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1 HW 5

1.1 Problem 3.5.2

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

1.1.1 Part a

Equation 3.3.11, page 100 is the Fourier sin series of 𝑥

𝑥 =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� − 𝐿 < 𝑥 < 𝐿 (3.3.11)

Where

𝐵𝑛 =
2𝐿
𝑛𝜋

(−1)𝑛+1 (3.3.12)

The goal is to find the Fourier cos series of 𝑥2. Since ∫
𝑥

0
𝑡𝑑𝑡 = 𝑥2

2 , then 𝑥2 = 2∫
𝑥

0
𝑡𝑑𝑡. Hence from

3.3.11

𝑥2 = 2�
𝑥

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑡�� 𝑑𝑡

Interchanging the order of summation and integration the above becomes

𝑥2 = 2
∞
�
𝑛=1

�𝐵𝑛�
𝑥

0
sin �𝑛𝜋

𝐿
𝑡� 𝑑𝑡�

= 2
∞
�
𝑛=1

𝐵𝑛

⎛
⎜⎜⎜⎜⎜⎝
− cos �𝑛𝜋

𝐿 𝑡�

𝑛𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝑥

0

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 �cos �𝑛𝜋
𝐿
𝑡��

𝑥

0

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 �cos �𝑛𝜋
𝐿
𝑥� − 1�

=
∞
�
𝑛=1

�
−2𝐿
𝑛𝜋

𝐵𝑛 cos �𝑛𝜋
𝐿
𝑥� +

2𝐿
𝑛𝜋
𝐵𝑛�

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 cos �𝑛𝜋
𝐿
𝑥� +

∞
�
𝑛=1

𝐵𝑛
2𝐿
𝑛𝜋

(1)

But a Fourier cos series has the form

𝑥2 = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� (2)

Comparing (1) and (2) gives

𝐴𝑛 =
−2𝐿
𝑛𝜋

𝐵𝑛

Using 3.3.12 for 𝐵𝑛 the above becomes

𝐴𝑛 =
−2𝐿
𝑛𝜋

2𝐿
𝑛𝜋

(−1)𝑛+1

= (−1)𝑛 �
2𝐿
𝑛𝜋�

2

And

𝐴0 =
∞
�
𝑛=1

𝐵𝑛
2𝐿
𝑛𝜋

=
∞
�
𝑛=1

�
2𝐿
𝑛𝜋

(−1)𝑛+1�
2𝐿
𝑛𝜋

=
4𝐿2

𝜋2

∞
�
𝑛=1

(−1)𝑛+1
1
𝑛2
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But ∑∞
𝑛=1 (−1)

𝑛+1 1
𝑛2 =

𝜋2

12 , hence the above becomes

𝐴0 =
4𝐿2

𝜋2
𝜋2

12

=
𝐿2

3
Summary The Fourier cos series of 𝑥2 is

𝑥2 = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�

=
𝐿2

3
+

∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

cos �𝑛𝜋
𝐿
𝑥�

1.1.2 Part (b)

Since

𝑥3 = 3�
𝑥

0
𝑡2𝑑𝑡

Then, using result from part (a) for Fourier cos series of 𝑡2 results in

𝑥3 = 3�
𝑥

0
�𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑡�� 𝑑𝑡

= 3�
𝑥

0

𝐿2

3
𝑑𝑡 + 3�

𝑥

0

∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

cos �𝑛𝜋
𝐿
𝑡� 𝑑𝑡

= 𝐿2 (𝑡)𝑥0 + 3
∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

�
𝑥

0
cos �𝑛𝜋

𝐿
𝑡� 𝑑𝑡

= 𝐿2𝑥 + 3
∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2
⎡
⎢⎢⎢⎢⎢⎣
sin �𝑛𝜋

𝐿 𝑡�

𝑛𝜋
𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝑥

0

= 𝐿2𝑥 + 3
∞
�
𝑛=1

𝐿
𝑛𝜋

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

�sin �𝑛
𝜋
𝐿
𝑡��

𝑥

0

= 𝐿2𝑥 + (3 ⋅ 4)
∞
�
𝑛=1

(−1)𝑛 �
𝐿
𝑛𝜋�

3

sin �𝑛𝜋
𝐿
𝑥�

Using 3.3.11 which is 𝑥 = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋

𝐿 𝑥�, with 𝐵𝑛 =
2𝐿
𝑛𝜋
(−1)𝑛+1 the above becomes

𝑥3 = 𝐿2
∞
�
𝑛=1

2𝐿
𝑛𝜋

(−1)𝑛+1 sin �𝑛𝜋
𝐿
𝑥� + (3 ⋅ 4)

∞
�
𝑛=1

(−1)𝑛 �
𝐿
𝑛𝜋�

3

sin �𝑛𝜋
𝐿
𝑥�

Combining all above terms

𝑥3 =
∞
�
𝑛=1

⎡
⎢⎢⎢⎢⎣𝐿

2 2𝐿
𝑛𝜋

(−1)𝑛+1 + (3 ⋅ 4) (−1)𝑛 �
𝐿
𝑛𝜋�

3⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

Will try to simplify more to obtain 𝐵𝑛

𝑥3 =
∞
�
𝑛=1

(−1)𝑛
𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−2 + (3 ⋅ 4) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

=
∞
�
𝑛=1

(−1)𝑛
2𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−1 + (3 × 2) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

Comparing the above to the standard Fourier sin series 𝑥3 = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋

𝐿 𝑥� then the above is the
required sin series for 𝑥3 with

𝐵𝑛 = (−1)
𝑛 2𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−1 + (3 × 2) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

Expressing the above using 𝐵𝑛 from 𝑥1 to help find recursive relation for next problem.

Will now use the notation 𝑖𝐵𝑛 to mean the 𝐵𝑛 for 𝑥𝑖. Then since 1𝐵𝑛 =
2𝐿
𝑛𝜋
(−1)𝑛+1 = (−1)𝑛 �− 2𝐿

𝑛𝜋
� for 𝑥,

then, using 3𝐵𝑛 as the 𝐵𝑛 for 𝑥3, the series for 𝑥3 can be written

𝑥3 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �−
2𝐿
𝑛𝜋

+ 6 �2
𝐿

𝑛2𝜋2 �� sin �𝑛𝜋
𝐿
𝑥�

=
∞
�
𝑛=1

(−1)𝑛 𝐿2 �1𝐵𝑛 + 6 �2
𝐿

𝑛2𝜋2 �� sin �𝑛𝜋
𝐿
𝑥�
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Where now

3𝐵𝑛 = (−1)
𝑛 𝐿2 �𝐵1𝑛 + 6 �2

𝐿
𝑛2𝜋2 ��

The above will help in the next problem in order to find recursive relation.

1.2 Problem 3.5.3

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

Result from Last problem showed that

𝑥 =
∞
�
𝑛=1

𝐵1𝑛 sin �𝑛𝜋
𝐿
𝑥�

1𝐵𝑛 = (−1)
𝑛 �−

2𝐿
𝑛𝜋�

And

𝑥3 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �1𝐵𝑛 + (3 × 2) �2
𝐿

𝑛2𝜋2 �� sin �𝑛𝜋
𝐿
𝑥�

This suggests that

𝑥5 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �3𝐵𝑛 + (5 × 4 × 3 × 2) �2
𝐿

𝑛2𝜋2 �� sin �𝑛𝜋
𝐿
𝑥�

3𝐵𝑛 = (−1)
𝑛 𝐿2 �1𝐵𝑛 + 6 �2

𝐿
𝑛2𝜋2 ��

And in general

𝑥𝑚 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �𝑚−2𝐵𝑛 + 𝑚! �2
𝐿

𝑛2𝜋2 �� sin �𝑛𝜋
𝐿
𝑥�

Where

𝑚−2𝐵𝑛 = (−1)
𝑛 𝐿2 �𝑚−4𝐵𝑛 + (𝑚 − 2)! �2

𝐿
𝑛2𝜋2 ��

The above is a recursive definition to find 𝑥𝑚 Fourier series for 𝑚 odd.

1.3 Problem 3.5.7

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

Equation 3.5.6 is

𝑥2

2
=
𝐿
2
𝑥 −

4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎜⎝sin

𝜋𝑥
𝐿
+

sin 3𝜋𝑥
𝐿

33
+

sin 5𝜋𝑥
𝐿

53
+

sin 7𝜋𝑥
𝐿

73
+⋯

⎞
⎟⎟⎟⎟⎟⎠ (3.5.6)

Letting 𝑥 = 𝐿
2 in (3.5.6) gives

𝐿2

8
=
𝐿2

4
−
4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
sin

𝜋𝐿
2
𝐿
+

sin
3𝜋 𝐿

2
𝐿

33
+

sin
5𝜋 𝐿

2
𝐿

53
+

sin
7𝜋 𝐿

2
𝐿

73
+⋯

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝐿2

4
−
4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎝sin

𝜋
2
+

sin 3𝜋2
33

+
sin 5𝜋2
53

+
sin 7𝜋2
73

+⋯
⎞
⎟⎟⎟⎟⎠

=
𝐿2

4
−
4𝐿2

𝜋3 �1 −
1
33
+
1
53
−
1
73
⋯�
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Hence
𝐿2

8
−
𝐿2

4
= −

4𝐿2

𝜋3 �1 −
1
33
+
1
53
−
1
73
⋯�

−
𝐿2

8
= −

4𝐿2

𝜋3 �1 −
1
33
+
1
53
−
1
73
⋯�

𝜋3

4 × 8
= �1 −

1
33
+
1
53
−
1
73
⋯�

Or
𝜋3

32
= 1 −

1
33
+
1
53
−
1
73
⋯

1.4 Problem 3.6.1134 Chapter 3. Fourier Series

EXERCISES 3.6

*3.6.1. Consider
0 x < xo

f (x) = 1/0 xo <X < xo +
0 x>xo+0.

Assume that xo > -L and xo + A < L. Determine the complex Fourier
coefficients c,,.

3.6.2. If f (x) is real, show that c_,a = c,,.

The function defined above is the Dirac delta function. (in the limit, as Δ → 0). Now

𝑐𝑛 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑒𝑖𝑛

𝜋
𝐿 𝑥𝑑𝑥

=
1
2𝐿 �

𝑥0+Δ

𝑥0

1
Δ
𝑒𝑖𝑛

𝜋
𝐿 𝑥𝑑𝑥

=
1
2𝐿

1
Δ

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑖𝑛

𝜋
𝐿 𝑥

𝑖𝑛𝜋
𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝑥0+Δ

𝑥0

=
1
2𝐿

𝐿
Δ𝑖𝑛𝜋 �

𝑒𝑖𝑛
𝜋
𝐿 𝑥�

𝑥0+Δ

𝑥0

=
1

𝑖2𝑛Δ𝜋
�𝑒𝑖𝑛

𝜋
𝐿 (𝑥0+Δ) − 𝑒𝑖𝑛

𝜋
𝐿 𝑥0�

Since 𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖 = sin 𝑧. The denominator above has 2𝑖 in it. Factoring out 𝑒
𝑖𝑛𝜋

𝐿 �𝑥0+
Δ
2 � from the above

gives

𝑐𝑛 =
1

𝑖2𝑛Δ𝜋
𝑒
𝑖𝑛𝜋

𝐿 �𝑥0+
Δ
2 � �𝑒𝑖𝑛

𝜋
𝐿
Δ
2 − 𝑒−𝑖𝑛

𝜋
𝐿
Δ
2 �

=
1

𝑛Δ𝜋
𝑒
𝑖𝑛𝜋

𝐿 �𝑥0+
Δ
2 �
�𝑒𝑖𝑛

𝜋
𝐿
Δ
2 − 𝑒−𝑖𝑛

𝜋
𝐿
Δ
2 �

𝑖2
Now the form is sin (𝑧) is obtained, hence it can be written as

𝑐𝑛 =
𝑒
𝑖𝑛𝜋

𝐿 �𝑥0+
Δ
2 �

𝑛Δ𝜋
sin �𝑛

𝜋
𝐿
Δ
2 �

Or

𝑐𝑛 =
cos �𝑛𝜋

𝐿
�𝑥0 +

Δ
2
�� + 𝑖 sin �𝑛𝜋

𝐿
�𝑥0 +

Δ
2
��

Δ𝑛𝜋
sin �𝑛

𝜋
𝐿
Δ
2 �

1.5 Problem 4.2.1

138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U

5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).
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1.5.1 Part (a)

Equation 4.2.7 is

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (4.2.7)

Replacing 𝑄 (𝑥, 𝑡) by −𝑔

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

− 𝑔𝜌 (𝑥)

At equilibrium, the string is sagged but is not moving.

y

x0 L

uE

This is equilibrium position.
Sagged due to only weight of
string

g

Therefore 𝜕2𝑢𝐸
𝜕𝑡2 = 0. The above becomes

0 = 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

− 𝑔𝜌 (𝑥)

This is now partial di�erential equation in only 𝑥. It becomes an ODE

𝑑2𝑢𝐸
𝑑𝑥2

=
𝑔𝜌 (𝑥)
𝑇0

With boundary conditions 𝑢𝐸 (0) = 0, 𝑢𝐸 (𝐿) = 0. By double integration the solution is found. Inte-
grating once gives

𝑑𝑢𝐸
𝑑𝑥

= �
𝑥

0

𝑔𝜌 (𝑠)
𝑇0

𝑑𝑠 + 𝑐1

Integrating again

𝑢𝐸 = �
𝑥

0
��

𝑠

0

𝑔𝜌 (𝑧)
𝑇0

𝑑𝑧 + 𝑐1� 𝑑𝑠 + 𝑐2

= �
𝑥

0
��

𝑠

0

𝑔𝜌 (𝑧)
𝑇0

𝑑𝑧� 𝑑𝑠 +�
𝑥

0
𝑐1𝑑𝑠 + 𝑐2

=
𝑔
𝑇0
�

𝑥

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝑥 + 𝑐2 (1)

Equation (1) is the solution. Applying B.C. to find 𝑐1, 𝑐2. At 𝑥 = 0 the above gives

0 = 𝑐2
The solution (1) becomes

𝑢𝐸 =
𝑔
𝑇0
�

𝑥

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝑥 (2)

And at 𝑥 = 𝐿 the above becomes

0 =
𝑔
𝑇0
�

𝐿

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝐿

𝑐1 =
−𝑔
𝐿𝑇0

�
𝐿

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠

Substituting this into (2) gives the final solution

𝑢𝐸 =
𝑔
𝑇0
�

𝑥

0
��

𝑠

0
𝜌 (𝑧) 𝑑𝑧� 𝑑𝑠 + �

−𝑔
𝐿𝑇0

�
𝐿

0
��

𝑠

0
𝜌 (𝑧) 𝑑𝑧� 𝑑𝑠� 𝑥 (3)
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If the density was constant, (3) reduces to

𝑢𝐸 =
𝑔𝜌
𝑇0
�

𝑥

0
𝑠𝑑𝑠 + �

−𝑔𝜌
𝐿𝑇0

�
𝐿

0
𝑠𝑑𝑠� 𝑥

=
𝑔𝜌
𝑇0
𝑥2

2
−
𝑔𝜌
𝐿𝑇0

𝐿2

2
𝑥

=
𝑔𝜌
𝑇0
�
𝑥2

2
−
𝐿
2
𝑥�

Here is a plot of the above function for 𝑔 = 9.8, 𝐿 = 1, 𝑇0 = 1, 𝜌 = 0.1 for verification.

0.0 0.2 0.4 0.6 0.8 1.0

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

x

uE

sagged equilibrium position uE

1.5.2 Part (b)

Equation 4.2.9 is

𝜕2𝑢
𝜕𝑡2

=
𝑇0
𝜌 (𝑥)

𝜕2𝑢
𝜕𝑥2

(4.2.9)

Since

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (1)

And

𝜌 (𝑥)
𝜕2𝑢𝐸
𝜕𝑡2

= 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (2)

Then by subtracting (2) from (1)

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

− 𝜌 (𝑥)
𝜕2𝑢𝐸
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) − 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

− 𝑄 (𝑥, 𝑡) 𝜌 (𝑥)

𝜌 (𝑥) �
𝜕2𝑢
𝜕𝑡2

−
𝜕2𝑢𝐸
𝜕𝑡2 �

= 𝑇0 �
𝜕2𝑢
𝜕𝑥2

−
𝜕2𝑢𝐸
𝜕𝑥2 �

Since 𝑣 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡)−𝑢𝐸 (𝑥, 𝑡) then
𝜕2𝑣
𝜕𝑡2 =

𝜕2𝑢
𝜕𝑡2 −

𝜕2𝑢𝐸
𝜕𝑡2 and 𝜕2𝑣

𝜕𝑥2 =
𝜕2𝑢
𝜕𝑥2 −

𝜕2𝑢𝐸
𝜕𝑥2 , therefore the above equation

becomes

𝜌 (𝑥)
𝜕2𝑣
𝜕𝑡2

= 𝑇0
𝜕2𝑣
𝜕𝑥2

𝜕2𝑣
𝜕𝑡2

=
𝑇0
𝜌 (𝑥)

𝜕2𝑣
𝜕𝑥2

= 𝑐2
𝜕2𝑣
𝜕𝑥2

Which is 4.2.9. QED.

1.6 Problem 4.2.5

138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U

5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).
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Let us consider a small segment of the string of length Δ𝑥 from 𝑥 to 𝑥+Δ𝑥. The mass of this segment
is 𝜌Δ𝑥, where 𝜌 is density of the string per unit length, assumed here to be constant. Let the angle
that the string makes with the horizontal at 𝑥 and at 𝑥 + Δ𝑥 be 𝜃 (𝑥, 𝑡) and 𝜃 (𝑥 + Δ𝑥, 𝑡) respectively.
Since we are only interested in the vertical displacement 𝑢 (𝑥, 𝑡) of the string, the vertical force on
this segment consists of two parts: Its weight (acting downwards) and the net tension resolved in
the vertical direction. Let the total vertical force be 𝐹𝑦. Therefore

𝐹𝑦 =
weight

���������− 𝜌Δ𝑥𝑔 +
net tension on segment in vertical direction

���������������������������������������������������������������������(𝑇 (𝑥 + Δ𝑥, 𝑡) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Applying Newton’s second law in the vertical direction 𝐹𝑦 = 𝑚𝑎𝑦 where 𝑎𝑦 =
𝜕2𝑢(𝑥,𝑡)
𝜕𝑡2 and 𝑚 = 𝜌Δ𝑥,

gives the equation of motion of the string segment in the vertical direction

𝜌Δ𝑥
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌Δ𝑥𝑔 + (𝑇 (𝑥 + Δ𝑥, 𝑡) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Dividing both sides by Δ𝑥

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
(𝑇 (𝑥 + Δ𝑥) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥) sin𝜃 (𝑥, 𝑡))

Δ𝑥
Taking the limit Δ𝑥 → 0

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
𝜕
𝜕𝑥

(𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Assuming small angles then 𝜕𝑢
𝜕𝑥 = tan𝜃 = sin𝜃

cos𝜃 ≈ sin𝜃, then we can replace sin𝜃 in the above with
𝜕𝑢
𝜕𝑥 giving

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
𝜕
𝜕𝑥 �

𝑇 (𝑥, 𝑡)
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥 �

Assuming tension 𝑇 (𝑥, 𝑡) is constant, say 𝑇0 then the above becomes

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 + 𝑇0
𝜕
𝜕𝑥 �

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥 �

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

=
𝑇0
𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

− 𝜌𝑔

Setting 𝑇0
𝜌 = 𝑐2 then the above becomes

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= 𝑐2
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

− 𝜌𝑔

Note: In the above 𝑔 (gravity acceleration) was used instead of 𝑄 (𝑥, 𝑡) as in the book to represent
the body forces. In other words, the above can also be written as

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= 𝑐2
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

+ 𝜌𝑄 (𝑥, 𝑡)

This is the required PDE, assuming constant density, constant tension, small angles and small
vertical displacement.

1.7 Problem 4.4.1

4.4. Vibrating String With Fixed Ends 147

of standing waves, it can be shown that this solution is a combination of just two
waves (each rather complicated)-one traveling to the left at velocity -c with fixed
shape and the other to the right at velocity c with a different fixed shape. We are
claiming that the solution to the one-dimensional wave equation can be written as

u(x, t) = R(x - ct) + S(x + ct),

even if the boundary conditions are not fixed at x = 0 and x = L. We will show
and discuss this further in the Exercises and in Chapter 12.

EXERCISES 4.4

4.4.1. Consider vibrating strings of uniform density po and tension To.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at x = 0 and "free" at the other end [i.e., Ou/8x(H, t) =
01? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1, 3, 5, ...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.

4.4.2. In Sec. 4.2 it was shown that the displacement u of a nonuniform string
satisfies

02u 92u
Po To 8x2 + Q,

where Q represents the vertical component of the body force per unit length.
If Q = 0, the partial differential equation is homogeneous. A slightly differ-
ent homogeneous equation occurs if Q = au.

(a) Show that if a < 0, the body force is restoring (toward u = 0). Show
that if a > 0, the body force tends to push the string further away
from its unperturbed position u = 0.

(b) Separate variables if po(x) and a(x) but To is constant for physical
reasons. Analyze the time-dependent ordinary differential equation.

*(c) Specialize part (b) to the constant coefficient case. Solve the initial
value problem if a < 0:

u(0, t) = 0 u(x,0) = 0

u(L, t) = 0 5 (x, 0) = f W.

What are the frequencies of vibration?
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1.7.1 Part (a)

The natural frequencies of vibrating string of length 𝐿 with fixed ends, is given by equation 4.4.11
in the book, which is the solution to the string wave equation

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� �𝐴𝑛 cos �𝑛𝜋𝑐

𝐿
𝑡� + 𝐵𝑛 sin �𝑛𝜋𝑐

𝐿
𝑡��

The frequency of the time solution part of the PDE is given by the arguments of eigenfucntions
𝐴𝑛 cos �𝑛𝜋𝑐

𝐿 𝑡�+𝐵𝑛 sin �𝑛𝜋𝑐
𝐿 𝑡�. Therefore 𝑛

𝜋𝑐
𝐿 represents the circular frequency 𝜔𝑛. Comparing general

form of cos𝜔𝑡 with cos �𝑛𝜋𝑐
𝐿 𝑡� we see that each mode 𝑛 has circular frequency given by

𝜔𝑛 ≡ 𝑛
𝜋𝑐
𝐿

For 𝑛 = 1, 2, 3,⋯. In cycles per seconds (Hertz), and since 𝜔 = 2𝜋𝑓, then 2𝜋𝑓 = 𝑛𝜋𝑐
𝐿 . Solving for 𝑓

gives

𝑓𝑛 = 𝑛
𝜋𝑐
2𝜋𝐿

= 𝑛
𝑐
2𝐿

Where 𝑐 =
�

𝑇0
𝜌0

in all of the above.

1.7.2 Part (b)

Equation 4.4.11 above was for a string with fixed ends. Now the B.C. are di�erent, so we need
to solve the spatial equation again to find the new eigenvalues. Starting with 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡) and
substituting this in the PDE 𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 = 𝑐2 𝜕
2𝑢(𝑥,𝑡)
𝜕𝑥2 with 0 < 𝑥 < 𝐻 gives

𝑇′′𝑋 = 𝑐2𝑇𝑋′′

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where both sides are set equal to some constant −𝜆. We now obtain the two ODE’s to solve. The
spatial ODE is

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋′ (𝐻) = 0

And the time ODE is

𝑇′′ + 𝜆𝑐2𝑇 = 0

The eigenvalues will always be positive for the wave equation. Taking 𝜆 > 0 the solution to the
space ODE is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝐴

Hence 𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥� and 𝑋′ (𝑥) = −𝐵√𝜆 cos �√𝜆𝑥�. Applying second B.C. gives

0 = −𝐵√𝜆 cos �√𝜆𝐻�

Therefore for non-trivial solution, we want √𝜆𝐻 = 𝑛
2𝜋 for 𝑛 = 1, 3, 5,⋯ or written another way

√𝜆𝐻 = �𝑛 −
1
2�
𝜋 𝑛 = 1, 2, 3,⋯

Therefore

𝜆𝑛 = ��𝑛 −
1
2�

𝜋
𝐻�

2

𝑛 = 1, 2, 3,⋯

These are the eigenvalues. Now that we know what 𝜆𝑛 is, we go back to the solution found before,
which is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin ��𝜆𝑛𝑥� �𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡��
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And see now that the circular frequency 𝜔𝑛 is given by

𝜔𝑛 = �𝜆𝑛𝑐

=
�𝑛 − 1

2
� 𝜋

𝐻
𝑐 𝑛 = 1, 2, 3,⋯

In cycles per second, since 𝜔 = 2𝜋𝑓 then

2𝜋𝑓𝑛 =
�𝑛 − 1

2
� 𝜋

𝐻
𝑐

𝑓𝑛 =
�𝑛 − 1

2
�

2𝐻
𝑐 𝑛 = 1, 2, 3,⋯

The following are plots for 𝑛 = 1, 2, 3, 4, 5 for 𝑡 = 0⋯3 seconds by small time increments.

(*solution for HW 5, problem 4.4.1*)
f[x_, n_, t_] := Module[{H0 = 1, c = 1, lam},
lam = ((n - 1/2) Pi/H0);
Sin[lam x] (Sin[lam c t])
] ;
Table[Plot[f[x, 1, t], {x, 0, 1}, AxesOrigin -> {0, 0}], {t, 0,3, .25}];
p = Labeled[Show[

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=1 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=2 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=3 vibration, from t=0 to t=3 seconds
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0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=4 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=5 vibration, from t=0 to t=3 seconds

1.7.3 Part (c)

For part (a), the harmonics had circular frequency 𝜔𝑛 =
𝑛𝜋
𝐿 𝑐. Hence for odd 𝑛, these will generate

𝜋
𝐿
𝑐, 3

𝜋
𝐿
𝑐, 5

𝜋
𝐿
𝑐, 7

𝜋
𝐿
𝑐,⋯ (1)

For part (b), 𝜔𝑛 =
�𝑛− 1

2 �𝜋

𝐻 𝑐. When 𝐻 = 𝐿
2 , this becomes 𝜔𝑛 =

2�𝑛− 1
2 �𝜋

𝐿 𝑐. Looking at the first few modes
gives

2 �1 − 1
2
� 𝜋

𝐿
𝑐,
2 �2 − 1

2
� 𝜋

𝐿
𝑐,
2 �3 − 1

2
� 𝜋

𝐿
𝑐,
2 �4 − 1

2
� 𝜋

𝐿
𝑐,⋯

𝜋
𝐿
𝑐,
3𝜋
𝐿
𝑐,
5𝜋
𝐿
𝑐,
7𝜋
𝐿
𝑐,⋯ (2)

Comparing (1) and (2) we see they are the same. Which is what we asked to show.

1.8 Problem 4.4.3

148 Chapter 4. Wave Equation

4.4.3. Consider a slightly damped vibrating string that satisfies

211

Po &2 T o - ) 9 -

(a) Briefly explain why /3 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x,0) = f(x) and 8t(x,0) = g(x)-

You can assume that this frictional coefficient Q is relatively small
()32 < 4rr2poTo/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.

4.4.5. Redo Exercise 4.4.3(b) if 4rr2poTo/L2 < p2 < 16rr2poTo/L2.

4.4.6. For (4.4.1)-(4.4.3), from (4.4.11) show that

u(x, t) = R(x - ct) + S(x + ct),

where R and S are some functions.

4.4.7. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially at rest, g(x) = 0,
show that

u(x, t) = I [F(x - ct) + F(x + ct)],

where F(x) is the odd periodic extension of f (x). Hints.

1. For all x, F(x) _ An sin !.
2. sin a cos b = [sin(a + b) + sin(a - b)].

Comment: This result shows that the practical difficulty of summing an
infinite number of terms of a Fourier series may be avoided for the one-
dimensional wave equation.

4.4.8. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, f (x) _
0, with the initial velocity given, show that

Ect
u(x, t) = 1 G(x) dam,

2c t

where G(x) is the odd periodic extension of g(x). Hints:

1. For all x, G(x) _ °O_1 nir-c sin nT
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1.8.1 Part (a)

𝜌0
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

− 𝛽
𝜕𝑢
𝜕𝑡

The term −𝛽𝜕𝑢𝜕𝑡 is the force that acts on the spring segment due to damping. This is the Viscous
damping force which is proportional to speed, where 𝛽 represents viscous damping coe�cient. This

damping force always opposes the direction of the motion. Hence if 𝜕𝑢
𝜕𝑡 > 0 then −𝛽

𝜕𝑢
𝜕𝑡 should come

out to be negative. This occurs if 𝛽 > 0. On the other hand, if 𝜕𝑢
𝜕𝑡 < 0 then −𝛽𝜕𝑢𝜕𝑡 should now be

positive. Which means again that 𝛽 must be positive quantity. Hence only case were the damping
force always opposes the motion of the string is when 𝛽 > 0.

1.8.2 Part (b)

Starting with 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡) and substituting this in the above PDE with 0 < 𝑥 < 𝐿 gives

𝜌0𝑇′′𝑋 = 𝑇0𝑇𝑋′′ − 𝛽𝑇′𝑋
𝜌0
𝑇0
𝑇′′

𝑇
+
𝛽
𝑇0
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Hence we obtain two ODE’s. The space ODE is

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋 (𝐿) = 0

And the time ODE is

𝑇′′ + 𝑐2𝛽𝑇′ + 𝑐2𝜆𝑇 = 0
𝑇 (0) = 𝑓 (𝑥)
𝑇′ (0) = 𝑔 (𝑥)

The eigenvalues will always be positive for the wave equation. Hence taking 𝜆 > 0 the solution to
the space ODE is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝐴

Hence 𝑋 = 𝐵 sin �√𝜆𝑥�. Applying the second B.C. gives

0 = 𝐵 sin �√𝜆𝐿�

Therefore

√𝜆𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Hence the space solution is

𝑋 =
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Now we solve the time ODE. This is second order ODE, linear, with constant coe�cients.
𝜌0
𝑇0
𝑇′′

𝑇
+
𝛽
𝑇0
𝑇′

𝑇
= −𝜆

𝜌0
𝑇0
𝑇′′ +

𝛽
𝑇0
𝑇′ + 𝜆𝑇 = 0

𝑇′′ +
𝛽
𝜌0
𝑇′ +

𝑇0
𝜌0
𝜆𝑇 = 0
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Where in the above 𝜆 ≡ 𝜆𝑛 for 𝑛 = 1, 2, 3,⋯. The characteristic equation is 𝑟2 + 𝑐2𝛽𝑟 + 𝑐2𝜆 = 0. The
roots are found from the quadratic formula

𝑟1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴

=
− 𝛽
𝜌0
±
�
� 𝛽
𝜌0
�
2
− 4𝑇0𝜌0𝜆

2

= −
𝛽
2𝜌0

±
1
2�

�
𝛽
𝜌0
�
2

− 4
𝑇0
𝜌0
𝜆

Replacing 𝜆 = �𝑛𝜋𝐿 �
2
, gives

𝑟1,2 = −
𝛽
2𝜌0

±
1
2�

�
𝛽
𝜌0
�
2

− 4
𝑇0
𝜌0
�
𝑛𝜋
𝐿
�
2

= −
𝛽
2𝜌0

±
1
2�

𝛽2

𝜌20
− 4

𝑇0
𝜌0
𝑛2𝜋2

𝐿2

= −
𝛽
2𝜌0

±
1
2𝜌0�

𝛽2 − 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �

We are told that 𝛽2 < 4𝜌0𝑇0
𝜋2

𝐿2 , what this means is that 𝛽2 − 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2
� < 0, since 𝑛2 > 0. This

means we will get complex roots. Let

Δ = 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �
− 𝛽2

Hence the roots can now be written as

𝑟1,2 = −
𝛽
2𝜌0

±
𝑖√Δ
2𝜌0

Therefore the time solution is

𝑇𝑛 (𝑡) = 𝑒
− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

This is sinusoidal damped oscillation. Therefore

𝑇 (𝑡) =
∞
�
𝑛=1

𝑒
− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (2)

Combining (1) and (2), gives the total solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (3)

Where 𝑏𝑛 constants for space ODE merged with the constants 𝐴𝑛, 𝐵𝑛 for the time solution. Now we
are ready to find 𝐴𝑛, 𝐵𝑛 from initial conditions. At 𝑡 = 0

𝑓 (𝑥) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥�𝐴𝑛

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�𝐴𝑛𝑑𝑥

Changing the order of integration and summation

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐴𝑚
𝐿
2

Hence

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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To find 𝐵𝑛, we first take time derivative of the solution above in (3) which gives

𝜕
𝜕𝑡
𝑢 (𝑥, 𝑡) =

∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝−
√Δ
2𝜌0

𝐴𝑛 sin
⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛

√Δ
2𝜌0

cos
⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

−
𝛽
2𝜌0

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 0, using the second initial condition gives

𝑔 (𝑥) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝐵𝑛

√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝐵𝑛

√Δ
2𝜌0

𝑑𝑥 −
∞
�
𝑛=1

𝛽
2𝜌0

𝐴𝑛 sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�

Changing the order of integration and summation

�
𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

∞
�
𝑛=1

𝐵𝑛
√Δ
2𝜌0

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 −

∞
�
𝑛=1

𝛽
2𝜌0

𝐴𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�

= 𝐵𝑚
√Δ
2𝜌0

𝐿
2
−

𝛽
2𝜌0

𝐴𝑛
𝐿
2

=
𝐿
2

⎛
⎜⎜⎜⎜⎝𝐵𝑚

√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛

⎞
⎟⎟⎟⎟⎠

Hence

𝐵𝑚
√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

𝐵𝑚 = �
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

𝛽
2𝜌0

𝐴𝑛�
2𝜌0
√Δ

This completes the solution. Summary of solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

𝐵𝑛 = �
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

𝛽
2𝜌0

𝐴𝑛�
2𝜌0
√Δ

Δ = 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �
− 𝛽2

1.9 Problem 4.4.9
4.5. Vibrating Membrane 149

2. sin a sin b = 1 [cos(a - b) cos(a + b)].

See the comment after Exercise 4.4.7.

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE 2'9U &U L

wt -c8x8to, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
f L 2 (8u) 2 dx, and the potential energy, defined by f L z (&) 2 dx.

4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

(a) If u(0, T) = 0 and u(L, t) = 0
(b) If Ou(0,t) = 0 and u(L,t) = 0

(c) If u(0, t) = 0 and Ou (L, t) = -ryu(L, t) with y > 0
(d) If y < 0 in part (c)

4.4.11. Show that the potential and kinetic energies (defined in Exercise 4.4.9) are
equal for a traveling wave, u = R(x - ct).

4.4.12. Using (4.4.15), prove that the solution of (4.4.1)-(4.4.3) is unique.

4.4.13. (a) Using (4.4.15), calculate the energy of one normal mode.

(b) Show that the total energy, when u(x, t) satisfies (4.4.11), is the sum
of the energies contained in each mode.

4.5 Vibrating Membrane
The heat equation in one spatial dimension is 8u/8t = k82u/8x2. In two or three
dimensions, the temperature satisfies 8u/8t = kV2u. In a similar way, the vibration
of a string (one dimension) can be extended to the vibration of a membrane (two
dimensions).

The vertical displacement of a vibrating string satisfies the one-dimensional wave
equation

82u 82u
c2 8x2

There are important physical problems that solve

,92 = c2V2u, (4.5.1)

known as the two- or three-dimensional wave equation. An example of a physical
problem that satisfies a two-dimensional wave equation is the vibration of a highly
stretched membrane. This can be thought of as a two-dimensional vibrating string.
We will give a brief derivation in the manner described by Kaplan [1981], omitting

𝐸 =
1
2 �

𝐿

0
�
𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2 �
𝐿

0
�
𝜕𝑢
𝜕𝑥 �

2

𝑑𝑥

Hence

𝑑𝐸
𝑑𝑡

=
1
2
𝑑
𝑑𝑡 �

𝐿

0
�
𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2
𝑑
𝑑𝑡 �

𝐿

0
�
𝜕𝑢
𝜕𝑥 �

2

𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral, it becomes partial derivative

𝑑𝐸
𝑑𝑡

=
1
2 �

𝐿

0

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2 �
𝐿

0

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥 �

2

𝑑𝑥 (1)
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But

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡 �

2

=
𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑡 �

=
𝜕2𝑢
𝜕𝑡2

𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2

= 2 �
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

(2)

And

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥 �

2

=
𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑥 �

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑢
𝜕𝑥

+
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

= 2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

(3)

Substituting (2,3) into (1) gives

𝑑𝐸
𝑑𝑡

=
1
2 �

𝐿

0
2 �
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

𝑑𝑥 +
𝑐2

2 �
𝐿

0
2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= �
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

But 𝜕2𝑢
𝜕𝑡2 = 𝑐

2 𝜕2𝑢
𝜕𝑥2 then the above becomes

𝑑𝐸
𝑑𝑡

= �
𝐿

0
�
𝜕𝑢
𝜕𝑡 �

𝑐2
𝜕2𝑢
𝜕𝑥2 ��

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= 𝑐2�
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2 �

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= 𝑐2�
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2 �

+ �
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡�

𝑑𝑥 (4)

But since the integrand in (4) can also be written as

𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥 �

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑢
𝜕𝑥

+
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2

Then (4) becomes

𝑑𝐸
𝑑𝑡

= 𝑐2�
𝐿

0

𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥 �

𝑑𝑥

= 𝑐2 �
𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥 �

𝐿

0

Which is what we are asked to show. QED.
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