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0.1 Problem 2.5.1(e) (problem 1)

2.5.1. Solve Laplace’s equation inside a rectangle 0 < z < L, 0 < y < H, with the
following boundary conditions:

*(a) 82(0,3) =0, 52(L,y)=0, wu(z,0)=0, u(z, H) = f(2)
(b) 82(0,9) = 9(v), 2(L,y) =0, u(z,0)=0, u(z,H) =0

*(c) 22(0,y) =0, u(L,y)=g(y), u(z,0)=0, u(z,H) =0
(d) u(0,9) =9(¥), u(L,y)=0, §(z,0)=0, u(z, H) =0

x(e) u(0,y) =0,  u(L,y)=0, u(z,0) - §(z,0) =0, u(z,H)= f(z)

2 2
Let u (x, y) = X (x) Y (x). Substituting this into the PDE % + Z—;Z' = 0 and simplifying gives
X// 3 Y’/I
X Y

Each side depends on different independent variable and they are equal, therefore they must be
equal to same constant.

X// 3 Y// 3 A

X =y
Since the boundary conditions along the x direction are the homogeneous ones, -/ is selected in the
above. Two ODE’s (1,2) are obtained as follows

X"+AX=0 (1)
With the boundary conditions
X(0)=0
X({L)=0
And
Y'-AY =0 (2)
With the boundary conditions
Y (0) =Y’ (0)
Y(H) = f (x)

In all these cases A will turn out to be positive. This is shown for this problem only and not be
repeated again. The solution to (1) is

X = AeVAx 4 BeVix

Case A <0

X = Acosh (\/Xx) + Bsinh (\/Xx)



At x = 0, the above gives 0 = A. Hence X = Bsinh (\/Ix) At x = L this gives X = Bsinh (\/XL) But

sinh (\/KL) =0 only at 0 and \/XL # 0, therefore B = 0 and this leads to trivial solution. Hence A <0
is not an eigenvalue.

Case A =0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x = L, B = 0. Hence the trivial
solution. A = 0 is not an eigenvalue.

Case A >0

Solution is

X = Acos (\/Xx) + Bsin (\/Xx)
At x =0 this gives 0 = A and the solution becomes X = Bsin (\/Xx) Atx=L
0 = Bsin (\/XL)

For non-trivial solution sin (\/ZL) =0or \/ZL = nmn where n=1,2,3, ---, therefore

2
nm
/\n:(f) n=1,2,3,-
Eigenfunctions are
X, (x) = B, sin(%x) n=1,23, 3)

For the Y ODE, the solution is
Y, = C, cosh (nfny) + D,, sinh (nfny)
v - T h(nn )+D nm h(nrc )
n=Cpsinh|{ 7y n cosh| Ty
Applying B.C. at y = 0 gives

Y (0) =Y’ (0)

C, cosh (0) = Dn% cosh (0)
nm
Cn = an

The eigenfunctions Y,, are

nm nm .. (nT
Y, = an cosh (Ty) + D,, sinh (Ty)

nm nmn . nm
= D, (T cosh Ty +sinb ()
Now the complete solution is produced

Uy (X, ]/) = Yan

nm nm ., (N7 . (nT
=D, (T cosh (Ty) + sinh (Ty)) B, sin (Tx)



Let D,B,, = B, since a constant. (no need to make up a new symbol).

nm nm ., (N7 . (N7
u, (x, y) =B, (T cosh (Ty) + sinh (Ty)) sin (Tx)
Sum of eigenfunctions is the solution, hence
s ., (N7 . (N
( ) E B, ( cosh( T y) + sinh (Ty)) sm(fx)
The nonhomogeneous boundary condltlon is now resolved. Aty =H
u(x, H) = f (x)

Therefore
nm

U .
fx) = Z B, ( cosh (TH) + smh( T )) sin (Tx)
Multiplying both sides by sin (Tx) and integrating gives
L . (mm L mm \ & nm nm . nm . (nm
j(‘) f(x)sin (Tx) dx = fo sin (Tx) 2 B, (T cosh (TH) + sinh (TH)) sin (Tx) dx
& nmo\ . (mn
Z ( cosh (TH) + sinh (TH)) f sin (Tx) sin (Tx) dx

mr T L
B (T cosh (TH) + sinh (TH)) 2

Hence
£ f(x) sm ) dx

" E(T cosh( )+s1nh(T ))

(4)

This completes the solution. In summary

( ) EB ( cosh( T y)+sinh (%y))sin(%x)

With B, given by (4). The followmg are some plots of the solution above for different f (x).

Figure 1: Solution using f(x) =x,L=1,H =1



Figure 3: Solution using f(x) = cos(4x),L=1,H =1

Figure 4: Solution using f(x) = sin(3x) cos(2x),L =5,H =1



0.2 Problem 2.5.2 (problem 2)

2.5.2. Consider u(z,y) satisfying Laplace’s equation inside a rectangle (0 < z <
L, 0 < y < H) subject to the boundary conditions

%£(0,y) =0 %%(z,0)=0
§(Ly)=0 5z, H) = f(z).

*(a) Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.

(b) Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(z,y,0) = g(z,y).

0.2.1 part (a)

At steady state, there will be no heat energy flowing across the boundaries. Which implies the flux is
zero. Three of the boundaries are already insulated and hence the flux is zero at those boundaries
as given. Therefore, the flux should also be zero at the top boundary at steady state.

By definition, the flux is ¢ = —kVu - 1. (Direction of flux vector is from hot to cold). At the top
boundary, this becomes

du
¢ = —k8—y (x, H) 1)

Therefore, For the condition of a solution, total flux on the boundary is zero, or

fOLq)dxzo

L Ju
—kj(; a—y(x,H)dx =0

L
f 94 e Hydx =0
0 Y

But Z—IL; (x,H) = f (x) and the above becomes

Using (1) in the above gives

[ Fdx=0




0.2.2 Part (b)
Using separation of variables results in the following two ODE’s
X" +AX=0
X' 0)=0
X'(L)=0
And
Y’ -AY =0
Y'(0)=0
Y’ (L) = f (x)
The solution to the X (x) ODE has been obtained before as
Xn:AO+Ancos(\/)\_nx) n=1,23,-
X, = A,cos(YA,x)  n=0,1,23, 1)

2
Where A, = (%) . In this ODE A = 0 is applicable as well as A > 0. (As found in last HW).

Now the Y (y) ODE is solved (for same set of eigenvalues). For A = 0 the ODE becomes Y” = 0 and
solution is Y = Cy + D. Hence Y’ = C and since Y’ (0) = 0 then C = 0. Hence the solution is Y = C,
where C; is some new constant. For A > 0, the solution is

Y, = C,, cosh (\//\_ny) + D, sinh (\//\_ny) n=1,23,-
Y, = Cn\//\_n sinh (\//\_ny) + Dn\//l_n cosh (\//l—ny)
Aty=0
0=Y;(0)
=D,A, n=1,23,-
Since A, >0forn=1,2,3,--- then D,, = 0 and the Y(y) solution becomes
Y, =Co+Cyeosh(VA,y)  n=1,23
Y, = C, cosh (\//\_ny) n=0,123,- (2)
Combining (1) and (2) gives
uy (%) = X, Y,y
= A, cos (\//\_nx) C, cosh (\//\_ny) n=0,123,--

= A, cos (\//\_nx) cosh (\//\_ny) n=0,1,23,:

Where A, C,, above was combined and renamed to A, (No need to add new symbol). Hence by
superposition the solution becomes

U (x, y) = 2 A, cos (\/A—nx) cosh (\/A—ny)
n=0
Since Ay = 0 and cos (\/A_Ox) cosh (\//X_Oy) =1, the above can be also be written as

u (x, y) =Ap+ 2 A, cos (nfnx) cosh (nfny) (3)



At y = H, it is given that (x H) = f (x). But

U & nm o\ nm . nm
5y = X Aneos () s ()
At y = H the above becomes
s
fx) = E A, cos (Tx) T sinh (—H) (4)

To verify part (a) by integrating both 51des

ff(x)dx—j(; ZA cos(—x)nfsmh( H)dx

n=1

L
EA —smh(—H)f cos(n—nx)dx
= 0 L

But £ cos )dx—O hence

L
f fx)dx=0
0

The verification is completed. Now back to (4) and multiplying by cos (%x) and integrating
L [ o
f f(x)cos (@x) dx = f 2 A, cos (@x) \//\_nsinh (n_nH) dx
0 L 0 L L
) L
= E A, sinh (EH) f cos (n_nx) \//\—ndx
n=1 L 0 L

L
= A, sinh (@H) =
L 2

Hence

2 LLf(x) cos (%x) dx
"L sinh(nTnH)

Therefore the solution now becomes (from (3))

( ) A0+Z[ £f(X)COb )) chos(%x)cosh(%y)

n=123

sinh (T
Only Aj remains to be found. This is done in next part.

0.2.3 Part (c)

Since at steady state, total energy is the same as initial energy. Initial temperature is given as g(x, y),
therefore initial thermal energy is found by integrating over the whole domain. This is 2D, therefore

ffpcg(x,y)dA=chLLHg(x,y>dydx



Setting the above to pc 1; £ X, y dydx found in last part, gives one equation with one unknown,
which is Aj to solve for. Hence

pcf f XY dydx = pcf f Ay + EA oS (—x) cosh( y) dydx
f f glxy dydx = f f Aodydx—}-f f 2 A, cos (—x) cosh( y) dydx
f f XY dydx = AgHL + E A, f f oS (—x) COSh( y) dydx (5)

[ [ () e

Where £ cos (nTnx) dx = 0. Hence the whole sum vanish. Therefore (5) reduces to
H
f f g(x, y) dydx = AgHL
0 Yo

A = HLff xydydx

But

Summary The complete solution is

= sty Sl

The following are some plots of the solution.

cos (Ex) cosh (E )
L LY

Figure 5: Solution using g(x,y) = xy, f(x) = sin(3x),L =5H =1



Figure 6: Solution using g(x,y) = sin(y) cos(xy), f(x) =x,L=5H =1

Figure 7: Solution using g(x,y) = ysin(y) cos(xy), f(x) = sin(10x),L =1,H =1

0.3 Problem 2.5.5(c,d) (problem 3)

2.5.5. Solve Laplace’s equation inside the quarter-circle of radius 1 (0 < 6 <
n/2, 0 < r < 1) subject to the boundary conditions

x(a) &(r,00=0, u(r,3)=0, u(1,60)=f(9)
(b) &(r,0)=0, $(r.3)=0, u(1,6)=7(0)
*(c) u(r,0) =0, u(r, %) =0, 8u(1,0) = £(8)

@ %Hro)=0  F(rn3)=0 31,0 =90)

Show that the solution [part (d)] exists only if J;/? g(6) d8 = 0. Explain

this condition physically.
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0.3.1 Partc

The Laplace PDE in polar coordinates is

u  du *u
U ou _
r&2+rar 302 0 (A)
With boundary conditions
u(r,0)=0
e
i (r, E) —0 (B)

u(,0)=f()

Assuming the solution can be written as
u(r,0) = R(r)©(0)
And substituting this assumed solution back into the (A) gives
R”"® +rR'® + RO =0
Dividing the above by R® # 0 gives
L,R” R ©"

— r— =0
7R+1’R+®

r2l+rR—,——®”

R R ©

Since each side depends on different independent variable and they are equal, they must be equal
to same constant. say A.

R R ©

This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to
each ODE. This gives

A

0" +A0=0
©0)=0 1)
TT
o(3)=0
And
?R” +rR' = AR =0 (2)
IR (0)] < o0

Starting with (1). Consider the Case A < 0. The solution in this case will be
© = Acosh (\/X@) + Bsinh (\/XG)
Applying first B.C. gives A = 0. The solution becomes ® = Bsinh (\/X@) Applying second B.C. gives
0 = Bsinh (\/Xg)

But sinh is zero only when \/_ g = 0 which is not the case here. Therefore B = 0 and hence trivial
solution. Hence A < 0 is not an eigenvalue.

Case A =0 The ODE becomes ®” = 0 with solution ® = A6 + B. First B.C. gives 0 = B. The
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solution becomes ® = Af. Second B.C. gives 0 = Ag, hence A = 0 and trivial solution. Therefore
A =0 is not an eigenvalue.

Case A > 0 The ODE becomes ®” + A® = 0 with solution
® = Acos (\/XG) + Bsin (\/X@)
The first B.C. gives 0 = A. The solution becomes
© = Bsin (\/XQ)
And the second B.C. gives
0 = Bsin (\/Xg)
For non-trivial solution sin (\/Zg) =0or \/_ g =nn forn=1,2,3,---. Hence the eigenvalues are

VA, =2n

A, = 4n? n=1,2,3,

And the eigenfunctions are

®,, (0) = B,, sin (2n0) n=1,2,3, - (3)

Now the R ODE is solved. There is one case to consider, which is A > 0 based on the above. The
ODE is

”R” +rR' = A,R =0
rR” +rR’ —4n*R =0 n=1,2,3
This is Euler ODE. Let R(r) = . Then R’ = pr"! and R” = p (p - 1) 772, This gives
72 (p (p - 1) r”‘z) +7r (pr”"l) —4n?rP =0
((p2 - p) rp) +prf —4n?P =0
1Pp? — pr? + prP —4dn?rP = 0
p?-4n* =0
p=+2n
Hence the solution is
R(r) = Cr*" + D,;_n
Applying the condition that |[R (0)| < co implies D = 0, and the solution becomes
R, (r) = C,r*" n=1,23,-- (4)
Using (3,4) the solution u, (7, 0) is
u, (r,0) = R,0,
= C,r*"B, sin (2n0)
= B,r*" sin (2n0)

Where C,B, was combined into one constant B,. (No need to introduce new symbol). The final
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solution is

u(r,0) = i u, (r,0)
n=1

= Z B,r*" sin (2n0)

n=1

Now the nonhomogeneous condition is applied to find B,,.

J ~ 1 .
S (r,0) = E B, (2n) r¥*~1 sin (2n0)

n=1
Hence %u (1,0) = f (6) becomes
f(0) = i 2B, nsin (2n0)
Multiplying by sin (2m0) and integrating give;;=1
fo : F(6)sin (2m6) d6 = fo ? gin @m6) f] 2B, 1 sin (2n0) d6
n=1

= Y 2B, f 2 gin (2m0) sin (2n0) d6 (5)
n=1 0
When n = m then

T

f 2 in (2m0) sin (2n0) d6 = f % in2 (2n6) dO
0 0

2(1 1
= = - Zcos4
j;(z 2cos n@)d@
1 [sin4n0 |2
2 4n

0
- (81_11 (sin 4;71) —sin (0))

. P . 4n . m
And since 1 is integer, then sin —-7 = sin2n7 = 0 and the above becomes 7.

Now for the case when n # m using sin Asin B = % (cos (A — B) — cos (A + B)) then
n I
fz sin (2m0) sin (2n6) d6 = fz 3 (cos 2mO —2n6) — cos 2mO + 2n0))dO
0 0

s

1 (2 1 (2
=3 fz cos (2m6O —2n0) do — 7 fz cos 2m0 + 2n6)do
0 0

:%fECOS((Zm—Zn)Q)dG—%ficos((2m+2n)6)d6
0 0

_1 sin(@m-2m0) |2 1 [sin(@m+2n)0)]?
T2\ @u-a | 2| @mean

us T

1 n d
= Y [sin ((2m —2n) 0)1§ - [sin ((2m + 2n) 0)]§

=1 (ml_ n) [sin ((Zm —2n) g) - 0] - m [sin ((Zm + 2n) g) - 0]

4(m+n)
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Since 2m - 2n= = 7 (m - n) which is integer multiple of 7 and also (2m + 2n) g is integer multiple of
7t then the whole term above becomes zero. Therefore (5) becomes

f 2 £(6) sin (2m0) d6 = 2mBm%
0

Hence

B, =— f £(0)sin (2n0)dO

Summary: the final solution is

u(r,0) = f] B, (1" sin (26))
n=1

2 32 .
Bu=— fo £(6)sin (2n6) d6

The following are some plots of the solution

0.1
u(r,thetg%o

10 7 00

Figure 9: Solution using f(6) = 0
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0.3.2 Part (d)

The Laplace PDE in polar coordinates is

With boundary conditions

u(1,0)=f(0)
Assuming the solution is
u(r,0) = R(r)©(0)
Substituting this back into the PDE gives
”R”"® +rR'® + RO” =0
Dividing by RO # 0 gives

rZR—H +rR—,+®” =0
R R ®
LS S
R R ®

Since each side depends on different independent variable and they are equal, they must be equal
to same constant. say A.

This results in two ODE’s with the following boundary conditions
0" +10=0
©'(0)=0 1)

And
R’ +rR"-=AR =0 2)
IR(O)] < o0
Starting with (1). Consider Case A <0 The solution will be

® = Acosh (\/Xe) + Bsinh (\/Xe)

And
®’ = AVAsinh (x/Xe) + BVA cosh (\/Xe)

Applying first B.C. gives 0 = BV, therefore B = 0 and the solution becomes A cosh (\/XG) and
@’ = AVAsinh (\/X@) Applying second B.C. gives 0 = AvA sinh (\/Xg) But sinh (\/Xg) # 0 since

A # 0, therefore A =0 and the trivial solution results. Hence A <0 is not an eigenvalue.
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Case A = 0 The ODE becomes
®"=0
With solution
®=A0+B

And O’ = A. First B.C. gives 0 = A. Hence © = B. Second B.C. produces no result and the solution
is constant. Hence

@ZCO

Where C; is constant. Therefore A = 0 is an eigenvalue.

Case A > 0 The ODE becomes ®” + A® = 0 with solution
® = Acos (x/Xe) + Bsin (x/Xe)
@’ = —AVAsin (\/ZG) +BVA cos (\/XG)
The first B.C. gives 0 = BYA or B = 0. The solution becomes
® = Acos (\/XQ)
And ©’ = —A\/Xsin (\/XQ) The second B.C. gives
0= -AVisin(ViZ)

For non-trivial solution sin (\/Xg) =0or \/_g =nnforn=1,2,3,---. Hence the eigenvalues are

VA, =2n

A, = 4n? n=1,23,--

And the eigenfunction is

0, (6) = A, cos (2n06) n=1,2,3, 3)

Now the R ODE is solved. The ODE is

”R" +rR"—=AR =0
Case A =0
The ODE becomes 2R + rR’ = 0. Let v (r) = R’ (r) and the ODE becomes
v +r0=0
Dividing by r # 0
v (r) + %v(r) =0

1

Using integrating factor el 7 = ¢l

7 =y, Hence

d
E’ (T’U) =0



Hence

ro=A
A
v(r)=—
T
But since v (r) = R’ () then R’ = 671 The solution to this ODE Is

R(r):fédr+B

Therefore, for A = 0 the solution is

R(r)=Aln|r|+B r#0

Since
lim R (r)] < oo
Then A =0 and the solution is just a constant
R(r) = By
Case A > 0 The ODE is
rR” +rR’ —4n’R =0 n=1,23,-
The Let R(r) =7. Then R’ = pr"! and R” = p (p - 1) "2, This gives
72 (p (p - 1) r”‘z) +r (prp‘l) —4n?rP =0
((p2 - p) rp) +prP —4n?P =0
p? — pr¥ + prP —An?¥ =0
pP—4n?>=0

p=+2n

H

Hence the solution is
1
— 2
R@r)=Cr + D,,z_n

The condition that

lim |R (r)] < o0

r—0
Implies D = 0, Hence the solution becomes

R,(N=Cy*n n=1,23,-

Now the solutions are combined. For A = 0 the solution is

ug (r, 0) = CoBy

Which can be combined to one constant By. Hence

M0=B0

And for A > 0 the solution is
u, (r,0) = R,0,
= C,r*" (A, cos (2n0))

= B,r*" cos (2n0)

17

(4)

)



18

Where C, A, are combined into one constant B,. Hence

1, (r,0) = Y B, cos (2n6) (6)
n=1
Equation (5) and (6) can be combined into one this now includes eigenfunctions for both A =0 and
A>0

u(r,0) = By + i B,r*" cos (2n6) (7)

n=1
Where B, represent the products of the eigenfunctions for R and © for A = 0. Now the nonhomoge-
neous condition is applied to find B,,.

1% - .
S (r,0) = ;::1 B,, (2n) r*"~1 cos (2n0)
Hence %u (1,0) = g(0) becomes
g(6) = Y, 2B,n cos (2n0) (8)

n=1

Multiplying by cos (2m0) and integrating gives

fi g(6)cos (2mB)do = fi cos (2m0) 2 2B, n cos (2n0) dO
0 0 n=1

[se] T

= E2an fE cos (2m0) cos (2n6) do 9)
n=1 0
As in the last part, the integral on right gives g when n = m and zero otherwise, hence

fi g(0)cos (2n0)do = Zang
0

5 I
B, = —fz 2(6)cos@no)dd  n=1,2,3, -
Tm Jy
Therefore the final solution is from (7) and (9)

u(r,0) = By + E B,r*" cos (2n6)

n=1

© (o T
=By+ (— f ? ¢(6) cos (2m0) d@] 72 cos (2n6)
=1 ™ Jo
The unknown constant B, can be found if given the initial temperature as was done in problem 2.5.2
part (c). To answer the last part. Using (8) and integrating

us s

f > ¢ (6)d0 = f 2 f} 2B, cos (2n0) dO
0 0 n=1

= ZZan fE cos (2n6) do
n=1 0
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But

T

fi cos (2n0)do = [
0

1 (. 2n
=—|sin—mn-0
Zn( 2 )

sin (2n0) ]2
2n
0

1
= — (si -0
2n(smnn )
=0

Since 7 is an integer. This condition physically means the same as in part (b) problem 2.5.2. Which
is, since at steady state the flux must be zero on all boundaries, and g (0) represents the flux over
the surface of the quarter circle, then the integral of the flux must be zero. This means there is no
thermal energy flowing across the boundary.

0.4 Problem 2.5.8(b) (problem 4)

2.5.8. Solve Laplace’s equation inside a circular annulus (a < r < b) subject to
the boundary conditions

*(a) u(a,0)=f(0), wu(d0)=g(6)
(b) $2(a,0) =0,  u(b6)=g(9)
(c) %2(a,0) = f(6), 3:(b,6) =g(6)

If there is a solvability condition, state it and explain it physically.

The Laplace PDE in polar coordinates is

2%u du  J%u
2 ou _
T2 e T e =0 (A)
With
u
W (LZ, 9) =0
u(b,0)=g(0) (B)

Assuming the solution can be written as
u(r,0) =R(r)©(0)
And substituting this assumed solution back into the (A) gives
”R"® +rR'© + RO®” = 0
Dividing the above by R® gives
,R” R 0"

7’?+1’E+ o) =0
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Since each side depends on different independent variable and they are equal, they must be equal
to same constant. say A.

This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to
each ODE. This results in

0" +A0 =0 1)
O (-m) = O (n)
O’ (-n) = O’ (n)
And
PR” +rR' = AR =0 (2)
R' (1) =0

Starting with (1) Case A < 0 The solution is
®(0) = Acosh (\/X@) + Bsinh (\/X@)

First B.C. gives
©(-m) =0 (n)

Acosh (—\/Xn) + Bsinh (—\/Xn) = Acosh (\/Xn) + Bsinh (\/Xn)
Acosh (\/Zn) — Bsinh (\/Xn) = Acosh (\/Xn) + Bsinh (\/Xn)
2Bsinh (\/Xn) =0
But sinh (\/Xn) =0 only at zero and A # 0, hence B = 0 and the solution becomes
® (0) = Acosh (\/XG)
©’ (6) = AV cosh (V26)
Applying the second B.C. gives
Q' (-n) =0’ (n)
AV cosh (—\/Xn) = AVA cosh (\/ZT()
AVA cosh (\/Xn) = AVA cosh (\/Xn)
2AVA cosh (\/Xn) =0

But cosh (\/Xn) # 0 hence A = 0. Therefore trivial solution and A < 0 is not an eigenvalue.

Case A =0 The solution is ©® = A0 + B. Applying the first B.C. gives

O(-n)=0(n)
-Ant+B=mA+B
2nA =0

A=0
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And the solution becomes ® = By. A constant. Hence A = 0 is an eigenvalue.

Case A >0
The solution becomes

® = Acos (\/16) + Bsin (\/X@)
®’ = -AVAsin (\/ZG) + BVA cos (\/XG)
Applying first B.C. gives
O (-n) =0 (n)
Acos (—\/Xn) + Bsin (—\/Xn) = Acos (\/Xn) + Bsin (\/Xn)
Acos (\//_ln) - Bsin ( )\n) = Acos (\/Zn) + Bsin (\//_ln)
2B sin( An) =0 (3)
Applying second B.C. gives
O’ (-n) =0’ (n)
~AVA sin (—\/Xn) + BV cos (—\/Xn) = -AVAsin (\/Xn) + BV cos (\/Xn)
AVA sin (\/Xn) + BV cos (\/Xn) = -AVAsin (\/Xn) + BV cos (\/Xn)
AVAsin (Var) = ~aVisin (Viz)
24sin (Vir) = 0 4)
Equations (3,4) can be both zero only if A = B = 0 which gives trivial solution, or when sin (\/Zn) =0.
Therefore taking sin (\/Xn) = 0 gives a non-trivial solution. Hence

\/Xn=n7'c n=12,3,--
Ay =n? n=1,2,3-

Hence the solution for ® is

® = Ay + Y, A, cos (n6) + B, sin (n6) (5)

n=1

Now the R equation is solved

The case for A = 0 gives
?R” +rR" =0
R” + %R’ =0 r#0
As was done in last problem, the solution to this is
R(r)=Alnl|r|+C

Since r > 0 no need to keep worrying about |r| and is removed for simplicity. Applying the B.C. gives

1
R = A-
r



Evaluating at r = a gives

1
0=A-
a
Hence A =0, and the solution becomes
R(r)=Cy

Which is a constant.

Case A > 0 The ODE in this case is

PR"+rR =n?R=0 n=1,23,-

Let R = 77, the above becomes
2p (p - 1) P72 +rprPl = 2P = 0
p(p—l)rp+prp—n2rp =0
p(p—1)+p—n2 =0
e

p=+n

Hence the solution is

1
Rn(r)=Cr”+Dr—n n=1,2,3,-

Applying the boundary condition R’ (a) = 0 gives

1
’ _ -1
R, (r) =nC, """ —nuD, s
0 =R} ()
=nC n-1 D 1
=ntpat s —n nn+l

= nC,a*" - nD,
= C,a*" - D,
D, = C,a*"

The solution becomes

1
R, (r)=C,r" + Cnaz"r—n n=1,2,3,-

2n
a

- n

=C, (r + o )

Hence the complete solution for R (r) is

00 aZn
R(r)=Co+ ch(r"+ r—ﬂ)

n=1

Using (5),(6) gives
Uy (T, 6) = Rn®n

00 2n
u(r,0) = [C0+ ECn(r” + %)

n=1

n=1

0o 2n 00
=Dy + Y, A, cos(n6)C, (r” + ) + Y, B, sin (n6)C, (
n=1

a
n
n=1 r

Ay + E A, cos (n6) + B, sin (n0)

22

(6)
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Where Dy = CyAy. To simplify more, A,C, is combined to A, and B,,C,, is combined to B,,. The full
solution is

00 a2n ol a2n
u(r,0) =Dy + E A, (r” + r_") cos (n6) + 2 B, (r” + r_”) sin (n0)

n=1 n=1

The final nonhomogeneous B.C. is applied.

u(b,0) =g (6)
0 a2n 0 a2n
2(60) =Dy + ”2::1 A, (b” + b_") cos (n6) + ;::1 B, (b” + b_”) sin (n6)

For n = 0, integrating both sides give

For n > 0, multiplying both sides by cos (m0) and integrating gives

fﬂ g(6) cos (m0)do = fﬂ Dy cos (m6)do

T 0 2n
+ j: Z A, (b” + C;—n) cos (mB) cos (nO) do
T n=1
7T 0 aZI’l
+ f_n ';1 B, (b“ + b_”) cos (m0) sin (nO) dO
Hence
f g(6) cos(m0O)do = f Dy cos (m6)deo
=Tt 00—77 azn ,
+ ,12:]1 A, (b” + b_”) j:n cos (m0) cos (n6) do
0 aZn s
+ ), B, (V' + — f cos (m0@) sin (n6) do 7
E(M)_n()() (7)
But
f cos (m0) cos (n6)dO = 7t n=m=#0
f cos (m0) cos (nB)do = 0 n+m
And
f cos (m0) sin (nO)dO = 0
And

f Dgcos (mB)do =0
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Then (7) becomes

" 2n
f g(0)cos (n0)do = 1A, (bn + ”_)

bn
1 [" g(6)cos (n6) do
A, =— L, — 8)
n b+

a

Again, multiplying both sides by sin (m0) and integrating gives

f " ¢(6)sin (m0) d6 = f " Dysin (m0)d6

T 2n
+ f Z A, (b” + ab—n) sin (m0) cos (n0) dO

—Tn=1

7T 0 a2n
+ f 3B, (b“ + b—n)sin (m0) sin (10) dO

T n=1
Hence
f g(0)sin(m0O)do = f Dqsin (m0)do
- 00*77 a2n T
+ ;::1 A, (b" + b_") j:n sin (m6) cos (nO) dO
0 2n rd
+ ;1 B, (b” + ‘z—) f_ sin (m6)sin (16) 40 9)
But
f sin (mB) sin (n6)d6 = n=m=#0
f sin (m0) sin (nO)do =0 n#m
And
f sin (m6) cos (n0)dO =0
And

7T
f Dy sin (16) d6 = 0
=Tt
Then (9) becomes

T 2n
[ 5@ sin(:0)d0 = 8, (bn ; “b_)
1 [ 8(0)sin (n0)do
B = —=x

n 2n
Tt ny 4
b +




This complete the solution. Summary
2n

o) 2n [ a
u(r,0) =Dy + ;::1 A, (r” + ar—n) cos (n0) + ;:]1 B, (r” + r_”) sin (n0)

1 T
Do=5- [ g©4do

1 f_ig(Q) cos (n0)do

n P aZn
bn+F
1 ["g(0)sin(n0)do
_ _Fn
n_n bn+ﬁ

bﬂ

The following are some plots of the solution.

1.0 -1.0

Figure 10: Solution using f(6) = sin(36?),a = 0.3,b = 0.5
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1.0 -1.0

Figure 11: Solution using f(60) =36,a=0.3,0 =0.6

-0.5

-1.0

Figure 12: Solution using f(0) =1000,a =0.1,b = 0.4
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0.5 Problem 2.5.14 (problem 5)

2.5.14. Show that the “backward” heat equation

Ou _ _ O
ot 8z
subject to u(0,t) = u(L,t) = 0 and u(z,0) = f(z), is not well posed. [Hint:
Show that if the data are changed an arbitrarily small amount, for example,
nrr

f(@) = §(@) + - sin "Z

for large n, then the solution u(z,t) changes by a large amount.]

-1du _ J%u
k ot  Jx2
u(0,t)=0
u(L,t)=0
u(x,0) = f(x)
Assume u (x,t) = XT. Hence the PDE becomes
1
—--T'X=X"T
k
1 T/ B X//
kT X
Hence, forA real
1 T/ X//
—_—— = — = —A
kT X

The space ODE was solved before. Only positive eigenvalues exist. The solution is
X(x) = E B, sin (\/A—nx)
n=1

2
nrt
R )

The time ODE becomes
T = A,T,
T, -A,T,=0
With solution
T,(t) = A,eMt

T(H) =), At
n=1

27
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For the same eigenvalues. Therefore the full solution is

nrTt nrm 2
u(x,t)= ), C, mn(—x)e( t)! 1
(1) = 21 < M
Where C, = A,B,. Applying initial conditions gives

fx) = g C, sin (nTnx)

Multiplying by sin (%x) and integrating results in

Therefore

P‘II\J

f f(x)sin (—x) dx
0
The solution (1) becomes

Uy, f) = ( f F(x)sin (—x) dx) (sm (”Tx) AT )2*) @)

Assuming initial data is changed to f(x) + - sm( ) then
1
f)+— sm (—x) Z C,, sin (—x)
Multiplying both sides by sin (%x) and integrating
L . (mT 1 b, ,ymn L mm \ & . (nm
j(; f (x)sin (Tx) dx + p j; sin (Tx) dx = f(; sin (Tx) ,;::1 C, sin (Tx)

L mmn 1L
j(;f(x)sm(Tx)dx+aE C,,

N |~

L

f (x)sin (%x) dx + %

=N

C,=

o

Therefore, the new solution is

ii(x,t) = ( f f (x)sin (—X) dx + i)sm( Lnx) e(%)zt
Z f f(x) Sln(—x) dx Sln(%x) e(m)zt + l sin(%x) e(%)zt

n

2%1‘ f(x)Sln(—x)dxsm(n—x) F i Z _Sm (—x) (T )

w L . : nmy? .
But }. % £ f (x)sin (%x) dx sin (%x) e( r)t = u (x, t), therefore the above can be written as

nrt

i(x,t)=u(xt)+ E — sin (Tx) e(m)zt
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For large n, the difference between initial data f (x) and f (x) + %sin (’%x) is very small, since % — 0.

nm nT

2 2
However, the effect in the solution above, due to the presence of e(f) "is that ;e(f) " increases now

for large n, since the exponential is to the positive power, and it grows at a faster rate than % Zrows
small as n increases, with the net effect that the produce blow up for large n. This is because the power
of the exponential is positive and not negative is normally would be the case. Also by looking at the

2 4p 66 1 (%= 1,1 42 1 68
series ofe(L)twhichis1+(E) = (E) = +---, then —e(L)texpandsto—+—(ﬂ) —+—(E) o
L 2 L/ 3! n non 3!

L) 2 u\L
which becomes very large for large n.

In the normal PDE case, the above solution would have instead been the following

1 _(1m)?
ﬁ(x,t):u(x,t)+2—sin(ﬂx)e (7)t
o L

nm\2
And now as n — oo then 2:’:1 %sin(%x) e_(f) ! 5 0 as well. Notice that sin(%x) term is not
important for this analysis, as its value oscillates between -1 and +1.

0.6 Problem 2.5.22 (problem 6)

2.5.22. Show the drag force is zero for a uniform flow past a cylinder including
circulation.

The force exerted by the fluid on the cylinder is given by equation 2.5.56, page 77 of the text as

B 271
F=- f p{cos 0,sin 0)adO
0

Where a is the cylinder radius, p is the fluid pressure. This vector has 2 components. The x component
is the drag force and the y component is the left force as illustrated by this diagram.

Lift force (y direction)
F,=— fo%psin(ﬁ)a df

F, = — fozwpcos(ﬁ)a db

Drag force (z direction)
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Therefore the drag force (per unit length) is

27T
F, = —f p cos Oad0O 1)
0

Now the pressure p needs to be determined in order to compute the above. The fluid pressure p is
related to fluid flow velocity by the Bernoulli condition

1
p+ Ep|a|2 =C 2)

Where C is some constant and p is fluid density and # is the flow velocity vector. Hence in order to
find p, the fluid velocity is needed. But the fluid velocity is given by

=ub+ugd

Since the radial component of the fluid velocity is zero at the surface if the cylinder (This is one of
the boundary conditions used to derive the solution), then only the tangential component comes

into play. Hence |f| = |—%J| but
r a%\ .
W (r, 0) :clln(z)+uo r— " sin 60

Therefore

W _a + 1+ 2\ 0

—=—+u — s

ar r 0 7l
And hence

] | AY

i =|-—

ar

C1 112 .
-—— + Uy 1+ - sin 0
r r

At the surface r = a, hence
— €1 .
77| = |—; + 2ug sin 9|
Substituting this into (2) in order to solve for pressure p gives
il ( D4 2upsi 9)2 C
—p|-—= +2uysin =
P+5P\77 0

C ! ( 54 2ugsi 8)2
=C-zp(-— +2uysin
p P75 0
Substituting the above into (1) in order to solve for the drag gives

271 1 o ) 2

Fx:—f C——p(——+2u0sm6) cos Bad6

0 2 a

The above is the quantity that needs to be shown to be zero.
270 1

a 27T 2
F,=-aC cos 0dO — —pf (—— + 2ug sin 9) cos 6d6
0 2" Jy a
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But LG cos 0d6 = 0 hence the above simplifies to
n 2
F, = —gpf (—%1 + 2ug sin 6) cos 6d6
0

a n c% 2 . 2 P

=-=p — €08 0 + 4ugsin® 6 cos 0 — 4—ug sin 0 cos 0d6
20 Jy a a
a [c? pr2n 27 ) 1 27

=-=p [—; f cos 0dO + 4u3 f sin® 0 cos 0d0 - 4—u, f sin 6 cos Qde}
2 a 0 0 a 0

But ﬁn cos 0d6 = 0 and ﬁn sin 0 cos 0d6 = 0 hence the above reduces to
271
F, = —4apu? f sin? 6 cos 0dO
0

But sin® 0 = cos (260) and the above becomes

1
2

1
2

27 (1 1
F, = —4apu? f (E ~ 5 Cos (26)) cos 0d0
0

1 27T 1 27T
= —dapu3 (ifo cos 0d6 — Ej(; cos (20) cos GdQ)

But fn cos 6d0 = 0 and by orthogonality of cos function Kﬂ cos (20) cos (0) d6 = 0 as well. Therefore
the above reduces to

F, =0

The drag force (x component of the force exerted by fluid on the cylinder) is zero just outside the
surface of the surface of the cylinder. Which is what the question asks to show.

0.7 Problem 2.5.24 (problem 7)

2.5.24. Consider the velocity ug at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

Introduction. The stream velocity # in Cartesian coordinates is

i =uf+0vf
oV IV
T W

Where W is the stream function which satisfies Laplace PDE in 2D V2W = 0. In Polar coordinates
the above becomes
n=uf+ M@é
10V, IV .
=250 ar?
The solution to VW = 0 was found under the following conditions

2)

1. When r very large, or in other words, when too far away from the cylinder or the wing, the
flow lines are horizontal only. This means at r = co the y component of # in (1) is zero. This
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means

IV (x,
a(j: ) = 0. Therefore W (x, y) = ugy where 1, is some constant. In polar coordinates this
implies W (r, 0) = uyrsin 0, since y = rsin 6.

" . . _ . dJ
2. The second condition is that radial component of # is zero. In other words, %% = 0 when
r = a, where a is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that W =0 atr =0

Using the above three conditions, the solution to V2W = 0 was derived in lecture Sept. 30, 2016, to

be
r a?
W(r,0) = clln(a) + U (r— 7)sin9

Using the above solution, the velocity # can now be found using the definition in (2) as follows

19¥ 1 a?
;a—ez;uo(r—7)c089
A az\
W:7+M0(1+r—2)81n6

Hence, in polar coordinates

_ (1 a? ~ 1 a2\ . A
u—(;uo(r—T)cosﬂ)r—(7+u0(1+r—2)sm6)9 3)

Now the question posed can be answered. The circulation is given by
271
I'= ugrdo
0
2
But from (3) ug = - (671 + Uy (1 + i—z) sin 9), therefore the above becomes

27 o a2
F:f —(—+u0(1+—2)sin6)rd6
0 r 14

27T ol
r:f —(—+2uosin9)ad6
0 a

At r = a the above simplifies to

27
= f -1 — 2aug sin 646
0
27T 27
_ f 01d6 - 2au, f sin 66
0 0
But £2n sin 6d6 = 0, hence

27T
I= —C1 f de
0

= —2C17'(

Since I' < 0, then ¢; > 0. Now that ¢; is known to be positive, then the velocity is calculated at 6 = 7“

and then at 0 = % to see which is larger. Since this is calculated at » = 4, then the radial velocity is
zero and only 1y needs to be evaluated in (3).
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-7t
AtQZT
c a? -1
iz == (F e (1e ) (3)
2
:—(C—l—u0(1+a—2)sin(z))
r r 2
2
C1 a
-5l %)
Atr=a
__(a_
ez == (5 ~220)
:—C—1+2M0 (4)
a
+7
At9=?
01 a®\ |
u(%):— 7+u0 1+r_2 SID(E)
2
Cq a
=2 14+ —
[ ufi+2))
Atr=a

ueg) == (5 +2w)

=—— = 2uy ()

Comparing (4),(5), and since c; > 0, then the magnitude of 1y at g is larger than the magnitude of

ug at —2_71 Which implies the stream flows faster above the cylinder than below it.
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