HW5, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1	нw	5	2
	1.1	Problem 3.5.2	2
		1.1.1 Part a	2
		1.1.2 Part (b)	3
	1.2	Problem 3.5.3	4
	1.3	Problem 3.5.7	4
	1.4	Problem 3.6.1	5
	1.5	Problem 4.2.1	5
		1.5.1 Part (a)	6
		1.5.2 Part (b)	7
	1.6	Problem 4.2.5	7
	1.7	Problem 4.4.1	8
		1.7.1 Part (a)	9
		1.7.2 Part (b)	9
		1.7.3 Part (c)	.1
	1.8	Problem 4.4.3	.1
		1.8.1 Part (a)	.2
		1.8.2 Part (b)	.2
	1.9	Problem 4.4.9	.4

1 HW 5

1.1 Problem 3.5.2

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x².
(b) From part (a), determine the Fourier sine series of x³.

1.1.1 Part a

Equation 3.3.11, page 100 is the Fourier sin series of x

$$x = \sum_{n=1}^{\infty} B_n \sin\left(n\frac{\pi}{L}x\right) \qquad -L < x < L \tag{3.3.11}$$

Where

$$B_n = \frac{2L}{n\pi} \left(-1\right)^{n+1} \tag{3.3.12}$$

The goal is to find the Fourier cos series of x^2 . Since $\int_0^x t dt = \frac{x^2}{2}$, then $x^2 = 2 \int_0^x t dt$. Hence from 3.3.11

$$x^{2} = 2 \int_{0}^{x} \left[\sum_{n=1}^{\infty} B_{n} \sin\left(n\frac{\pi}{L}t\right) \right] dt$$

Interchanging the order of summation and integration the above becomes

$$x^{2} = 2 \sum_{n=1}^{\infty} \left(B_{n} \int_{0}^{x} \sin\left(n\frac{\pi}{L}t\right) dt \right)$$

$$= 2 \sum_{n=1}^{\infty} B_{n} \left(\frac{-\cos\left(n\frac{\pi}{L}t\right)}{n\frac{\pi}{L}} \right)_{0}^{x}$$

$$= \sum_{n=1}^{\infty} \frac{-2L}{n\pi} B_{n} \left[\cos\left(n\frac{\pi}{L}t\right) \right]_{0}^{x}$$

$$= \sum_{n=1}^{\infty} \frac{-2L}{n\pi} B_{n} \left[\cos\left(n\frac{\pi}{L}x\right) - 1 \right]$$

$$= \sum_{n=1}^{\infty} \left(\frac{-2L}{n\pi} B_{n} \cos\left(n\frac{\pi}{L}x\right) + \frac{2L}{n\pi} B_{n} \right)$$

$$= \sum_{n=1}^{\infty} \frac{-2L}{n\pi} B_{n} \cos\left(n\frac{\pi}{L}x\right) + \sum_{n=1}^{\infty} B_{n} \frac{2L}{n\pi}$$
(1)

But a Fourier \cos series has the form

$$x^{2} = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos\left(n\frac{\pi}{L}x\right)$$
⁽²⁾

Comparing (1) and (2) gives

$$A_n = \frac{-2L}{n\pi} B_n$$

Using 3.3.12 for B_n the above becomes

$$A_n = \frac{-2L}{n\pi} \frac{2L}{n\pi} (-1)^{n+1}$$
$$= (-1)^n \left(\frac{2L}{n\pi}\right)^2$$

And

$$A_{0} = \sum_{n=1}^{\infty} B_{n} \frac{2L}{n\pi}$$

= $\sum_{n=1}^{\infty} \left(\frac{2L}{n\pi} (-1)^{n+1}\right) \frac{2L}{n\pi}$
= $\frac{4L^{2}}{\pi^{2}} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{2}}$

But $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = \frac{\pi^2}{12}$, hence the above becomes

$$A_0 = \frac{4L^2}{\pi^2} \frac{\pi^2}{12} \\ = \frac{L^2}{3}$$

Summary The Fourier \cos series of x^2 is

$$\begin{aligned} x^2 &= A_0 + \sum_{n=1}^{\infty} A_n \cos\left(n\frac{\pi}{L}x\right) \\ &= \frac{L^2}{3} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{2L}{n\pi}\right)^2 \cos\left(n\frac{\pi}{L}x\right) \end{aligned}$$

1.1.2 Part (b)

Since

$$x^3 = 3\int_0^x t^2 dt$$

Then, using result from part (a) for Fourier \cos series of t^2 results in

$$\begin{aligned} x^{3} &= 3 \int_{0}^{x} \left[A_{0} + \sum_{n=1}^{\infty} A_{n} \cos\left(n\frac{\pi}{L}t\right) \right] dt \\ &= 3 \int_{0}^{x} \frac{L^{2}}{3} dt + 3 \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{2L}{n\pi}\right)^{2} \cos\left(n\frac{\pi}{L}t\right) dt \\ &= L^{2} (t)_{0}^{x} + 3 \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{2L}{n\pi}\right)^{2} \int_{0}^{x} \cos\left(n\frac{\pi}{L}t\right) dt \\ &= L^{2} x + 3 \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{2L}{n\pi}\right)^{2} \left[\frac{\sin\left(n\frac{\pi}{L}t\right)}{n\frac{\pi}{L}}\right]_{0}^{x} \\ &= L^{2} x + 3 \sum_{n=1}^{\infty} \frac{L}{n\pi} (-1)^{n} \left(\frac{2L}{n\pi}\right)^{2} \left[\sin\left(n\frac{\pi}{L}t\right)\right]_{0}^{x} \\ &= L^{2} x + (3 \cdot 4) \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{L}{n\pi}\right)^{3} \sin\left(n\frac{\pi}{L}x\right) \end{aligned}$$

Using 3.3.11 which is $x = \sum_{n=1}^{\infty} B_n \sin\left(n\frac{\pi}{L}x\right)$, with $B_n = \frac{2L}{n\pi} (-1)^{n+1}$ the above becomes

$$x^{3} = L^{2} \sum_{n=1}^{\infty} \frac{2L}{n\pi} (-1)^{n+1} \sin\left(n\frac{\pi}{L}x\right) + (3\cdot 4) \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{L}{n\pi}\right)^{3} \sin\left(n\frac{\pi}{L}x\right)$$

Combining all above terms

$$x^{3} = \sum_{n=1}^{\infty} \left[L^{2} \frac{2L}{n\pi} (-1)^{n+1} + (3 \cdot 4) (-1)^{n} \left(\frac{L}{n\pi} \right)^{3} \right] \sin \left(n \frac{\pi}{L} x \right)$$

Will try to simplify more to obtain B_n

$$x^{3} = \sum_{n=1}^{\infty} (-1)^{n} \frac{L^{3}}{n\pi} \left[-2 + (3 \cdot 4) \left(\frac{1}{n\pi} \right)^{2} \right] \sin\left(n\frac{\pi}{L}x\right)$$
$$= \sum_{n=1}^{\infty} (-1)^{n} \frac{2L^{3}}{n\pi} \left[-1 + (3 \times 2) \left(\frac{1}{n\pi}\right)^{2} \right] \sin\left(n\frac{\pi}{L}x\right)$$

Comparing the above to the standard Fourier sin series $x^3 = \sum_{n=1}^{\infty} B_n \sin\left(n\frac{\pi}{L}x\right)$ then the above is the required sin series for x^3 with

$$B_n = (-1)^n \frac{2L^3}{n\pi} \left[-1 + (3 \times 2) \left(\frac{1}{n\pi} \right)^2 \right] \sin\left(n\frac{\pi}{L}x\right)$$

Expressing the above using B_n from x^1 to help find recursive relation for next problem.

Will now use the notation ${}^{i}B_{n}$ to mean the B_{n} for x^{i} . Then since ${}^{1}B_{n} = \frac{2L}{n\pi} (-1)^{n+1} = (-1)^{n} \left(-\frac{2L}{n\pi}\right)$ for x, then, using ${}^{3}B_{n}$ as the B_{n} for x^{3} , the series for x^{3} can be written

$$x^{3} = \sum_{n=1}^{\infty} (-1)^{n} L^{2} \left[-\frac{2L}{n\pi} + 6\left(2\frac{L}{n^{2}\pi^{2}}\right) \right] \sin\left(n\frac{\pi}{L}x\right)$$
$$= \sum_{n=1}^{\infty} (-1)^{n} L^{2} \left[{}^{1}B_{n} + 6\left(2\frac{L}{n^{2}\pi^{2}}\right) \right] \sin\left(n\frac{\pi}{L}x\right)$$

Where now

$${}^{3}B_{n} = (-1)^{n} L^{2} \left[B_{n}^{1} + 6 \left(2 \frac{L}{n^{2} \pi^{2}} \right) \right]$$

The above will help in the next problem in order to find recursive relation.

1.2 Problem 3.5.3

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of x^m, m odd.

Result from Last problem showed that

$$\begin{split} x &= \sum_{n=1}^{\infty} B_n^1 \sin\left(n\frac{\pi}{L}x\right) \\ {}^1B_n &= (-1)^n \left(-\frac{2L}{n\pi}\right) \end{split}$$

And

$$x^{3} = \sum_{n=1}^{\infty} (-1)^{n} L^{2} \left[{}^{1}B_{n} + (3 \times 2) \left(2 \frac{L}{n^{2} \pi^{2}} \right) \right] \sin \left(n \frac{\pi}{L} x \right)$$

This suggests that

$$\begin{split} x^{5} &= \sum_{n=1}^{\infty} \left(-1 \right)^{n} L^{2} \left[{}^{3}B_{n} + \left(5 \times 4 \times 3 \times 2 \right) \left(2 \frac{L}{n^{2} \pi^{2}} \right) \right] \sin \left(n \frac{\pi}{L} x \right) \\ {}^{3}B_{n} &= \left(-1 \right)^{n} L^{2} \left[{}^{1}B_{n} + 6 \left(2 \frac{L}{n^{2} \pi^{2}} \right) \right] \end{split}$$

And in general

$$x^{m} = \sum_{n=1}^{\infty} (-1)^{n} L^{2} \left[{}^{m-2}B_{n} + m! \left(2 \frac{L}{n^{2} \pi^{2}} \right) \right] \sin \left(n \frac{\pi}{L} x \right)$$

Where

$$^{m-2}B_n = (-1)^n L^2 \left[{}^{m-4}B_n + (m-2)! \left(2 \frac{L}{n^2 \pi^2} \right) \right]$$

The above is a recursive definition to find x^m Fourier series for m odd.

1.3 Problem 3.5.7

Equation 3.5.6 is

$$\frac{x^2}{2} = \frac{L}{2}x - \frac{4L^2}{\pi^3} \left(\sin\frac{\pi x}{L} + \frac{\sin\frac{3\pi x}{L}}{3^3} + \frac{\sin\frac{5\pi x}{L}}{5^3} + \frac{\sin\frac{7\pi x}{L}}{7^3} + \cdots \right)$$
(3.5.6)

Letting $x = \frac{L}{2}$ in (3.5.6) gives

$$\frac{L^2}{8} = \frac{L^2}{4} - \frac{4L^2}{\pi^3} \left(\sin \frac{\pi \frac{L}{2}}{L} + \frac{\sin \frac{3\pi \frac{L}{2}}{L}}{3^3} + \frac{\sin \frac{5\pi \frac{L}{2}}{L}}{5^3} + \frac{\sin \frac{7\pi \frac{L}{2}}{L}}{7^3} + \cdots \right)$$
$$= \frac{L^2}{4} - \frac{4L^2}{\pi^3} \left(\sin \frac{\pi}{2} + \frac{\sin 3\frac{\pi}{2}}{3^3} + \frac{\sin 5\frac{\pi}{2}}{5^3} + \frac{\sin 7\frac{\pi}{2}}{7^3} + \cdots \right)$$
$$= \frac{L^2}{4} - \frac{4L^2}{\pi^3} \left(1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \cdots \right)$$

Hence

$$\frac{L^2}{8} - \frac{L^2}{4} = -\frac{4L^2}{\pi^3} \left(1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \cdots \right)$$
$$-\frac{L^2}{8} = -\frac{4L^2}{\pi^3} \left(1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \cdots \right)$$
$$\frac{\pi^3}{4 \times 8} = \left(1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \cdots \right)$$
$$\frac{\pi^3}{32} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \cdots$$

Or

*3.6.1. Consider

$$f(x) = \begin{cases} 0 & x < x_0 \\ 1/\Delta & x_0 < x < x_0 + \Delta \\ 0 & x > x_0 + \Delta. \end{cases}$$
Assume that $x_0 > -L$ and $x_0 + \Delta < L$. Determine the complex Fourier coefficients c_n .

The function defined above is the Dirac delta function. (in the limit, as $\Delta \rightarrow 0$). Now

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{in\frac{\pi}{L}x} dx$$

$$= \frac{1}{2L} \int_{x_0}^{x_0 + \Delta} \frac{1}{\Delta} e^{in\frac{\pi}{L}x} dx$$

$$= \frac{1}{2L} \frac{1}{\Delta} \left[\frac{e^{in\frac{\pi}{L}x}}{in\frac{\pi}{L}} \right]_{x_0}^{x_0 + \Delta}$$

$$= \frac{1}{2L} \frac{L}{\Delta in\pi} \left[e^{in\frac{\pi}{L}x} \right]_{x_0}^{x_0 + \Delta}$$

$$= \frac{1}{i2n\Delta\pi} \left(e^{in\frac{\pi}{L}(x_0 + \Delta)} - e^{in\frac{\pi}{L}x_0} \right)$$

Since $\frac{e^{iz}-e^{-iz}}{2i} = \sin z$. The denominator above has 2i in it. Factoring out $e^{in\frac{\pi}{L}\left(x_0+\frac{\Delta}{2}\right)}$ from the above gives

$$c_n = \frac{1}{i2n\Delta\pi} e^{in\frac{\pi}{L}\left(x_0 + \frac{\Delta}{2}\right)} \left(e^{in\frac{\pi}{L}\frac{\Delta}{2}} - e^{-in\frac{\pi}{L}\frac{\Delta}{2}} \right)$$
$$= \frac{1}{n\Delta\pi} e^{in\frac{\pi}{L}\left(x_0 + \frac{\Delta}{2}\right)} \frac{\left(e^{in\frac{\pi}{L}\frac{\Delta}{2}} - e^{-in\frac{\pi}{L}\frac{\Delta}{2}} \right)}{i2}$$

Now the form is $\sin\left(z\right)$ is obtained, hence it can be written as

$$c_n = \frac{e^{in\frac{\pi}{L}\left(x_0 + \frac{\Delta}{2}\right)}}{n\Delta\pi}\sin\left(n\frac{\pi}{L}\frac{\Delta}{2}\right)$$

Or

$$c_n = \frac{\cos\left(n\frac{\pi}{L}\left(x_0 + \frac{\Delta}{2}\right)\right) + i\sin\left(n\frac{\pi}{L}\left(x_0 + \frac{\Delta}{2}\right)\right)}{\Delta n\pi} \sin\left(n\frac{\pi}{L}\frac{\Delta}{2}\right)$$

1.5 Problem 4.2.1

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position $u_E(x)$ if Q(x,t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that $v(x,t) = u(x,t) - u_E(x)$ satisfies (4.2.9).

1.5.1 Part (a)

Equation 4.2.7 is

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} + Q(x,t)\rho(x)$$
(4.2.7)

Replacing Q(x, t) by -g

$$\rho(x) \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} - g\rho(x)$$

At equilibrium, the string is sagged but is not moving.

Therefore $\frac{\partial^2 u_E}{\partial t^2} = 0$. The above becomes

$$0 = T_0 \frac{\partial^2 u_E}{\partial x^2} - g\rho(x)$$

This is now partial differential equation in only x. It becomes an ODE

$$\frac{d^2 u_E}{dx^2} = \frac{g\rho\left(x\right)}{T_0}$$

With boundary conditions $u_E(0) = 0$, $u_E(L) = 0$. By double integration the solution is found. Integrating once gives

$$\frac{du_E}{dx} = \int_0^x \frac{g\rho\left(s\right)}{T_0} ds + c_1$$

Integrating again

$$u_{E} = \int_{0}^{x} \left(\int_{0}^{s} \frac{g\rho(z)}{T_{0}} dz + c_{1} \right) ds + c_{2}$$

=
$$\int_{0}^{x} \left(\int_{0}^{s} \frac{g\rho(z)}{T_{0}} dz \right) ds + \int_{0}^{x} c_{1} ds + c_{2}$$

=
$$\frac{g}{T_{0}} \int_{0}^{x} \int_{0}^{s} \rho(z) dz ds + c_{1} x + c_{2}$$
(1)

Equation (1) is the solution. Applying B.C. to find c_1, c_2 . At x = 0 the above gives

 $0 = c_2$

The solution (1) becomes

$$u_E = \frac{g}{T_0} \int_0^x \int_0^s \rho(z) \, dz \, ds + c_1 x \tag{2}$$

And at x = L the above becomes

$$0 = \frac{g}{T_0} \int_0^L \int_0^s \rho(z) dz ds + c_1 I$$
$$c_1 = \frac{-g}{LT_0} \int_0^L \int_0^s \rho(z) dz ds$$

Substituting this into (2) gives the final solution

$$u_E = \frac{g}{T_0} \int_0^x \left(\int_0^s \rho(z) \, dz \right) ds + \left(\frac{-g}{LT_0} \int_0^L \left(\int_0^s \rho(z) \, dz \right) ds \right) x \tag{3}$$

If the density was constant, (3) reduces to

$$u_E = \frac{g\rho}{T_0} \int_0^x sds + \left(\frac{-g\rho}{LT_0} \int_0^L sds\right) x$$
$$= \frac{g\rho}{T_0} \frac{x^2}{2} - \frac{g\rho}{LT_0} \frac{L^2}{2} x$$
$$= \frac{g\rho}{T_0} \left(\frac{x^2}{2} - \frac{L}{2}x\right)$$

Here is a plot of the above function for $g = 9.8, L = 1, T_0 = 1, \rho = 0.1$ for verification.

1.5.2 Part (b)

Equation 4.2.9 is

$$\frac{\partial^2 u}{\partial t^2} = \frac{T_0}{\rho(x)} \frac{\partial^2 u}{\partial x^2}$$
(4.2.9)

Since

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} + Q(x,t)\rho(x)$$
(1)

And

$$\rho(x)\frac{\partial^2 u_E}{\partial t^2} = T_0 \frac{\partial^2 u_E}{\partial x^2} + Q(x,t)\rho(x)$$
(2)

Then by subtracting (2) from (1)

$$\rho(x)\frac{\partial^2 u}{\partial t^2} - \rho(x)\frac{\partial^2 u_E}{\partial t^2} = T_0\frac{\partial^2 u}{\partial x^2} + Q(x,t)\rho(x) - T_0\frac{\partial^2 u_E}{\partial x^2} - Q(x,t)\rho(x)$$
$$\rho(x)\left(\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u_E}{\partial t^2}\right) = T_0\left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u_E}{\partial x^2}\right)$$

Since $v(x,t) = u(x,t) - u_E(x,t)$ then $\frac{\partial^2 v}{\partial t^2} = \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u_E}{\partial t^2}$ and $\frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u_E}{\partial x^2}$, therefore the above equation becomes

$$\rho(x) \frac{\partial^2 v}{\partial t^2} = T_0 \frac{\partial^2 v}{\partial x^2}$$
$$\frac{\partial^2 v}{\partial t^2} = \frac{T_0}{\rho(x)} \frac{\partial^2 v}{\partial x^2}$$
$$= c^2 \frac{\partial^2 v}{\partial x^2}$$

Which is 4.2.9. QED.

1.6 Problem 4.2.5

4.2.5. Derive the partial differential equation for a vibrating string in the simplest possible manner. You may assume the string has constant mass density ρ_0 , you may assume the tension T_0 is constant, and you may assume small displacements (with small slopes).

Let us consider a small segment of the string of length Δx from x to $x + \Delta x$. The mass of this segment is $\rho \Delta x$, where ρ is density of the string per unit length, assumed here to be constant. Let the angle that the string makes with the horizontal at x and at $x + \Delta x$ be $\theta(x, t)$ and $\theta(x + \Delta x, t)$ respectively. Since we are only interested in the vertical displacement u(x, t) of the string, the vertical force on this segment consists of two parts: Its weight (acting downwards) and the net tension resolved in the vertical direction. Let the total vertical force be F_y . Therefore

$$F_{y} = \overbrace{-\rho\Delta xg}^{\text{weight}} + \overbrace{(T(x + \Delta x, t)\sin\theta(x + \Delta x, t) - T(x, t)\sin\theta(x, t))}^{\text{net tension on segment in vertical direction}}$$

Applying Newton's second law in the vertical direction $F_y = ma_y$ where $a_y = \frac{\partial^2 u(x,t)}{\partial t^2}$ and $m = \rho \Delta x$, gives the equation of motion of the string segment in the vertical direction

$$p\Delta x \frac{\partial^2 u\left(x,t\right)}{\partial t^2} = -\rho\Delta xg + \left(T\left(x + \Delta x,t\right)\sin\theta\left(x + \Delta x,t\right) - T\left(x,t\right)\sin\theta\left(x,t\right)\right)$$

Dividing both sides by Δx

f

$$\rho \frac{\partial^2 u\left(x,t\right)}{\partial t^2} = -\rho g + \frac{\left(T\left(x + \Delta x\right)\sin\theta\left(x + \Delta x,t\right) - T\left(x\right)\sin\theta\left(x,t\right)\right)}{\Delta x}$$

Taking the limit $\Delta x \rightarrow 0$

$$\rho \frac{\partial^2 u\left(x,t\right)}{\partial t^2} = -\rho g + \frac{\partial}{\partial x} \left(T\left(x,t\right)\sin\theta\left(x,t\right)\right)$$

Assuming small angles then $\frac{\partial u}{\partial x} = \tan \theta = \frac{\sin \theta}{\cos \theta} \approx \sin \theta$, then we can replace $\sin \theta$ in the above with $\frac{\partial u}{\partial x}$ giving

$$\rho \frac{\partial^2 u\left(x,t\right)}{\partial t^2} = -\rho g + \frac{\partial}{\partial x} \left(T\left(x,t\right) \frac{\partial u\left(x,t\right)}{\partial x} \right)$$

Assuming tension T(x, t) is constant, say T_0 then the above becomes

$$\rho \frac{\partial^2 u\left(x,t\right)}{\partial t^2} = -\rho g + T_0 \frac{\partial}{\partial x} \left(\frac{\partial u\left(x,t\right)}{\partial x}\right)$$
$$\frac{\partial^2 u\left(x,t\right)}{\partial t^2} = \frac{T_0}{\rho} \frac{\partial^2 u\left(x,t\right)}{\partial x^2} - \rho g$$

Setting $\frac{T_0}{\rho} = c^2$ then the above becomes

$$\frac{\partial^2 u\left(x,t\right)}{\partial t^2} = c^2 \frac{\partial^2 u\left(x,t\right)}{\partial x^2} - \rho_8$$

Note: In the above g (gravity acceleration) was used instead of Q(x, t) as in the book to represent the body forces. In other words, the above can also be written as

$$\frac{\partial^{2} u\left(x,t\right)}{\partial t^{2}} = c^{2} \frac{\partial^{2} u\left(x,t\right)}{\partial x^{2}} + \rho Q\left(x,t\right)$$

This is the required PDE, assuming constant density, constant tension, small angles and small vertical displacement.

1.7 Problem 4.4.1

- 4.4.1. Consider vibrating strings of uniform density ρ_0 and tension T_0 .
 - *(a) What are the natural frequencies of a vibrating string of length L fixed at both ends?
 - *(b) What are the natural frequencies of a vibrating string of length H, which is fixed at x = 0 and "free" at the other end [i.e., $\partial u/\partial x(H, t) = 0$]? Sketch a few modes of vibration as in Fig. 4.4.1.
 - (c) Show that the modes of vibration for the *odd* harmonics (i.e., n = 1, 3, 5, ...) of part (a) are identical to modes of part (b) if H = L/2. Verify that their natural frequencies are the same. Briefly explain using symmetry arguments.

1.7.1 Part (a)

The natural frequencies of vibrating string of length L with fixed ends, is given by equation 4.4.11 in the book, which is the solution to the string wave equation

$$u(x,t) = \sum_{n=1}^{\infty} \sin\left(n\frac{\pi}{L}x\right) \left(A_n \cos\left(n\frac{\pi c}{L}t\right) + B_n \sin\left(n\frac{\pi c}{L}t\right)\right)$$

The frequency of the time solution part of the PDE is given by the arguments of eigenfunctions $A_n \cos\left(n\frac{\pi c}{L}t\right) + B_n \sin\left(n\frac{\pi c}{L}t\right)$. Therefore $n\frac{\pi c}{L}$ represents the circular frequency ω_n . Comparing general form of $\cos \omega t$ with $\cos\left(n\frac{\pi c}{L}t\right)$ we see that each mode *n* has circular frequency given by

$$\omega_n \equiv n \frac{\pi c}{L}$$

For $n = 1, 2, 3, \dots$. In cycles per seconds (Hertz), and since $\omega = 2\pi f$, then $2\pi f = n\frac{\pi c}{L}$. Solving for f gives

$$f_n = n \frac{\pi c}{2\pi L}$$
$$= n \frac{c}{2L}$$

Where $c = \sqrt{\frac{T_0}{\rho_0}}$ in all of the above.

1.7.2 Part (b)

Equation 4.4.11 above was for a string with fixed ends. Now the B.C. are different, so we need to solve the spatial equation again to find the new eigenvalues. Starting with u = X(x)T(t) and substituting this in the PDE $\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$ with 0 < x < H gives

$$T^{\prime\prime}X = c^{2}TX^{\prime\prime}$$
$$\frac{1}{c^{2}}\frac{T^{\prime\prime}}{T} = \frac{X^{\prime\prime}}{X} = -\lambda$$

Where both sides are set equal to some constant $-\lambda$. We now obtain the two ODE's to solve. The spatial ODE is

$$X'' + \lambda X = 0$$
$$X(0) = 0$$
$$X'(H) = 0$$

And the time ODE is

$$T^{\prime\prime}+\lambda c^2T=0$$

The eigenvalues will always be positive for the wave equation. Taking $\lambda > 0$ the solution to the space ODE is

$$X(x) = A\cos\left(\sqrt{\lambda}x\right) + B\sin\left(\sqrt{\lambda}x\right)$$

Applying first B.C. gives

$$0 = A$$

Hence $X(x) = B \sin(\sqrt{\lambda}x)$ and $X'(x) = -B\sqrt{\lambda}\cos(\sqrt{\lambda}x)$. Applying second B.C. gives

$$0 = -B\sqrt{\lambda}\cos\left(\sqrt{\lambda}H\right)$$

Therefore for non-trivial solution, we want $\sqrt{\lambda}H = \frac{n}{2}\pi$ for $n = 1, 3, 5, \cdots$ or written another way

$$\sqrt{\lambda}H = \left(n - \frac{1}{2}\right)\pi$$
 $n = 1, 2, 3, \cdots$

Therefore

$$\lambda_n = \left(\left(n - \frac{1}{2} \right) \frac{\pi}{H} \right)^2 \qquad n = 1, 2, 3, \cdots$$

These are the eigenvalues. Now that we know what λ_n is, we go back to the solution found before, which is

$$u\left(x,t\right) = \sum_{n=1}^{\infty} \sin\left(\sqrt{\lambda_n}x\right) \left(A_n \cos\left(\sqrt{\lambda_n}ct\right) + B_n \sin\left(\sqrt{\lambda_n}ct\right)\right)$$

10

And see now that the circular frequency ω_n is given by

$$\omega_n = \sqrt{\lambda_n} c$$
$$= \frac{\left(n - \frac{1}{2}\right)\pi}{H} c \qquad n = 1, 2, 3, \cdots$$

In cycles per second, since $\omega = 2\pi f$ then

$$2\pi f_n = \frac{\left(n - \frac{1}{2}\right)\pi}{H}c$$
$$f_n = \frac{\left(n - \frac{1}{2}\right)}{2H}c \qquad n = 1, 2, 3, \cdots$$

The following are plots for n = 1, 2, 3, 4, 5 for $t = 0 \cdots 3$ seconds by small time increments.

```
(*solution for HW 5, problem 4.4.1*)
f[x_, n_, t_] := Module[{H0 = 1, c = 1, lam},
lam = ((n - 1/2) Pi/H0);
Sin[lam x] (Sin[lam c t])
];
Table[Plot[f[x, 1, t], {x, 0, 1}, AxesOrigin -> {0, 0}], {t, 0,3, .25}];
p = Labeled[Show[
```


1.7.3 Part (c)

For part (a), the harmonics had circular frequency $\omega_n = \frac{n\pi}{L}c$. Hence for odd *n*, these will generate $\frac{\pi}{L}c$, $3\frac{\pi}{L}c$, $5\frac{\pi}{L}c$, $7\frac{\pi}{L}c$, ... (1)

For part (b), $\omega_n = \frac{\left(n-\frac{1}{2}\right)\pi}{H}c$. When $H = \frac{L}{2}$, this becomes $\omega_n = \frac{2\left(n-\frac{1}{2}\right)\pi}{L}c$. Looking at the first few modes gives

$$\frac{2\left(1-\frac{1}{2}\right)\pi}{L}c, \frac{2\left(2-\frac{1}{2}\right)\pi}{L}c, \frac{2\left(3-\frac{1}{2}\right)\pi}{L}c, \frac{2\left(4-\frac{1}{2}\right)\pi}{L}c, \cdots$$

$$\frac{\pi}{L}c, \frac{3\pi}{L}c, \frac{5\pi}{L}c, \frac{7\pi}{L}c, \cdots$$
(2)

Comparing (1) and (2) we see they are the same. Which is what we asked to show.

1.8 Problem 4.4.3

4.4.3. Consider a slightly damped vibrating string that satisfies

$$\rho_0 \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial u}{\partial t}$$

(a) Briefly explain why $\beta > 0$.

*(b) Determine the solution (by separation of variables) that satisfies the boundary conditions

u(0,t)=0 and u(L,t)=0

and the initial conditions

$$u(x,0) = f(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = g(x).$

You can assume that this frictional coefficient β is relatively small $(\beta^2 < 4\pi^2 \rho_0 T_0/L^2)$.

$$\rho_0 \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial u}{\partial t}$$

The term $-\beta \frac{\partial u}{\partial t}$ is the force that acts on the spring segment due to damping. This is the Viscous damping force which is proportional to speed, where β represents viscous damping coefficient. This damping force always opposes the direction of the motion. Hence if $\frac{\partial u}{\partial t} > 0$ then $-\beta \frac{\partial u}{\partial t}$ should come out to be negative. This occurs if $\beta > 0$. On the other hand, if $\frac{\partial u}{\partial t} < 0$ then $-\beta \frac{\partial u}{\partial t}$ should now be positive. Which means again that β must be positive quantity. Hence only case were the damping force always opposes the motion of the string is when $\beta > 0$.

1.8.2 Part (b)

Starting with u = X(x)T(t) and substituting this in the above PDE with 0 < x < L gives

$$\rho_0 T'' X = T_0 T X'' - \beta T' X$$

$$\frac{\rho_0}{T_0} \frac{T''}{T} + \frac{\beta}{T_0} \frac{T'}{T} = \frac{X''}{X} = -\lambda$$

Hence we obtain two ODE's. The space ODE is

$$X'' + \lambda X = 0$$
$$X (0) = 0$$
$$X (L) = 0$$

And the time ODE is

$$T'' + c^2 \beta T' + c^2 \lambda T = 0$$
$$T(0) = f(x)$$
$$T'(0) = g(x)$$

The eigenvalues will always be positive for the wave equation. Hence taking $\lambda > 0$ the solution to the space ODE is

$$X(x) = A\cos\left(\sqrt{\lambda}x\right) + B\sin\left(\sqrt{\lambda}x\right)$$

0 = A

Applying first B.C. gives

Hence
$$X = B \sin(\sqrt{\lambda}x)$$
. Applying the second B.C. gives

$$0=B\sin\left(\sqrt{\lambda}L\right)$$

Therefore

$$\sqrt{\lambda}L = n\pi$$
 $n = 1, 2, 3, \cdots$
 $\lambda = \left(\frac{n\pi}{L}\right)^2$ $n = 1, 2, 3, \cdots$

Hence the space solution is

$$X = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right) \tag{1}$$

Now we solve the time ODE. This is second order ODE, linear, with constant coefficients.

$$\frac{\rho_0}{T_0} \frac{T''}{T} + \frac{\beta}{T_0} \frac{T'}{T} = -\lambda$$
$$\frac{\rho_0}{T_0} T'' + \frac{\beta}{T_0} T' + \lambda T = 0$$
$$T'' + \frac{\beta}{\rho_0} T' + \frac{T_0}{\rho_0} \lambda T = 0$$

Where in the above $\lambda \equiv \lambda_n$ for $n = 1, 2, 3, \dots$. The characteristic equation is $r^2 + c^2\beta r + c^2\lambda = 0$. The roots are found from the quadratic formula

$$r_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$
$$= \frac{-\frac{\beta}{\rho_0} \pm \sqrt{\left(\frac{\beta}{\rho_0}\right)^2 - 4\frac{T_0}{\rho_0}\lambda}}{2}$$
$$= -\frac{\beta}{2\rho_0} \pm \frac{1}{2}\sqrt{\left(\frac{\beta}{\rho_0}\right)^2 - 4\frac{T_0}{\rho_0}\lambda}$$

Replacing $\lambda = \left(\frac{n\pi}{L}\right)^2$, gives

$$r_{1,2} = -\frac{\beta}{2\rho_0} \pm \frac{1}{2} \sqrt{\left(\frac{\beta}{\rho_0}\right)^2 - 4\frac{T_0}{\rho_0} \left(\frac{n\pi}{L}\right)^2}$$
$$= -\frac{\beta}{2\rho_0} \pm \frac{1}{2} \sqrt{\frac{\beta^2}{\rho_0^2} - 4\frac{T_0}{\rho_0} \frac{n^2\pi^2}{L^2}}$$
$$= -\frac{\beta}{2\rho_0} \pm \frac{1}{2\rho_0} \sqrt{\beta^2 - n^2 \left(4\rho_0 T_0 \frac{\pi^2}{L^2}\right)^2}$$

We are told that $\beta^2 < 4\rho_0 T_0 \frac{\pi^2}{L^2}$, what this means is that $\beta^2 - n^2 \left(4\rho_0 T_0 \frac{\pi^2}{L^2}\right) < 0$, since $n^2 > 0$. This means we will get complex roots. Let

$$\Delta = n^2 \left(4\rho_0 T_0 \frac{\pi^2}{L^2} \right) - \beta^2$$

Hence the roots can now be written as

$$r_{1,2} = -\frac{\beta}{2\rho_0} \pm \frac{i\sqrt{\Delta}}{2\rho_0}$$

Therefore the time solution is

$$T_n(t) = e^{-\frac{\beta}{2\rho_0}t} \left(A_n \cos\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) + B_n \sin\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) \right)$$

This is sinusoidal damped oscillation. Therefore

$$T(t) = \sum_{n=1}^{\infty} e^{-\frac{\beta}{2\rho_0}t} \left(A_n \cos\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) + B_n \sin\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) \right)$$
(2)

Combining (1) and (2), gives the total solution

$$u(x,t) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{L}x\right) e^{-\frac{\beta}{2\rho_0}t} \left(A_n \cos\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) + B_n \sin\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right)\right)$$
(3)

Where b_n constants for space ODE merged with the constants A_n , B_n for the time solution. Now we are ready to find A_n , B_n from initial conditions. At t = 0

$$f(x) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{L}x\right) A_n$$

Multiplying both sides by $\sin\left(\frac{m\pi}{L}x\right)$ and integrating gives

$$\int_{0}^{L} f(x) \sin\left(\frac{m\pi}{L}x\right) dx = \int_{0}^{L} \sum_{n=1}^{\infty} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) A_{n} dx$$

Changing the order of integration and summation

$$\int_{0}^{L} f(x) \sin\left(\frac{m\pi}{L}x\right) dx = \sum_{n=1}^{\infty} A_n \int_{0}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx$$
$$= A_m \frac{L}{2}$$

Hence

$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

To find B_n , we first take time derivative of the solution above in (3) which gives

$$\frac{\partial}{\partial t}u\left(x,t\right) = \sum_{n=1}^{\infty}\sin\left(\frac{n\pi}{L}x\right)e^{-\frac{\beta}{2\rho_{0}}t}\left(-\frac{\sqrt{\Delta}}{2\rho_{0}}A_{n}\sin\left(\frac{\sqrt{\Delta}}{2\rho_{0}}t\right) + B_{n}\frac{\sqrt{\Delta}}{2\rho_{0}}\cos\left(\frac{\sqrt{\Delta}}{2\rho_{0}}t\right)\right)$$
$$-\frac{\beta}{2\rho_{0}}\sin\left(\frac{n\pi}{L}x\right)e^{-\frac{\beta}{2\rho_{0}}t}\left(A_{n}\cos\left(\frac{\sqrt{\Delta}}{2\rho_{0}}t\right) + B_{n}\sin\left(\frac{\sqrt{\Delta}}{2\rho_{0}}t\right)\right)$$

At t = 0, using the second initial condition gives

$$g(x) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{L}x\right) B_n \frac{\sqrt{\Delta}}{2\rho_0} - \frac{\beta}{2\rho_0} A_n \sin\left(\frac{n\pi}{L}x\right)$$

Multiplying both sides by $\sin\left(\frac{m\pi}{L}x\right)$ and integrating gives

$$\int_{0}^{L} g(x) \sin\left(\frac{m\pi}{L}x\right) dx = \int_{0}^{L} \sum_{n=1}^{\infty} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) B_{n} \frac{\sqrt{\Delta}}{2\rho_{0}} dx - \sum_{n=1}^{\infty} \frac{\beta}{2\rho_{0}} A_{n} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right)$$

Changing the order of integration and summation

$$\int_{0}^{L} g(x) \sin\left(\frac{m\pi}{L}x\right) dx = \sum_{n=1}^{\infty} B_n \frac{\sqrt{\Delta}}{2\rho_0} \int_{0}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx - \sum_{n=1}^{\infty} \frac{\beta}{2\rho_0} A_n \int_{0}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx = B_m \frac{\sqrt{\Delta}}{2\rho_0} \frac{L}{2} - \frac{\beta}{2\rho_0} A_n \frac{L}{2}$$
$$= \frac{L}{2} \left(B_m \frac{\sqrt{\Delta}}{2\rho_0} - \frac{\beta}{2\rho_0} A_n \right)$$

Hence

$$B_m \frac{\sqrt{\Delta}}{2\rho_0} - \frac{\beta}{2\rho_0} A_n = \frac{2}{L} \int_0^L g(x) \sin\left(\frac{m\pi}{L}x\right) dx$$
$$B_m = \left(\frac{2}{L} \int_0^L g(x) \sin\left(\frac{m\pi}{L}x\right) dx + \frac{\beta}{2\rho_0} A_n\right) \frac{2\rho_0}{\sqrt{\Delta}}$$

This completes the solution. Summary of solution

$$u(x,t) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{L}x\right) e^{-\frac{\beta}{2\rho_0}t} \left(A_n \cos\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right) + B_n \sin\left(\frac{\sqrt{\Delta}}{2\rho_0}t\right)\right)$$
$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$
$$B_n = \left(\frac{2}{L} \int_0^L g(x) \sin\left(\frac{m\pi}{L}x\right) dx + \frac{\beta}{2\rho_0} A_n\right) \frac{2\rho_0}{\sqrt{\Delta}}$$
$$\Delta = n^2 \left(4\rho_0 T_0 \frac{\pi^2}{L^2}\right) - \beta^2$$

1.9 Problem 4.4.9

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

$$\frac{dE}{dt} = c^2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} \bigg|_0^L, \qquad (4.4.15)$$

where the total energy E is the sum of the kinetic energy, defined by $\int_0^L \frac{1}{2} \left(\frac{\partial u}{\partial t}\right)^2 dx$, and the potential energy, defined by $\int_0^L \frac{c^2}{2} \left(\frac{\partial u}{\partial x}\right)^2 dx$.

$$E = \frac{1}{2} \int_0^L \left(\frac{\partial u}{\partial t}\right)^2 dx + \frac{c^2}{2} \int_0^L \left(\frac{\partial u}{\partial x}\right)^2 dx$$

Hence

$$\frac{dE}{dt} = \frac{1}{2}\frac{d}{dt}\int_0^L \left(\frac{\partial u}{\partial t}\right)^2 dx + \frac{c^2}{2}\frac{d}{dt}\int_0^L \left(\frac{\partial u}{\partial x}\right)^2 dx$$

Moving $\frac{d}{dt}$ inside the integral, it becomes partial derivative

$$\frac{dE}{dt} = \frac{1}{2} \int_0^L \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t}\right)^2 dx + \frac{c^2}{2} \int_0^L \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x}\right)^2 dx \tag{1}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \right)^2 = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \frac{\partial u}{\partial t} \right) = \frac{\partial^2 u}{\partial t^2} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} = 2 \left(\frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial t^2} \right)$$
(2)

And

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right)^2 = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x \partial t} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial x \partial t} = 2 \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial x \partial t}$$
(3)

Substituting (2,3) into (1) gives

$$\frac{dE}{dt} = \frac{1}{2} \int_0^L 2\left(\frac{\partial u}{\partial t}\frac{\partial^2 u}{\partial t^2}\right) dx + \frac{c^2}{2} \int_0^L 2\frac{\partial u}{\partial x}\frac{\partial^2 u}{\partial x\partial t} dx$$
$$= \int_0^L \left(\frac{\partial u}{\partial t}\frac{\partial^2 u}{\partial t^2}\right) dx + c^2 \int_0^L \frac{\partial u}{\partial x}\frac{\partial^2 u}{\partial x\partial t} dx$$

But $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ then the above becomes

$$\frac{dE}{dt} = \int_{0}^{L} \left(\frac{\partial u}{\partial t} \left[c^{2} \frac{\partial^{2} u}{\partial x^{2}} \right] \right) dx + c^{2} \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x \partial t} dx$$

$$= c^{2} \int_{0}^{L} \left(\frac{\partial u}{\partial t} \frac{\partial^{2} u}{\partial x^{2}} \right) dx + c^{2} \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x \partial t} dx$$

$$= c^{2} \int_{0}^{L} \left(\frac{\partial u}{\partial t} \frac{\partial^{2} u}{\partial x^{2}} \right) + \left(\frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x \partial t} \right) dx$$
(4)

But since the integrand in (4) can also be written as

$$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} \frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x \partial t} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x^2}$$

Then (4) becomes

$$\frac{dE}{dt} = c^2 \int_0^L \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} \frac{\partial u}{\partial x} \right) dx$$
$$= c^2 \left(\frac{\partial u}{\partial t} \frac{\partial u}{\partial x} \right)_0^L$$

Which is what we are asked to show. QED.