HW 12, (wave PDE) Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1	HW	12																					
	1.1	Problem 12.2.1		 						 													•
	1.2	Problem 12.2.2		 						 													•
	1.3	Problem 12.2.3		 						 													•
	1.4	Problem 12.2.4		 						 													•
	1.5	Problem 12.2.5								 													•
		1.5.1 Part (a)).	 						 													•
		1.5.2 Part (b)).							 													•
		1.5.3 Part (c)		 						 													•
		1.5.4 Part (d)),	 						 													•

1 HW 12

1.1 Problem 12.2.1

Show that the wave equation can be considered as the following system of two coupled first-order PDE

$$\frac{\partial u}{\partial t} - c \frac{\partial u}{\partial x} = w \tag{1}$$

$$\frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x} = 0 \tag{2}$$

Answer

The wave PDE in 1D is $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$. Taking time derivative of equation (1) gives (assuming *c* is constant)

$$\frac{\partial^2 u}{\partial t^2} - c \frac{\partial^2 u}{\partial x \partial t} = \frac{\partial w}{\partial t}$$
(3)

Taking space derivative of equation (1) gives (assuming c is constant)

$$\frac{\partial^2 u}{\partial t \partial x} - c \frac{\partial^2 u}{\partial x^2} = \frac{\partial w}{\partial x} \tag{4}$$

Multiplying (4) by *c*

$$c\frac{\partial^2 u}{\partial t \partial x} - c^2 \frac{\partial^2 u}{\partial x^2} = c\frac{\partial w}{\partial x}$$
(5)

Adding (3)+(5) gives

$$\frac{\partial^2 u}{\partial t^2} - c \frac{\partial^2 u}{\partial x \partial t} + c \frac{\partial^2 u}{\partial t \partial x} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x}$$
$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x}$$

But the RHS of the above is zero, since it is equation (2). Therefore the above reduces to

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

Which is the wave PDE.

1.2 Problem 12.2.2

Solve

 $\frac{\partial w}{\partial t} - 3\frac{\partial w}{\partial x} = 0 \tag{1}$

with $w(x,0) = \cos x$

Answer

Let

 $w\equiv w\left(x\left(t\right) ,t\right)$

Hence

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = -3$ in the above, then we obtain (1). Hence we conclude that $\frac{dw}{dt} = 0$. Therefore, w(x(t), t) is constant. At time t = 0, we are given that

$$w(x(0), t) = \cos x(0)$$
 $t = 0$ (3)

We just now need to determine x(0). This is found from $\frac{dx}{dt} = -3$, which has the solution x = x(0) - 3t. Hence x(0) = x + 3t. Therefore (3) becomes

$$w(x(t),t) = \cos(x+3t)$$

1.3 Problem 12.2.3

Solve

$$\frac{\partial w}{\partial t} + 4\frac{\partial w}{\partial x} = 0 \tag{1}$$

with $w(0,t) = \sin 3t$

Answer

Let

Hence

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial t}\frac{dt}{dx}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dt}{dx} = \frac{1}{4}$ in (2), then we obtain (1). Hence we conclude that $\frac{dw}{dx} = 0$. Therefore, w(x, t(x)) is constant. At x = 0, we are given that

 $w \equiv w(x, t(x))$

$$w(x, t(0)) = \sin(3t(0))$$
 $x = 0$ (3)

We just now need to determine t(0). This is found from $\frac{dt}{dx} = \frac{1}{4}$, which has the solution $t(x) = t(0) + \frac{1}{4}x$. Hence $t(0) = t(x) - \frac{1}{4}x$. Therefore (3) becomes

$$w(x, t(x)) = \sin\left(3\left(t(x) - \frac{1}{4}x\right)\right)$$
$$= \sin\left(3t - \frac{3}{4}x\right)$$

1.4 Problem 12.2.4

Solve

$$\frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x} = 0 \tag{1}$$

with c > 0 and

$$w(x,0) = f(x)$$
 $x > 0$
 $w(0,t) = h(t)$ $t > 0$

 $w \equiv w(x(t), t)$

Answer

Let

Hence

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = c$ in (2), then we obtain (1). Hence we conclude that $\frac{dw}{dt} = 0$. Therefore, w(x(t), t) is constant. At t = 0, we are given that

$$w(x(t), t) = f(x(0))$$
 $t = 0$ (3)

We just now need to determine x(0). This is found from $\frac{dx}{dt} = c$, which has the solution x(t) = x(0) + ct. Hence x(0) = x(t) - ct. Therefore (3) becomes

$$w(x,t) = f(x - ct)$$

This is valid for x > ct. We now start all over again, and look at Let

$$w\equiv w\left(x,t\left(x\right)\right)$$

Hence

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial t}\frac{dt}{dx}$$
(4)

Comparing (4) and (1), we see that if we let $\frac{dt}{dx} = \frac{1}{c}$ in (4), then we obtain (1). Hence we conclude that $\frac{dw}{dx} = 0$. Therefore, w(x, t(x)) is constant. At x = 0, we are given that

$$w(x, t(x)) = h(t(0))$$
 $x = 0$ (5)

We just now need to determine t(0). This is found from $\frac{dt}{dx} = \frac{1}{c}$, which has the solution $t(x) = t(0) + \frac{1}{c}x$. Hence $t(0) = t(x) - \frac{1}{c}x$. Therefore (5) becomes

$$w(x,t) = h\left(t - \frac{1}{c}x\right)$$

Valid for $t > \frac{x}{c}$ or x < ct. Therefore, the solution is

$$w(x,t) = \begin{cases} f(x-ct) & x > ct \\ h\left(t - \frac{1}{c}x\right) & x < ct \end{cases}$$

1.5 Problem 12.2.5

1.5.1 Part (a)

Solve

$$\frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x} = e^{2x} \tag{1}$$

with w(x,0) = f(x)

Answer Let

Hence

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = c$ in the above, then we obtain (1). Hence we conclude that $\frac{dw}{dt} = e^{2x}$. Hence

 $w \equiv w(x(t), t)$

 $w = w(0) + te^{2x}$

At t = 0, w(0) = f(x(0)), hence

$$w = f(x(0)) + te^{2x}$$
(3)

We just now need to determine x(0). This is found from $\frac{dx}{dt} = c$, which has the solution x = x(0) + ct. Hence x(0) = x - ct. Therefore (3) becomes

$$w(x(t), t) = f(x - ct) + te^{2x}$$

1.5.2 Part (b)

Solve

$$\frac{\partial w}{\partial t} + x \frac{\partial w}{\partial x} = 1 \tag{1}$$

with w(x,0) = f(x)

Answer Let

Hence

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = x$ in the above, then we obtain (1). Hence we conclude that $\frac{dw}{dt} = 1$. Hence

 $w \equiv w(x(t), t)$

w = w(0) + t

At t = 0, w(0) = f(x(0)), hence the above becomes

$$w = f(x(0)) + t$$

We now need to find x(0). From $\frac{dx}{dt} = x$, the solution is $\ln |x| = t + x(0)$ or $x = x(0)e^t$. Hence $x(0) = xe^{-t}$ and the above becomes

$$w = f\left(xe^{-t}\right) + t$$

1.5.3 Part (c)

Solve

$$\frac{\partial w}{\partial t} + t \frac{\partial w}{\partial x} = 1 \tag{1}$$

with w(x, 0) = f(x)

Answer Let

 $w \equiv w\left(x\left(t\right),t\right)$

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = t$ in the above, then we obtain (1). Hence we conclude that $\frac{dw}{dt} = 1$. Hence

$$w = w(0) + t$$

At t = 0, w(0) = f(x(0)), hence the above becomes

$$v = f(x(0)) + t$$

We now need to find x(0). From $\frac{dx}{dt} = t$, the solution is $x = x(0) + \frac{t^2}{2}$. Hence $x(0) = x - \frac{t^2}{2}$ and the above becomes

$$w = f\left(x - \frac{t^2}{2}\right) + i$$

1.5.4 Part (d)

Solve

$$\frac{\partial w}{\partial t} + 3t \frac{\partial w}{\partial x} = w \tag{1}$$

with w(x,0) = f(x)

Answer Let

Hence

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{\partial w}{\partial x}\frac{dx}{dt}$$
(2)

Comparing (2) and (1), we see that if we let $\frac{dx}{dt} = 3t$ in the above, then we obtain (1). Hence we conclude that $\frac{dw}{dt} = w$. Hence

 $w \equiv w(x(t), t)$

$$\ln |w| = w (0) + t$$
$$w = w (0) e^{t}$$

At t = 0, w(0) = f(x(0)), hence the above becomes

$$w = f(x(0))e^t$$

We now need to find x(0). From $\frac{dx}{dt} = 3t$, the solution is $x = x(0) + \frac{3t^2}{2}$. Hence $x(0) = x - \frac{3t^2}{2}$ and the above becomes

$$w = f\left(x - \frac{3t^2}{2}\right)e^t$$