HW 12, (wave PDE) Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

1 HW 12 2
1.1 Problem 12.2.1 2
1.2 Problem 12.2.2 2
1.3 Problem 12.2.3 3
1.4 Problem 12.2.4 3
1.5 Problem 12.2.5 4
1.5.1 Part (a) 4
1.5.2 Part (b) 5
1.5.3 Part (c) 5
1.5.4 Part (d) 6

1 HW 12

1.1 Problem 12.2.1

Show that the wave equation can be considered as the following system of two coupled first-order PDE

$$
\begin{gather*}
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=w \tag{1}\\
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=0 \tag{2}
\end{gather*}
$$

Answer
The wave PDE in 1D is $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$. Taking time derivative of equation (1) gives (assuming c is constant)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-c \frac{\partial^{2} u}{\partial x \partial t}=\frac{\partial w}{\partial t} \tag{3}
\end{equation*}
$$

Taking space derivative of equation (1) gives (assuming c is constant)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t \partial x}-c \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial w}{\partial x} \tag{4}
\end{equation*}
$$

Multiplying (4) by c

$$
\begin{equation*}
c \frac{\partial^{2} u}{\partial t \partial x}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=c \frac{\partial w}{\partial x} \tag{5}
\end{equation*}
$$

Adding (3)+(5) gives

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}-c \frac{\partial^{2} u}{\partial x \partial t}+c \frac{\partial^{2} u}{\partial t \partial x}-c^{2} \frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x} \\
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}
\end{aligned}
$$

But the RHS of the above is zero, since it is equation (2). Therefore the above reduces to

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Which is the wave PDE.

1.2 Problem 12.2.2

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}-3 \frac{\partial w}{\partial x}=0 \tag{1}
\end{equation*}
$$

with $w(x, 0)=\cos x$
Answer
Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=-3$ in the above, then we obtain (1). Hence we conclude that $\frac{d w}{d t}=0$. Therefore, $w(x(t), t)$ is constant. At time $t=0$, we are given that

$$
\begin{equation*}
w(x(0), t)=\cos x(0) \quad t=0 \tag{3}
\end{equation*}
$$

We just now need to determine $x(0)$. This is found from $\frac{d x}{d t}=-3$, which has the solution $x=x(0)-3 t$. Hence $x(0)=x+3 t$. Therefore (3) becomes

$$
w(x(t), t)=\cos (x+3 t)
$$

1.3 Problem 12.2.3

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+4 \frac{\partial w}{\partial x}=0 \tag{1}
\end{equation*}
$$

with $w(0, t)=\sin 3 t$

Answer

Let

$$
w \equiv w(x, t(x))
$$

Hence

$$
\begin{equation*}
\frac{d w}{d x}=\frac{\partial w}{\partial x}+\frac{\partial w}{\partial t} \frac{d t}{d x} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d t}{d x}=\frac{1}{4}$ in (2), then we obtain (1). Hence we conclude that $\frac{d w}{d x}=0$. Therefore, $w(x, t(x))$ is constant. At $x=0$, we are given that

$$
\begin{equation*}
w(x, t(0))=\sin (3 t(0)) \quad x=0 \tag{3}
\end{equation*}
$$

We just now need to determine $t(0)$. This is found from $\frac{d t}{d x}=\frac{1}{4}$, which has the solution $t(x)=t(0)+\frac{1}{4} x$. Hence $t(0)=t(x)-\frac{1}{4} x$. Therefore (3) becomes

$$
\begin{aligned}
w(x, t(x)) & =\sin \left(3\left(t(x)-\frac{1}{4} x\right)\right) \\
& =\sin \left(3 t-\frac{3}{4} x\right)
\end{aligned}
$$

1.4 Problem 12.2.4

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=0 \tag{1}
\end{equation*}
$$

with $c>0$ and

$$
\begin{array}{ll}
w(x, 0)=f(x) & x>0 \\
w(0, t)=h(t) & t>0
\end{array}
$$

Answer

Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=c$ in (2), then we obtain (1). Hence we conclude that $\frac{d w}{d t}=0$. Therefore, $w(x(t), t)$ is constant. At $t=0$, we are given that

$$
\begin{equation*}
w(x(t), t)=f(x(0)) \quad t=0 \tag{3}
\end{equation*}
$$

We just now need to determine $x(0)$. This is found from $\frac{d x}{d t}=c$, which has the solution $x(t)=x(0)+c t$. Hence $x(0)=x(t)-c t$. Therefore (3) becomes

$$
w(x, t)=f(x-c t)
$$

This is valid for $x>c t$. We now start all over again, and look at Let

$$
w \equiv w(x, t(x))
$$

Hence

$$
\begin{equation*}
\frac{d w}{d x}=\frac{\partial w}{\partial x}+\frac{\partial w}{\partial t} \frac{d t}{d x} \tag{4}
\end{equation*}
$$

Comparing (4) and (1), we see that if we let $\frac{d t}{d x}=\frac{1}{c}$ in (4), then we obtain (1). Hence we conclude that $\frac{d w}{d x}=0$. Therefore, $w(x, t(x))$ is constant. At $x=0$, we are given that

$$
\begin{equation*}
w(x, t(x))=h(t(0)) \quad x=0 \tag{5}
\end{equation*}
$$

We just now need to determine $t(0)$. This is found from $\frac{d t}{d x}=\frac{1}{c}$, which has the solution $t(x)=t(0)+\frac{1}{c} x$. Hence $t(0)=t(x)-\frac{1}{c} x$. Therefore (5) becomes

$$
w(x, t)=h\left(t-\frac{1}{c} x\right)
$$

Valid for $t>\frac{x}{c}$ or $x<c t$. Therefore, the solution is

$$
w(x, t)= \begin{cases}f(x-c t) & x>c t \\ h\left(t-\frac{1}{c} x\right) & x<c t\end{cases}
$$

1.5 Problem 12.2.5

1.5.1 Part (a)

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=e^{2 x} \tag{1}
\end{equation*}
$$

with $w(x, 0)=f(x)$
Answer Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=c$ in the above, then we obtain (1). Hence we conclude that $\frac{d w}{d t}=e^{2 x}$. Hence

$$
w=w(0)+t e^{2 x}
$$

At $t=0, w(0)=f(x(0))$, hence

$$
\begin{equation*}
w=f(x(0))+t e^{2 x} \tag{3}
\end{equation*}
$$

We just now need to determine $x(0)$. This is found from $\frac{d x}{d t}=c$, which has the solution $x=x(0)+c t$. Hence $x(0)=x-c t$. Therefore (3) becomes

$$
w(x(t), t)=f(x-c t)+t e^{2 x}
$$

1.5.2 Part (b)

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+x \frac{\partial w}{\partial x}=1 \tag{1}
\end{equation*}
$$

with $w(x, 0)=f(x)$
Answer Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=x$ in the above, then we obtain (1). Hence we conclude that $\frac{d w}{d t}=1$. Hence

$$
w=w(0)+t
$$

At $t=0, w(0)=f(x(0))$, hence the above becomes

$$
w=f(x(0))+t
$$

We now need to find $x(0)$. From $\frac{d x}{d t}=x$, the solution is $\ln |x|=t+x(0)$ or $x=x(0) e^{t}$. Hence $x(0)=x e^{-t}$ and the above becomes

$$
w=f\left(x e^{-t}\right)+t
$$

1.5.3 Part (c)

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+t \frac{\partial w}{\partial x}=1 \tag{1}
\end{equation*}
$$

with $w(x, 0)=f(x)$
Answer Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=t$ in the above, then we obtain (1). Hence we conclude that $\frac{d w}{d t}=1$. Hence

$$
w=w(0)+t
$$

At $t=0, w(0)=f(x(0))$, hence the above becomes

$$
w=f(x(0))+t
$$

We now need to find $x(0)$. From $\frac{d x}{d t}=t$, the solution is $x=x(0)+\frac{t^{2}}{2}$. Hence $x(0)=x-\frac{t^{2}}{2}$ and the above becomes

$$
w=f\left(x-\frac{t^{2}}{2}\right)+t
$$

1.5.4 Part (d)

Solve

$$
\begin{equation*}
\frac{\partial w}{\partial t}+3 t \frac{\partial w}{\partial x}=w \tag{1}
\end{equation*}
$$

with $w(x, 0)=f(x)$
Answer Let

$$
w \equiv w(x(t), t)
$$

Hence

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial t}+\frac{\partial w}{\partial x} \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Comparing (2) and (1), we see that if we let $\frac{d x}{d t}=3 t$ in the above, then we obtain (1). Hence we conclude that $\frac{d w}{d t}=w$. Hence

$$
\begin{aligned}
\ln |w| & =w(0)+t \\
w & =w(0) e^{t}
\end{aligned}
$$

At $t=0, w(0)=f(x(0))$, hence the above becomes

$$
w=f(x(0)) e^{t}
$$

We now need to find $x(0)$. From $\frac{d x}{d t}=3 t$, the solution is $x=x(0)+\frac{3 t^{2}}{2}$. Hence $x(0)=x-\frac{3 t^{2}}{2}$ and the above becomes

$$
w=f\left(x-\frac{3 t^{2}}{2}\right) e^{t}
$$

