HW 6, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1 HW 6 2
1.1 \quad Section 3.4 problem 1 2
1.2 Section 3.4 problem 2 2
1.3 \quad Section 3.4 problem 3 2
1.4 \quad Section 3.4 problem 4 3
1.5 Section 3.4 problem 5 3
1.6 \quad Section 3.4 problem 6 4
1.7 Section 3.4 problem 7 4
1.8 Section 3.4 problem 8 4
1.9 Section 3.4 problem 9 5
1.10 Section 3.4 problem 10 5
1.11 Section 3.5 problem 1 6
1.12 Section 3.5 problem 2 6
1.13 Section 3.5 problem 3 8
1.14 Section 3.5 problem 4 9
1.15 Section 3.5 problem 5 10
1.16 Section 3.5 problem 6 10

1 HW 6

1.1 Section 3.4 problem 1

Find the general solution of $y^{\prime \prime}-2 y^{\prime}+y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
r^{2}-2 r+1 & =0 \\
(r-1)(r-1) & =0
\end{aligned}
$$

Hence $r=1$ double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{t} \\
& y_{2}=t e^{t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{t}+c_{2} t e^{t}
$$

1.2 Section 3.4 problem 2

Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$
Solution:
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
9 r^{2}+6 r+1 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-6+\sqrt{36-36}}{18}=-\frac{1}{3}
\end{aligned}
$$

Hence $r=-\frac{1}{3}$ double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{-1}{3} t} \\
& y_{2}=t e^{\frac{-1}{3} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{\frac{-1}{3} t}+c_{2} t e^{\frac{-1}{3} t}
$$

1.3 Section 3.4 problem 3

Find the general solution of $4 y^{\prime \prime}-4 y^{\prime}-3 y=0$
Solution:
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
4 r^{2}-4 r-3 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{16+48}}{8}=\frac{4 \pm 8}{8}=\frac{1 \pm 2}{2}=\frac{1}{2} \pm 1
\end{aligned}
$$

Hence $r_{1}=\frac{3}{2}, r_{2}=-\frac{1}{2}$. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{3}{2} t} \\
& y_{2}=e^{-\frac{1}{2} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{\frac{3}{2} t}+c_{2} e^{-\frac{1}{2} t}
$$

1.4 Section 3.4 problem 4

Find the general solution of $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
4 r^{2}+12 r+9 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-12 \pm \sqrt{144-144}}{8}=\frac{-3}{2}
\end{aligned}
$$

Hence $r=\frac{-3}{2}$ double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{-3}{2} t} \\
& y_{2}=t e^{\frac{-3}{2} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{\frac{-3}{2} t}+c_{2} t e^{\frac{-3}{2} t}
$$

1.5 Section 3.4 problem 5

Find the general solution of $y^{\prime \prime}-2 y^{\prime}+10 y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
r^{2}-2 r+10 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 \pm \sqrt{4-40}}{2}=\frac{2 \pm \sqrt{-36}}{2}=\frac{2 \pm 6 i}{2}=1 \pm 3 i
\end{aligned}
$$

Hence $r_{1}=1+3 i, r_{2}=1-3 i$. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{(1+3 i) t}=e^{t} e^{i 3 t} \\
& y_{2}=e^{t} e^{i 3 t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions, the complex exponential can be converted to trig functions cos, sin using the standard Euler identities, resulting in

$$
y=e^{t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)
$$

1.6 Section 3.4 problem 6

Find the general solution of $y^{\prime \prime}-6 y^{\prime}+9 y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{array}{r}
r^{2}-6 r+9=0 \\
(r-3)^{2}=0
\end{array}
$$

Hence $r=3$. Double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{3 t} \\
& y_{2}=t e^{3 t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

1.7 Section 3.4 problem 7

Find the general solution of $4 y^{\prime \prime}+17 y^{\prime}+4 y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
4 r^{2}+17 r+4 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-17 \pm \sqrt{289-64}}{8}=\frac{-17 \pm \sqrt{225}}{8}=\frac{-17 \pm 15}{8}
\end{aligned}
$$

Hence $r_{1}=\frac{-17-15}{8}=-4, r_{2}=\frac{-17+15}{8}=-\frac{1}{4}$. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{-4 t} \\
& y_{2}=e^{-\frac{1}{4} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{-4 t}+c_{2} e^{-\frac{1}{4} t}
$$

1.8 Section 3.4 problem 8

Find the general solution of $16 y^{\prime \prime}+24 y^{\prime}+9 y=0$
Solution:
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
16 r^{2}+24 r+9 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-24 \pm \sqrt{576-4(16)(9)}}{32}=\frac{-24}{32}=-\frac{3}{4}
\end{aligned}
$$

Hence $r=-\frac{3}{4}$. Double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{-\frac{3}{4} t} \\
& y_{2}=t e^{-\frac{3}{4} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{-\frac{3}{4} t}+c_{2} t e^{-\frac{3}{4} t}
$$

1.9 Section 3.4 problem 9

Find the general solution of $25 y^{\prime \prime}-20 y^{\prime}+4 y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
25 r^{2}-20 r+4 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{20 \pm \sqrt{400-4(25)(4)}}{50}=\frac{20}{50}=\frac{2}{5}
\end{aligned}
$$

Hence $r=\frac{2}{5}$. Double root. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{2}{5} t} \\
& y_{2}=t e^{\frac{2}{5} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions

$$
y=c_{1} e^{\frac{2}{5} t}+c_{2} t e^{\frac{2}{5} t}
$$

1.10 Section 3.4 problem 10

Find the general solution of $2 y^{\prime \prime}+2 y^{\prime}+y=0$

Solution:

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
2 r^{2}+2 r+1 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-4(2)(1)}}{4}=\frac{-2 \pm \sqrt{-4}}{4}=\frac{-2 \pm 2 i}{4}=\frac{-1}{2} \pm \frac{i}{2}
\end{aligned}
$$

Hence $r_{1}=\frac{-1}{2}+\frac{i}{2}, r_{2}=\frac{-1}{2}-\frac{i}{2}$. Therefore the two solutions are

$$
\begin{aligned}
& y_{1}=e^{\left(\frac{-1}{2}-\frac{i}{2}\right) t}=e^{\frac{-1}{2} t} e^{\frac{-i}{2} t} \\
& y_{2}=e^{\left(\frac{-1}{2}+\frac{i}{2}\right) t}=e^{\frac{-1}{2} t} e^{\frac{i}{2} t}
\end{aligned}
$$

And the general solution is linear combination of the above solutions, the complex exponential can be converted to trig functions cos, sin using the standard Euler identities, resulting in

$$
y=e^{\frac{-1}{2} t}\left(c_{1} \cos \frac{t}{2}+c_{2} \sin \frac{t}{2}\right)
$$

1.11 Section 3.5 problem 1

Find the general solution of $y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t}$

Solution:

The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.

Finding y_{h}
We need to solve homogenous ODE

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{aligned}
r^{2}-2 r-3 & =0 \\
(r+1)(r-3) & =0
\end{aligned}
$$

Hence $r_{1}=-1, r_{2}=3$. Therefore the two solution are

$$
\begin{aligned}
& y_{1}=e^{-t} \\
& y_{2}=e^{3 t}
\end{aligned}
$$

And the homogeneous solution is linear combination of the above solutions

$$
y_{h}=c_{1} e^{-t}+c_{2} e^{3 t}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t}
$$

We guess $y_{p}=A e^{2 t}$. Hence

$$
\begin{aligned}
y_{p}^{\prime} & =2 A e^{2 t} \\
y_{p}^{\prime \prime} & =4 A e^{2 t}
\end{aligned}
$$

Substituting this into the original ODE in order to solve for A gives

$$
\begin{aligned}
4 A e^{2 t}-2\left(2 A e^{2 t}\right)-3\left(A e^{2 t}\right) & =3 e^{2 t} \\
-3 A e^{2 t} & =3 e^{2 t}
\end{aligned}
$$

Hence $A=-1$ and therefore

$$
y_{p}=-e^{2 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-t}+c_{2} e^{3 t}-e^{2 t}
\end{aligned}
$$

1.12 Section 3.5 problem 2

Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin 2 t$
Solution:

The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.

Finding y_{h}
We need to solve homogenous ODE

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{aligned}
r^{2}+2 r+5 & =0 \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-20}}{2}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=-1 \pm 2 i
\end{aligned}
$$

From before, we know the solution is of the form

$$
y_{h}=e^{-t}\left(c_{1} \cos 2 t+\sin 2 t\right)
$$

Where

$$
\begin{aligned}
& y_{1}=e^{-t} \cos 2 t \\
& y_{2}=e^{-t} \sin 2 t
\end{aligned}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin 2 t
$$

We guess $y_{p}=A \cos 2 t+B \sin 2 t$ hence

$$
\begin{aligned}
y_{p}^{\prime} & =-2 A \sin 2 t+2 B \cos 2 t \\
y_{p}^{\prime \prime} & =-4 A \cos 2 t-4 B \sin 2 t
\end{aligned}
$$

Substituting these back into the original ODE in order to solve for A, B gives

$$
\begin{aligned}
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+5 y_{p} & =3 \sin 2 t \\
-4 A \cos 2 t-4 B \sin 2 t+2(-2 A \sin 2 t+2 B \cos 2 t)+5(A \cos 2 t+B \sin 2 t) & =3 \sin 2 t \\
-4 A \cos 2 t-4 B \sin 2 t-4 A \sin 2 t+4 B \cos 2 t+5 A \cos 2 t+5 B \sin 2 t & =3 \sin 2 t \\
(A+4 B) \cos 2 t+(B-4 A) \sin 2 t & =3 \sin 2 t
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A+4 B=0 \\
& B-4 A=3
\end{aligned}
$$

From first equation, $A=-4 B$, and the second equation becomes $B-4(-4 B)=3$ or $B+16 B=3$ or $B=\frac{3}{17}$, hence $A=\frac{-12}{17}$, therefore

$$
y_{p}=\frac{-12}{17} \cos 2 t+\frac{3}{17} \sin 2 t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =e^{-t}\left(c_{1} \cos 2 t+\sin 2 t\right)-\frac{12}{17} \cos 2 t+\frac{3}{17} \sin 2 t
\end{aligned}
$$

1.13 Section 3.5 problem 3

Find the general solution of $y^{\prime \prime}-y^{\prime}-2 y=-2 t+4 t^{2}$

Solution:

The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.

Finding y_{h}
We need to solve homogenous ODE

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{aligned}
r^{2}-r-2 & =0 \\
(r+1)(r-2) & =0
\end{aligned}
$$

Hence $r_{1}=-1, r_{2}=2$ and therefore

$$
y_{h}=c_{1} e^{-t}+c_{2} e^{2 t}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=-2 t+4 t^{2}
$$

We guess $y_{p}=A_{0}+A_{1} t+A_{2} t^{2}$. Therefore

$$
\begin{aligned}
& y_{p}^{\prime}=A_{1}+2 A_{2} t \\
& y_{p}^{\prime \prime}=2 A_{2}
\end{aligned}
$$

Substituting these back into the original ODE gives

$$
\begin{aligned}
2 A_{2}-\left(A_{1}+2 A_{2} t\right)-2\left(A_{0}+A_{1} t+A_{2} t^{2}\right) & =-2 t+4 t^{2} \\
t^{0}\left(2 A_{2}-A_{1}-2 A_{0}\right)+t\left(-2 A_{2}-2 A_{1}\right)+t^{2}\left(-2 A_{2}\right) & =-2 t+4 t^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
2 A_{2}-A_{1}-2 A_{0} & =0 \\
-2 A_{2}-2 A_{1} & =-2 \\
-2 A_{2} & =4
\end{aligned}
$$

From the last equation, $A_{2}=-2$, and from the second equation $A_{1}=\frac{-2+2(-2)}{-2}=3$ and from the first equation $2(-2)-3-2 A_{0}=0$ hence $A_{0}=\frac{4+3}{-2}=-\frac{7}{2}$, Therefore

$$
\begin{aligned}
y_{p} & =A_{0}+A_{1} t+A_{2} t^{2} \\
& =-\frac{7}{2}+3 t-2 t^{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-t}+c_{2} e^{2 t}-\frac{7}{2}+3 t-2 t^{2}
\end{aligned}
$$

1.14 Section 3.5 problem 4

Find the general solution of $y^{\prime \prime}+y^{\prime}-6 y=12 e^{3 t}+12 e^{-2 t}$

Solution:

The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.
$\underline{\text { Finding } y_{h}}$
We need to solve homogenous ODE

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{array}{r}
r^{2}+r-6=0 \\
(r+3)(r-2)=0
\end{array}
$$

Hence $r_{1}=-3, r_{2}=2$ and therefore

$$
y_{h}=c_{1} e^{-3 t}+c_{2} e^{2 t}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=12 e^{3 t}+12 e^{-2 t}
$$

We guess $y_{p}=A e^{3 t}+B e^{-2 t}$. Therefore

$$
\begin{aligned}
y_{p}^{\prime} & =3 A e^{3 t}-2 B e^{-2 t} \\
y_{p}^{\prime \prime} & =9 A e^{3 t}+4 B e^{-2 t}
\end{aligned}
$$

Substituting these back into the original ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}+y_{p}^{\prime}-6 y_{p} & =12 e^{3 t}+12 e^{-2 t} \\
9 A e^{3 t}+4 B e^{-2 t}+3 A e^{3 t}-2 B e^{-2 t}-6\left(A e^{3 t}+B e^{-2 t}\right) & =12 e^{3 t}+12 e^{-2 t} \\
e^{3 t}(9 A+3 A-6 A)+e^{-2 t}(4 B-2 B-6 B) & =12 e^{3 t}+12 e^{-2 t} \\
6 A e^{3 t}-4 B e^{-2 t} & =12 e^{3 t}+12 e^{-2 t}
\end{aligned}
$$

Comparing coefficients gives

$$
\begin{aligned}
A & =2 \\
B & =-3
\end{aligned}
$$

Hence

$$
y_{p}=2 e^{3 t}-3 e^{-2 t}
$$

And the final solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-3 t}+c_{2} e^{2 t}+2 e^{3 t}-3 e^{-2 t}
\end{aligned}
$$

1.15 Section 3.5 problem 5

Find the general solution of $y^{\prime \prime}-2 y^{\prime}-3 y=-3 t e^{-t}$
Solution:
The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.
$\underline{\text { Finding } y_{h}}$
We need to solve homogenous ODE

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{array}{r}
r^{2}-2 r-3=0 \\
(r-3)(r+1)=0
\end{array}
$$

Hence $r_{1}=3, r_{2}=-1$ and therefore

$$
y_{h}=c_{1} e^{3 t}+c_{2} e^{-t}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}-2 y^{\prime}-3 y=-3 t e^{-t}
$$

Guess for t is $A_{0}+B_{0} t$ and the guess for e^{-t} is $C t e^{-t}$ (where we multiplied by t since e^{-t} shows up in the homogenous solution. Therefore the product is

$$
\begin{aligned}
y_{p} & =\left(A_{0}+B_{0} t\right) C t e^{-t} \\
& =A_{0} C t e^{-t}+C B_{0} t^{2} e^{-t}
\end{aligned}
$$

Let $A_{0} C=A, C B_{0}=B$, and the above becomes

$$
\begin{aligned}
y_{p} & =A t e^{-t}+B t^{2} e^{-t} \\
& =(A+B t) t e^{-t}
\end{aligned}
$$

Substituting these back into the ODE and solving for A, B gives $B=\frac{3}{8}$ and $A=\frac{3}{16}$, hence

$$
\begin{aligned}
y_{p} & =\left(A t+B t^{2}\right) e^{-t} \\
& =\left(\frac{3}{16} t+\frac{3}{8} t^{2}\right) e^{-t}
\end{aligned}
$$

And the final solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{3 t}+c_{2} e^{-t}+\left(\frac{3}{16} t+\frac{3}{8} t^{2}\right) e^{-t}
\end{aligned}
$$

1.16 Section 3.5 problem 6

Find the general solution of $y^{\prime \prime}+2 y^{\prime}=3+4 \sin 2 t$
Solution:

The first step is to solve the homogenous ODE and find y_{h}, then find a particular solution y_{p} to the inhomogeneous ODE, then add both solutions $y_{h}+y_{p}$ in order to find the complete solution.
$\underline{\text { Finding } y_{h}}$
We need to solve homogenous ODE

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

The characteristic equation is found by substituting $y=e^{r t}$ into the above ODE and simplifying, giving

$$
\begin{array}{r}
r^{2}+2 r=0 \\
r(r+2)=0
\end{array}
$$

Hence $r_{1}=0, r_{2}=-2$ and therefore

$$
y_{h}=c_{1}+c_{2} e^{2 t}
$$

Finding y_{p}
Now we need to find one particular solution to

$$
y^{\prime \prime}+2 y^{\prime}=3+4 \sin 2 t
$$

Guess that $y_{p}=A t+B \cos 2 t+C \sin 2 t$, hence

$$
\begin{aligned}
y_{p}^{\prime} & =A-2 B \sin 2 t+2 C \cos 2 t \\
y_{p}^{\prime \prime} & =-4 B \cos 2 t-4 C \sin 2 t
\end{aligned}
$$

Substituting back into

$$
\begin{aligned}
y_{p}^{\prime \prime}+2 y_{p}^{\prime} & =3+4 \sin 2 t \\
-4 B \cos 2 t-4 C \sin 2 t+2(A-2 B \sin 2 t+2 C \cos 2 t) & =3+4 \sin 2 t \\
-4 B \cos 2 t-4 C \sin 2 t+2 A-4 B \sin 2 t+4 C \cos 2 t & =3+4 \sin 2 t \\
(-4 B+4 C) \cos 2 t+2 A+(-4 C-4 B) \sin 2 t & =3+4 \sin 2 t
\end{aligned}
$$

Hence

$$
\begin{aligned}
2 A & =3 \\
1 & =-C-B \\
0 & =-B+C
\end{aligned}
$$

From first equation, $A=\frac{3}{2}$, From third equation, $B=C$ and from the second equation $1=-2 B$ or $B=\frac{-1}{2}$, hence $C=\frac{-1}{2}$, and the particular solution is

$$
y_{p}=\frac{3}{2} t+\frac{-1}{2} \cos 2 t-\frac{1}{2} \sin 2 t
$$

Hence the complete solution is

$$
y=c_{1}+c_{2} e^{2 t}+\frac{3}{2} t-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t
$$

