2
		1.1.3 Part (c)	2
	1.2	Problem 5.3.3	3
	1.3	Problem 5.3.9	4
		L.3.1 Part (a)	4
		L.3.2 Part(b)	5
		L.3.3 Part(c)	5
		L.3.4 Part (d)	6
		L.3.5 Part(e)	7
	1.4	Problem 5.5.1 (b,d,g)	7
		L.4.1 Part(b)	8
		L.4.2 Part (d)	8
		L.4.3 Part (g)	8
	1.5	Problem 5.5.3	9
	1.6	Problem 5.5.8	10
		L.6.1 Part (a)	10
		L.6.2 Part (b)	11
		L.6.3 Part (c)	11
		L.6.4 Part (d)	11
		L.6.5 Part (e)	12
	1.7	Problem 5.5.10	12
		$1.7.1 Part(a) \ldots \ldots$	12
		L.7.2 Part(b)	13

1 HW 6

1.1 Problem 5.3.2

5.3.2. Consider

$$\rho \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} + \alpha u + \beta \frac{\partial u}{\partial t}.$$

- (a) Give a brief physical interpretation. What signs must α and β have to be physical?
- (b) Allow ρ, α, β to be functions of x. Show that separation of variables works only if $\beta = c\rho$, where c is a constant.
- (c) If $\beta = c\rho$, show that the spatial equation is a Sturm-Liouville differential equation. Solve the time equation.

1.1.1 Part (a)

$$\rho \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial t^2} + \alpha u + \beta \frac{\partial u}{\partial t}$$

The PDE equation represents the vertical displacement u(x,t) of the string as a function of time and horizontal position. This is 1D wave equation. The term $\beta \frac{\partial u}{\partial t}$ represents the damping force (can be due to motion of the string in air or fluid). The damping coefficient β must be negative to make

 $\beta \frac{\partial u}{\partial t}$ opposite to direction of motion. Damping force is proportional to velocity and acts opposite to direction of motion.

The term αu represents the stiffness in the system. This is a restoring force, and acts also opposite to direction of motion and is proportional to current displacement from equilibrium position. Hence $\alpha < 0$ also.

1.1.2 Part (b)

Let u = X(x)T(t). Substituting this into the above PDE gives

f

$$\rho T''X = T_0 X''T + \alpha XT + \beta T'X$$

Dividing by $XT \neq 0$

$$\rho \frac{T''}{T} = T_0 \frac{X''}{X} + \alpha + \beta \frac{T'}{T}$$
$$\rho \frac{T''}{T} - \beta \frac{T'}{T} = T_0 \frac{X''}{X} + \alpha$$

To make each side depends on one variable only, we move $\rho(x)$, $\beta(x)$ to the right side since these depends on x. Then dividing by $\rho(x)$ gives

$$\frac{T^{\prime\prime}}{T} - \frac{\beta}{\rho} \frac{T^{\prime}}{T} = T_0 \frac{X^{\prime\prime}}{\rho X} + \frac{\alpha}{\rho}$$

If $\frac{\beta(x)}{\rho(x)} = c$ is constant, then we see the equations have now been separated, since $\frac{\beta(x)}{\rho(x)}$ do not depend on x any more and the above becomes

$$\frac{T^{\prime\prime}}{T} - c\frac{T^{\prime}}{T} = T_0 \frac{X^{\prime\prime}}{\rho X} + \frac{\alpha \left(x\right)}{\rho \left(x\right)}$$

Now we can say that both side is equal to some constant $-\lambda$ giving the two ODE's

$$\frac{T''}{T} - c\frac{T'}{T} = -\lambda$$
$$T_0 \frac{X''}{\rho X} + \frac{\alpha}{\rho} = -\lambda$$

Or

$$T'' - cT' + \lambda T = 0$$
$$X'' + X\left(\frac{\alpha}{T_0} + \lambda \frac{\rho}{T_0}\right) = 0$$

1.1.3 Part (c)

From above, the spatial ODE is

$$X'' + X\left(\frac{\alpha}{T_0} + \lambda \frac{\rho}{T_0}\right) = 0 \tag{1}$$

Comparing to regular Sturm Liouville (RSL) form, which is

$$\frac{d}{dx}(pX') + qX + \lambda\sigma X = 0$$

$$pX'' + p'X' + (q + \lambda\sigma)X = 0$$
(2)

Comparing (1) and (2) we see that

$$p = 1$$
$$q = \frac{\alpha}{T_0}$$
$$\sigma = \frac{\rho}{T_0}$$

To solve the time ODE $T'' - cT' + \lambda T = 0$, since this is second order linear with constant coefficients, then the characteristic equation is

$$r^{2} - cr + \lambda = 0$$

$$r = \frac{-B}{2A} \pm \frac{\sqrt{B^{2} - 4AC}}{2A}$$

$$= \frac{c}{2} \pm \frac{\sqrt{c^{2} - 4\lambda}}{2}$$

$$T_{1}(t) = e^{\left(\frac{c}{2} + \frac{\sqrt{c^{2} - 4\lambda}}{2}\right)t}$$

Hence the two solutions are

$$T_{1}(t) = e^{\left(\frac{c}{2} + \frac{\sqrt{c^{2} - 4\lambda}}{2}\right)}$$
$$T_{2}(t) = e^{\left(\frac{c}{2} - \frac{\sqrt{c^{2} - 4\lambda}}{2}\right)}$$

The general solution is linear combination of the above two solution, therefore final solution is

$$T(t) = c_1 e^{\left(\frac{c}{2} + \frac{\sqrt{c^2 - 4\lambda}}{2}\right)t} + c_2 e^{\left(\frac{c}{2} - \frac{\sqrt{c^2 - 4\lambda}}{2}\right)t}$$

Where c_1, c_2 are arbitrary constants of integration.

1.2 Problem 5.3.3

*5.3.3. Consider the non-Sturm-Liouville differential equation

$$\frac{d^2\phi}{dx^2} + \alpha(x)\frac{d\phi}{dx} + [\lambda\beta(x) + \gamma(x)]\phi = 0.$$

Multiply this equation by H(x). Determine H(x) such that the equation may be reduced to the standard Sturm-Liouville form:

$$\frac{d}{dx}\left[p(x)\frac{d\phi}{dx}\right] + [\lambda\sigma(x) + q(x)]\phi = 0.$$

Given $\alpha(x), \beta(x)$, and $\gamma(x)$, what are $p(x), \sigma(x)$, and q(x)?

$$\frac{d^{2}\phi}{dx^{2}} + \alpha(x)\frac{d\phi}{dx} + (\lambda\beta(x) + \gamma(x))\phi = 0$$

Multiplying by H(x) gives

$$H(x)\phi''(x) + H(x)\alpha(x)\phi'(x) + H(x)(\lambda\beta(x) + \gamma(x))\phi = 0$$
(1)

Comparing (1) to Sturm Liouville form, which is

$$\frac{d}{dx}(p\phi') + q\phi + \lambda\sigma\phi = 0$$

$$p(x)\phi''(x) + p'(x)\phi'(x) + (q + \lambda\sigma)\phi(x) = 0$$
(2)

Then we need to satisfy

$$H(x) = P(x)$$
$$H(x) \alpha (x) = P'(x)$$

Therefore, by combining the above, we obtain one ODE equation to solve for H(x)

 $H'(x) = H(x) \alpha(x)$ This is first order separable ODE. $\frac{H'}{H} = \alpha$ or $\ln |H| = \int \alpha dx + c$ or $H = Ae^{\int \alpha(x)dx}$

Where A is some constant. By comparing (1),(2) again, we see that

$$q + \lambda \sigma = \lambda \beta(x) H(x) + \gamma(x) H(x)$$

Summary of solution

 $\sigma (x) = \beta (x) H (x)$ $q (x) = \gamma (x) H (x)$ P (x) = H (x) $H (x) = Ae^{\int \alpha(x)dx}$

QED

1.3 Problem 5.3.9

5.3.9. Consider the eigenvalue problem
x² d²φ/dx² + x dφ/dx + λφ = 0 with φ(1) = 0, and φ(b) = 0. (5.3.10)
(a) Show that multiplying by 1/x puts this in the Sturm-Liouville form. (This multiplicative factor is derived in Exercise 5.3.3.)
(b) Show that λ ≥ 0.
*(c) Since (5.3.10) is an equidimensional equation, determine all positive eigenvalues. Is λ = 0 an eigenvalue? Show that there is an infinite number of eigenvalues with a smallest, but no largest.
(d) The eigenfunctions are orthogonal with what weight according to a state of the eigenvalue of the eige

- (d) The eigenfunctions are orthogonal with what weight according to Sturm-Liouville theory? Verify the orthogonality using properties of integrals.
- (e) Show that the *n*th eigenfunction has n-1 zeros.

$$x^{2}\phi'' + x\phi' + \lambda\phi = 0$$
(1)
$$\phi(1) = 0$$

$$\phi(b) = 0$$

1.3.1 Part (a)

Multiplying (1) by $\frac{1}{x}$ where $x \neq 0$ gives

$$x\phi^{\prime\prime} + \phi^{\prime} + \frac{\lambda}{x}\phi = 0 \tag{2}$$

Comparing (2) to Sturm-Liouville form

$$p\phi'' + p'\phi' + (q + \lambda\sigma)\phi = 0$$
(3)

Then

p = xq = 0 $\sigma = \frac{1}{x}$

And since the given boundary conditions also satisfy the Sturm-Liouville boundary conditions, then (2) is a regular Sturm-Liouville ODE.

1.3.2 Part(b)

Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular Sturm-Liouville ODE, which relates the eigenvalues to the eigenfunctions

$$\lambda = \frac{-\left[p\phi\phi'\right]_{x=1}^{x=b} + \int_{1}^{b} p(\phi')^{2} - q\phi^{2}dx}{\int_{1}^{b} \phi^{2}\sigma dx}$$

$$= \frac{-\left[p(b)\phi(b)\phi'(b) - p(1)\phi(1)\phi'(b)\right] + \int_{1}^{b} p(\phi')^{2} - q\phi^{2}dx}{\int_{1}^{b} \phi^{2}\sigma dx}$$
(5.3.8)

Using $p = x, q = 0, \sigma = \frac{1}{r}$ and using $\phi(1) = 0, \phi(b) = 0$, then the above simplifies to

$$\lambda = \frac{-\int_{1}^{b} p\left(\phi'\right)^{2} dx}{\int_{1}^{b} \frac{\phi^{2}}{x} dx}$$

The integrands in the numerator and denominator can not be negative, since they are squared quantities, and also since x > 0 as the domain starts from x = 1, then RHS above can not be negative. This means the eigenvalue λ can not be negative. It can only be $\lambda \ge 0$. QED.

1.3.3 Part(c)

The possible values of $\lambda > 0$ are determined by trying to solve the ODE and seeing which λ produces non-trivial solutions given the boundary conditions. The ODE to solve is (1) above. Here it is again

 $x^2\phi'' + x\phi' = 0$ $x\phi'' + \phi' = 0$

$$x^2\phi'' + x\phi' + \lambda\phi = 0 \tag{1}$$

We know $\lambda \ge 0$, so we do not need to check for negative λ .

Case $\lambda = 0$.

Equation (1) becomes

$$\frac{d}{dx}(x\phi') = 0$$

Hence $x\phi' = c_1$ where c_1 is constant. Therefore $\frac{d}{dx}\phi = \frac{c_1}{x}$ or
 $\phi = c_1 \int \frac{1}{x}dx + c_2$
 $= c_1 \ln|x| + c_2$

At x = 1, $\phi(1) = 0$, hence

$$0 = c_1 \ln{(1)} + c_2$$

But $\ln(1) = 0$, therefore $c_2 = 0$. The solution now becomes

$$\phi = c_1 \ln |x|$$

At the right end, x = b, $\phi(b) = 0$, therefore

$$0 = c_1 \ln b$$

But since b > 1 the above implies that $c_1 = 0$. This gives trivial solution. Therefore $\lambda = 0$ is not an eigenvalue. Case $\lambda > 0$

$$x^2\phi^{\prime\prime} + x\phi^\prime + \lambda\phi = 0$$

This is non-constant coefficients, linear, second order ODE. Let $\phi(x) = x^p$. Equation (1) becomes

$$\begin{aligned} x^2 p\left(p-1\right) x^{p-2} + x p x^{p-1} + \lambda x^p &= 0 \\ p\left(p-1\right) x^p + p x^p + \lambda x^p &= 0 \end{aligned}$$

Dividing by $x^p \neq 0$ gives the characteristic equation

$$p(p-1) + p + \lambda = 0$$
$$p^{2} - p + p + \lambda = 0$$
$$p^{2} = -\lambda$$

(2)

Since $\lambda \ge 0$ then *p* is complex. Therefore the roots are

$$p = \pm i \sqrt{\lambda}$$

Therefore the two solutions (eigenfunctions) are

$$\phi_1(x) = x^{i\sqrt{\lambda}}$$
$$\phi_2(x) = x^{-i\sqrt{\lambda}}$$

To more easily use standard form of solution, the standard trick is to rewrite these solution in exponential form

$$\phi_1(x) = e^{i\sqrt{\lambda}\ln x}$$
$$\phi_2(x) = e^{-i\sqrt{\lambda}\ln x}$$

The general solution to (1) is linear combination of these two solutions, therefore

$$\phi(x) = c_1 e^{i\sqrt{\lambda}\ln x} + c_2 e^{-i\sqrt{\lambda}\ln x}$$

Since $\lambda > 0$ then the above can be written using trig functions as

$$\phi(x) = c_1 \cos\left(\sqrt{\lambda} \ln x\right) + c_2 \sin\left(\sqrt{\lambda} \ln x\right)$$

We are now ready to check for allowed values of λ by applying B.C's. The first B.C. gives

$$0 = c_1 \cos\left(\sqrt{\lambda} \ln 1\right) + c_2 \sin\left(\sqrt{\lambda} \ln 1\right)$$
$$= c_1 \cos\left(0\right) + c_2 \sin\left(0\right)$$
$$= c_1$$

Hence the solution now simplifies to

$$\phi(x) = c_2 \sin\left(\sqrt{\lambda} \ln x\right)$$

Applying the second B.C. gives

$$0 = c_2 \sin\left(\sqrt{\lambda} \ln b\right)$$

For non-trivial solution we want

$$\lambda \ln b = n\pi \qquad n = 1, 2, 3, \cdots$$

$$\sqrt{\lambda} = \frac{n\pi}{\ln b}$$

$$\lambda_n = \left(\frac{n\pi}{\ln b}\right)^2 \qquad n = 1, 2, 3, \cdots$$

Therefore, there are infinite numbers of eigenvalues. The smallest is when n = 1 given by

$$\lambda_1 = \left(\frac{\pi}{\ln b}\right)^2$$

1.3.4 Part (d)

From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight function $\sigma(x)$

$$\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) \sigma(x) dx = 0 \qquad n \neq m$$

In this problem, the weight $\sigma = \frac{1}{x}$ and the solution (eigenfuctions) were found above to be

$$\phi_n(x) = \sin\left(\sqrt{\lambda_n}\ln x\right)$$

Now we can verify the orthogonality

$$\int_{1}^{b} \phi_n(x) \phi_m(x) \sigma(x) dx = \int_{x=1}^{x=b} \sin\left(\frac{n\pi}{\ln b} \ln x\right) \sin\left(\frac{m\pi}{\ln b} \ln x\right) \frac{1}{x} dx$$

Using the substitution $z = \ln x$, then $\frac{dz}{dx} = \frac{1}{x}$. When $x = 1, z = \ln 1 = 0$ and when $x = b, z = \ln b$, then the above integral becomes

$$I = \int_{z=0}^{z=\ln b} \sin\left(\frac{n\pi}{\ln b}z\right) \sin\left(\frac{m\pi}{\ln b}z\right) \frac{dz}{dx} dx$$
$$= \int_{0}^{\ln b} \sin\left(\frac{n\pi}{\ln b}z\right) \sin\left(\frac{m\pi}{\ln b}z\right) dz$$

But $\sin\left(\frac{n\pi}{\ln b}z\right)$ and $\sin\left(\frac{m\pi}{\ln b}z\right)$ are orthogonal functions (now with weight 1). Hence the above gives 0 when $n \neq m$ using standard orthogonality of the sin functions we used before many times. QED.

1.3.5 Part(e)

The n^{th} eigenfunction is

$$\phi_n(x) = \sin\left(\frac{n\pi}{\ln b}\ln x\right)$$

Here, the zeros are inside the interval, not counting the end points x = 1 and x = b.

$$\left(\frac{n\pi}{\ln b}\ln x\right)\Big|_{x=1} = \left(\frac{n\pi}{\ln b}0\right) = 0$$

And

$$\left(\frac{n\pi}{\ln b}\ln x\right)\Big|_{x=b} = \frac{n\pi}{\ln b}\ln b$$
$$= n\pi$$

Hence for n = 1, The domain of $\phi_1(x)$ is $0 \cdots \pi$. And there are no zeros inside this for sin function not counting the end points. For n = 2, the domain is $0 \cdots 2\pi$ and sin has one zero inside this (at π), not counting end points. And for n = 3, the domain is $0 \cdots 3\pi$ and sin has two zeros inside this (at $\pi, 2\pi$), not counting end points. And so on. Hence $\phi_n(x)$ has n - 1 zeros not counting the end points.

1.4 Problem 5.5.1 (b,d,g)

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if $p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big _{a}^{b} = 0$
since then $\int_a^b [uL(v) - vL(u)] dx = 0$ for any two functions u and v satis- fying the boundary conditions. Show that the following yield self-adjoint problems.
(a) $\phi(0) = 0$ and $\phi(L) = 0$ (b) $\frac{d\phi}{dx}(0) = 0$ and $\phi(L) = 0$ (c) $\frac{d\phi}{dx}(0) - h\phi(0) = 0$ and $\frac{d\phi}{dx}(L) = 0$ (d) $\phi(a) = \phi(b)$ and $p(a)\frac{d\phi}{dx}(a) = p(b)\frac{d\phi}{dx}(b)$ (e) $\phi(a) = \phi(b)$ and $\frac{d\phi}{dx}(a) = \frac{d\phi}{dx}(b)$ [self-adjoint only if $p(a) = p(b)$] (f) $\phi(L) = 0$ and [in the situation in which $p(0) = 0$] $\phi(0)$ bounded and $\lim_{x \to 0} p(x)\frac{d\phi}{dx} = 0$
*(g) Under what conditions is the following self-adjoint (if p is constant)? $\phi(L) + \alpha \phi(0) + \beta \frac{d\phi}{dx}(0) = 0$ $\frac{d\phi}{dx}(L) + \gamma \phi(0) + \delta \frac{d\phi}{dx}(0) = 0$

The Sturm-Liouville ODE is

$$\frac{d}{dx}(p\phi') + q\phi = -\lambda\sigma\phi$$

Or in operator form, defining $L \equiv \frac{d}{dx}\left(p\frac{d}{dx}\right) + q$, becomes
 $L[\phi] = -\lambda\sigma\phi$

The operator L is self adjoined when

$$\int_{a}^{b} uL[v] dx = \int_{a}^{b} vL[u] dx$$

For the above to work out, we need to show that

$$p\left(uv'-vu'\right)\Big|_a^b=0$$

And this is what we will do now.

1.4.1 Part(b)

Here a = 0 and b = L.

$$p(uv' - vu')\Big|_{a}^{b} = p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big|_{0}^{L}$$
$$= \left[p(L)\left(u(L)\frac{dv}{dx}(L) - v(L)\frac{du}{dx}(L)\right) - p(0)\left(u(0)\frac{dv}{dx}(0) - v(0)\frac{du}{dx}(0)\right)\right]$$

Substituting u(L) = v(L) = 0 and $\frac{dv}{dx}(0) = \frac{du}{dx}(0) = 0$ into the above (since there are the B.C. given) gives

$$p(uv' - vu')\Big|_{a}^{b} = \left[p(L) \left(0 \times \frac{dv}{dx}(L) - 0 \times \frac{du}{dx}(L) \right) - p(0)(u(0) \times 0 - v(0) \times 0) \right]$$
$$= [0 - 0]$$
$$= 0$$

1.4.2 Part (d)

$$p(uv' - vu')\Big|_{a}^{b} = p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big|_{b}^{a}$$

$$= \left[p(a)(u(a)v'(a) - v(a)u'(a)) - p(b)(u(b)v'(b) - v(b)u'(b))\right]$$

$$= p(a)u(a)v'(a) - p(a)v(a)u'(a) - p(b)u(b)v'(b) + p(b)v(b)u'(b)$$
(1)

We are given that u(a) = u(b) and v(a) = v(b) and p(a)u'(a) = p(b)u'(b) and p(a)v'(a) = p(b)v'(b). We start by replacing u(a) by u(a) and replacing v(a) by v(b) in (1), this gives

$$p(uv' - vu')\Big|_{a}^{b} = p(a) u(b) v'(a) - p(a) v(b) u'(a) - p(b) u(b) v'(b) + p(b) v(b) u'(b)$$

= $u(b) (p(a) v'(a) - p(b) v'(b)) + v(b) (p(b) u'(b) - p(a) u'(a))$
Now using $p(a) u'(a) = p(b) u'(b)$ and $p(a) v'(a) = p(b) v'(b)$ in the above gives
 $p(uv' - vu')\Big|_{a}^{b} = u(b) (p(b) v'(b) - p(b) v'(b)) + v(b) (p(b) u'(b) - p(b) u'(b))$
 $= u(b) (0) + v(b) (0)$
 $= 0 - 0$
 $= 0$

1.4.3 Part (g)

p is constant. Hence

$$p(uv' - vu')\Big|_{0}^{L} = p\left(u\frac{dv}{dx} - v\frac{du}{dx}\right)\Big|_{0}^{L}$$
$$= p\left[(u(L)v'(L) - v(L)u'(L)) - (u(0)v'(0) - v(0)u'(0))\right]$$
(1)

We are given that

 $u(L) + \alpha u(0) + \beta u'(0) = 0$ (2) $u'(L) + \gamma u(0) + \delta u'(0) = 0$ (3)

And

$$v(L) + \alpha v(0) + \beta v'(0) = 0$$
(4)
$$v'(L) + \gamma v(0) + \delta v'(0) = 0$$
(5)

From (2),

$$u(L) = -\alpha u(0) - \beta u'(0)$$

From (3)
$$u'(L) = -\gamma u(0) - \delta u'(0)$$

From (4)
$$v(L) = -\alpha v(0) - \beta v'(0)$$

From (5)
$$v'(L) = -\gamma v(0) - \delta v'(0)$$

Using these 4 relations in equation (1) gives (where p is removed out, since it is constant, to simplify the equations)

$$(uv' - vu')|_{0}^{L} = u(L)v'(L) - v(L)u'(L) - u(0)v'(0) + v(0)u'(0)$$

= $(-\alpha u(0) - \beta u'(0))(-\gamma v(0) - \delta v'(0))$
 $- (-\alpha v(0) - \beta v'(0))(-\gamma u(0) - \delta u'(0))$
 $- u(0)v'(0) + v(0)u'(0)$

Simplifying

$$(uv' - vu')|_{0}^{L} = \alpha u (0) \gamma v (0) + \alpha u (0) \delta v' (0) + \beta u' (0) \gamma v (0) + \beta u' (0) \delta v' (0) - (\alpha v (0) \gamma u (0) + \alpha v (0) \delta u' (0) + \beta v' (0) \gamma u (0) + \beta v' (0) \delta u' (0)) - u (0) v' (0) + v (0) u' (0) = \alpha u (0) \gamma v (0) + \alpha u (0) \delta v' (0) + \beta u' (0) \gamma v (0) + \beta u' (0) \delta v' (0) - \alpha v (0) \gamma u (0) - \alpha v (0) \delta u' (0) - \beta v' (0) \gamma u (0) - \beta v' (0) \delta u' (0) - u (0) v' (0) + v (0) u' (0)$$

Collecting

$$\begin{aligned} \left(uv' - vu'\right) \Big|_{0}^{L} &= \alpha \delta \left(u\left(0\right)v'\left(0\right) - v\left(0\right)u'\left(0\right)\right) \\ &+ \beta \delta \left(u'\left(0\right)v'\left(0\right) - v'\left(0\right)u'\left(0\right)\right) \\ &+ \alpha \gamma \left(u\left(0\right)v\left(0\right) - v\left(0\right)u\left(0\right)\right) \\ &+ \beta \gamma \left(u'\left(0\right)v\left(0\right) - v'\left(0\right)u\left(0\right)\right) \\ &- u\left(0\right)v'\left(0\right) + v\left(0\right)u'\left(0\right) \\ &= \alpha \delta \left(u\left(0\right)v'\left(0\right) - v\left(0\right)u'\left(0\right)\right) + \beta \gamma \left(u'\left(0\right)v\left(0\right) - v'\left(0\right)u\left(0\right)\right) - \left(u\left(0\right)v'\left(0\right) - v\left(0\right)u'\left(0\right)\right) \\ &= \alpha \delta \left(u\left(0\right)v'\left(0\right) - v\left(0\right)u'\left(0\right)\right) - \beta \gamma \left(v'\left(0\right)u\left(0\right) - u'\left(0\right)v\left(0\right)\right) - \left(u\left(0\right)v'\left(0\right) - v\left(0\right)u'\left(0\right)\right) \end{aligned}$$

Let $u(0)v'(0) - v(0)u'(0) = \Delta$ then we see that the above is just

$$(uv' - vu')|_{0}^{L} = \alpha\delta(\Delta) - \beta\gamma(\Delta) - (\Delta)$$
$$= \Delta(\alpha\delta - \beta\gamma - 1)$$

Hence, for $(uv' - vu')|_0^L = 0$, we need

$$\alpha\delta - \beta\gamma - 1 = 0$$

1.5 Problem 5.5.3

5.5.3. Consider the eigenvalue problem $L(\phi) = -\lambda \sigma(x)\phi$, subject to a given set of homogeneous boundary conditions. Suppose that

$$\int_a^b \left[uL(v) - vL(u) \right] \, dx = 0$$

for all functions u and v satisfying the same set of boundary conditions. Prove that eigenfunctions corresponding to different eigenvalues are orthogonal (with what weight?).

We are given that

$$\int_{a}^{b} uL[v] - vL[u] dx = 0$$
⁽¹⁾

But

$$L[v] = -\lambda_v \sigma(x) v \tag{2}$$

$$L[u] = -\lambda_u \sigma(x) u \tag{3}$$

Where $\sigma(x)$ is the weight function of the corresponding Sturm-Liouville ODE that u, v are its solution eigenfunctions. Substituting (2,3) into (1) gives

$$\int_{a}^{b} u (-\lambda_{v}\sigma(x)v) - v (-\lambda_{u}\sigma(x)u) dx = 0$$
$$\int_{a}^{b} -\lambda_{v}\sigma(x) uv + \lambda_{u}\sigma(x) uv dx = 0$$
$$(\lambda_{u} - \lambda_{v}) \int_{a}^{b} \sigma(x) uv dx = 0$$

Since u, v are different eigenfunctions, then the $\lambda_u - \lambda_v \neq 0$ as these are different eigenvalues. (There is one eigenfunction corresponding to each eigenvalue). Therefore the above says that

$$\int_{a}^{b} \sigma(x) u(x) v(x) dx = 0$$

Hence different eigenfunctions u(x), v(x) are orthogonal to each others. The weight is $\sigma(x)$.

1.6 Problem 5.5.8

5.5.8. Consider a fourth-order linear differential operator,

$$L=\frac{d^4}{dx^4}$$

- (a) Show that uL(v) vL(u) is an exact differential.
- (b) Evaluate $\int_0^1 [uL(v) vL(u)] dx$ in terms of the boundary data for any functions u and v.
- (c) Show that $\int_0^1 [uL(v) vL(u)] dx = 0$ if u and v are any two functions satisfying the boundary conditions

$$\begin{array}{rcl} \phi(0) &=& 0 & \phi(1) &=& 0 \\ \frac{d\phi}{dx}(0) &=& 0 & \frac{d^2\phi}{dx^2}(1) &=& 0 \end{array}$$

(d) Give another example of boundary conditions such that

$$\int_0^1 \left[uL(v) - vL(u) \right] \ dx = 0.$$

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

$$\frac{d^4\phi}{dx^4} + \lambda e^x \phi = 0,$$

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. What is the weighting function?

$$L = \frac{d^4}{dx^4}$$

1.6.1 Part (a)

$$uL[v] - vL[u] = u\frac{d^4v}{dx^4} - v\frac{d^4u}{dx^4}$$
$$= uv^{(4)} - vu^{(4)}$$

We want to obtain expression of form $\frac{d}{dx}$ () such that it comes out to be $uv^{(4)} - vu^{(4)}$. If we can do this, then it is exact differential. Now, since

$$\frac{d}{dx}\left(uv''' - u'v''\right) = u'v''' + uv^{(4)} - u''v'' - u'v''$$
(1)

And

$$\frac{d}{dx}(vu''' - v'u'') = v'u''' + vu^{(4)} - v''u'' - v'u'''$$
(2)

Then (1)-(2) gives

$$\frac{d}{dx} (uv''' - u'v'') - \frac{d}{dx} (vu''' - v'u'') = (u'v'' + uv^{(4)} - u''v'' - u'v''') - (v'u''' + vu^{(4)} - v''u'' - v'u''')$$
$$= u'v''' + uv^{(4)} - u''v'' - u'v''' - v'u''' - vu^{(4)} + v''u'' + v'u'''$$
$$= uv^{(4)} - vu^{(4)}$$

Hence we found that

$$\frac{d}{dx} (uv''' - u'v'' - vu''' + v'u'') = uv^{(4)} - vu^{(4)}$$
$$= uL[v] - vL[u]$$

Therefore uL[v] - vL[u] is exact differential.

1.6.2 Part (b)

$$I = \int_{a}^{b} uL[v] - vL[u] dx$$

= $\int_{a}^{b} \frac{d}{dx} (uv''' - u'v'' - vu''' + v'u'') dx$
= $uv''' - u'v'' - vu''' + v'u''|_{a}^{b}$
= $u(b)v'''(b) - u'(b)v''(b) - v(b)u'''(b) + v'(b)u''(b)$
- $(u(a)v'''(a) - u'(a)v''(a) - v(a)u'''(a) + v'(a)u''(a))$

Or

I = u(b)v'''(b) - u'(b)v''(b) - v(b)u'''(b) + v'(b)u''(b) - u(a)v'''(a) + u'(a)v''(a) + v(a)u'''(a) - v'(a)u''(a)

1.6.3 Part (c)

From part(b),

$$I = \int_0^1 u L[v] - v L[u] dx = u v''' - u' v'' - v u''' + v' u''|_0^1$$
(1)

Since we are given that

 $\phi(0) = 0$ $\phi'(0) = 0$ $\phi(1) = 0$ $\phi''(1) = 0$

The above will give

$$u(0) = v(0) = 0$$

$$u'(0) = v'(0) = 0$$

$$u(1) = v(1) = 0$$

$$u''(1) = v''(1) = 0$$

Substituting these into (1) gives

$$\int_{0}^{1} uL[v] - vL[u] dx = u(1)v'''(1) - u'(1)v''(1) - v(1)u'''(1) + v'(1)u'''(1) - u(0)v'''(0) + u'(0)v''(0) + v(0)u'''(0) - v'(0)u'''(0)$$

Therefore

$$\int_{0}^{1} uL[v] - vL[u] dx = (0 \times v^{\prime\prime\prime}(1)) - 0 - (0 \times u^{\prime\prime\prime}(1)) + 0 - (0 \times v^{\prime\prime\prime}(0)) + 0 + (0 \times u^{\prime\prime\prime}(0)) - 0$$

= 0

1.6.4 Part (d)

Any boundary conditions which makes $uv''' - u'v'' - vu''' + v'u''|_0^1 = 0$ will do. For example,

 $\phi(0) = 0$ $\phi'(0) = 0$ $\phi(1) = 0$ $\phi'(1) = 0$ The above will give

$$u(0) = v(0) = 0$$

$$u'(0) = v'(0) = 0$$

$$u(1) = v(1) = 0$$

$$u'(1) = v'(1) = 0$$

Substituting these into (1) gives

$$\begin{split} \int_0^1 uL\left[v\right] - vL\left[u\right] dx &= u\left(1\right)v'''\left(1\right) - u'\left(1\right)v''\left(1\right) - v\left(1\right)u'''\left(1\right) + v'\left(1\right)u''\left(1\right) \\ &- u\left(0\right)v'''\left(0\right) + u'\left(0\right)v''\left(0\right) + v\left(0\right)u'''\left(0\right) - v'\left(0\right)u''\left(0\right) \\ &= \left(0 \times v'''\left(1\right)\right) - \left(0 \times v''\left(1\right)\right) - \left(0 \times u'''\left(1\right)\right) + \left(0 \times u''\left(1\right)\right) \\ &- \left(0 \times v'''\left(0\right)\right) + \left(0 \times v''\left(0\right)\right) + \left(0 \times u'''\left(0\right)\right) - \left(0 \times u'''\left(0\right)\right) \\ &= 0 \end{split}$$

1.6.5 Part (e)

Given

$$\frac{d^4}{dx^4}\phi + \lambda e^x\phi = 0$$

Therefore

$$L\left[\phi\right] = -\lambda e^{x}\phi$$

Therefore, for eigenfunctions u, v we have

$$L[u] = -\lambda_u e^x u$$
$$L[v] = -\lambda_v e^x v$$

Where λ_u, λ_v are the eigenvalues associated with eigenfunctions u, v and they are not the same. Hence now we can write

$$0 = \int_0^1 uL[v] - vL[u] dx$$

= $\int_0^1 u(-\lambda_v e^x v) - v(-\lambda_u e^x u) dx$
= $\int_0^1 -\lambda_v e^x uv + \lambda_u e^x uv dx$
= $\int_0^1 (\lambda_u - \lambda_v) (e^x uv) dx$
= $(\lambda_u - \lambda_v) \int_0^1 (e^x uv) dx$

Since $\lambda_u - \lambda_v \neq 0$ then

$$\int_0^1 (e^x uv) \, dx = 0$$

Hence u, v are orthogonal to each others with weight function e^x .

1.7 Problem 5.5.10

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary conditions is of the regular Sturm-Liouville type.
(b) Do part (a) if one boundary condition is of the singular type.

1.7.1 Part(a)

Equation 5.5.22 is

$$p\left(\phi_1\phi_2' - \phi_2\phi_1'\right) = \text{constant}$$
(5.5.22)

Looking at boundary conditions at one end, say at x = a (left end), and let the boundary conditions there be

$$\beta_1 \phi(a) + \beta_2 \phi'(a) = 0$$

Therefore for eigenfunctions ϕ_1, ϕ_2 we obtain

$$\beta_1 \phi_1(a) + \beta_2 \phi_1'(a) = 0 \tag{1}$$

$$\beta_1 \phi_2(a) + \beta_2 \phi_2'(a) = 0 \tag{2}$$

From (1),

$$\phi_1'(a) = -\frac{\beta_1}{\beta_2} \phi_1(a)$$
(3)

From (2)

$$\phi_2'(a) = -\frac{\beta_1}{\beta_2}\phi_2(a) \tag{4}$$

Substituting (3,4) into $\phi_1\phi'_2 - \phi_2\phi'_1$ gives, at end point *a*, the following

$$\phi_{1}(a) \phi_{2}'(a) - \phi_{2}(a) \phi_{1}'(a) = \phi_{1}(a) \left(-\frac{\beta_{1}}{\beta_{2}}\phi_{2}(a)\right) - \phi_{2}(a) \left(-\frac{\beta_{1}}{\beta_{2}}\phi_{1}(a)\right)$$
$$= -\frac{\beta_{1}}{\beta_{2}}\phi_{2}(a) \phi_{1}(a) + \frac{\beta_{1}}{\beta_{2}}\phi_{2}(a) \phi_{1}(a)$$
$$= 0$$

In the above, we evaluated $\phi_1\phi'_2 - \phi_2\phi'_1$ at one end point, and found it to be zero. But $\phi_1\phi'_2 - \phi_2\phi'_1$ is the Wronskian W(x). It is known that if W(x) = 0 at just one point, then it is zero at all points in the range. Hence we conclude that

$$\phi_1 \phi_2' - \phi_2 \phi_1' = 0$$

For all x. This also means the eigenfunctions ϕ_1, ϕ_2 are linearly dependent. This gives equation 5.5.23. QED.

1.7.2 Part(b)

Equation 5.5.22 is

$$p\left(\phi_1\phi_2' - \phi_2\phi_1'\right) = \text{constant} \tag{5.5.22}$$

At one end, say end x = a, is where the singularity exist. This means p(a) = 0. Now to show that $p(\phi_1\phi'_2 - \phi_2\phi'_1) = 0$ at x = a, we just need to show that $\phi_1\phi'_2 - \phi_2\phi'_1$ is bounded. Since in that case, we will have $0 \times A = 0$, where A is some value which is $\phi_1\phi'_2 - \phi_2\phi'_1$. But boundary conditions at x = 1 must be $\phi(a) < \infty$ and also $\phi'(a) < \infty$. This is always the case at the end where p = 0.

Then let $\phi(a) = c_1$ and $\phi'(a) = c_2$, where c_1, c_2 are some constants. Then we write

$$\phi_1(a) = c_1$$

 $\phi'_1(a) = c_2$
 $\phi_2(a) = c_1$
 $\phi'_2(a) = c_2$

Hence it follows immediately that

$$\phi_1 \phi'_2 - \phi_2 \phi'_1 = c_1 c_2 - c_2 c_1 = 0$$

Hence we showed that $\phi_1\phi'_2 - \phi_2\phi'_1$ is bounded. Then $p(\phi_1\phi'_2 - \phi_2\phi'_1) = 0$. QED.