HW 5, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1 HW 5 2
1.1 Section 3.1 problem 9 2
1.2 Section 3.1 problem 10 3
1.3 Section 3.1 problem 11 4
1.4 Section 3.1 problem 12 5
1.5 Section 3.1 problem 13 6
1.6 Section 3.1 problem 14 8
1.7 Section 3.1 problem 15 10
1.8 Section 3.1 problem 16 11
1.9 Section 3.2 problem 1 13
1.10 Section 3.2 problem 2 13
1.11 Section 3.2 problem 3 13
1.12 Section 3.2 problem 4 14
1.13 Section 3.2 problem 5 14
1.14 Section 3.2 problem 6 15

1 HW 5

1.1 Section 3.1 problem 9

Find the solution to $y^{\prime \prime}+y^{\prime}-2 y=0 ; y(0)=1, y^{\prime}(0)=1$ and sketch the solution and describe its behavior as t increases.

solution

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
r^{2}+r-2 & =0 \\
(r+2)(r-1) & =0
\end{aligned}
$$

Hence the roots are $r_{1}=-2, r_{2}=1$. Roots are real and distinct. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{-2 t} \\
& y_{2}=e^{t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-2 t}+c_{2} e^{t}
\end{aligned}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(0)=1)$ to the general solution gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives $y^{\prime}(t)=-2 c_{1} e^{-2 t}+c_{2} e^{t}$. Applying second initial condition to this results in

$$
\begin{equation*}
1=-2 c_{1}+c_{2} \tag{2}
\end{equation*}
$$

Equation (1,2) are now solved for c_{1}, c_{2}. From (1), $c_{1}=1-c_{2}$. Substituting this into (2) gives

$$
\begin{aligned}
1 & =-2\left(1-c_{2}\right)+c_{2} \\
& =-2+2 c_{2}+c_{2} \\
& =-2+3 c_{2}
\end{aligned}
$$

Hence $c_{2}=\frac{1+2}{3}=1$. Therefore $c_{1}=1-1=0$. Hence

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these back into the general solution gives

$$
y(t)=e^{t}
$$

Since the solution is exponential, it will grow in time and blows up. Here is sketch of the solution.

1.2 Section 3.1 problem 10

Find the solution to $y^{\prime \prime}+4 y^{\prime}+3 y=0 ; y(0)=2, y^{\prime}(0)=-1$ and sketch the solution and describe its behavior as t increases.
solution
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{array}{r}
r^{2}+4 r+3=0 \\
(r+3)(r+1)=0
\end{array}
$$

Hence the roots are $r_{1}=-3, r_{2}=-1$. Roots are real and distinct. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{-3 t} \\
& y_{2}=e^{-t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-3 t}+c_{2} e^{-t}
\end{aligned}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(0)=2)$ to the general solution gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives $y^{\prime}(t)=-3 c_{1} e^{-3 t}-c_{2} e^{-t}$. Applying second initial condition to this results in

$$
\begin{equation*}
-1=-3 c_{1}-c_{2} \tag{2}
\end{equation*}
$$

Equation (1,2) are now solved for c_{1}, c_{2}. From (1), $c_{1}=2-c_{2}$. Substituting this into (2) gives

$$
\begin{aligned}
-1 & =-3\left(2-c_{2}\right)-c_{2} \\
& =-6+3 c_{2}-c_{2} \\
& =-6+2 c_{2}
\end{aligned}
$$

Hence $c_{2}=\frac{-1+6}{2}=2.5$. Therefore $c_{1}=2-2.5=0.5$. Hence

$$
\begin{aligned}
& c_{1}=0.5 \\
& c_{2}=2.5
\end{aligned}
$$

Substituting these back into the general solution gives

$$
y(t)=0.5 e^{-3 t}+2.5 e^{-t}
$$

At t becomes large, both solutions decay to zero. So we expect the general solution to go to zero very fast. Here is a sketch.

1.3 Section 3.1 problem 11

Find the solution to $6 y^{\prime \prime}-5 y^{\prime}+y=0 ; y(0)=4, y^{\prime}(0)=0$ and sketch the solution and describe its behavior as t increases.

solution

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
6 r^{2}-5 r+1=0
$$

Hence $r_{1,2}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$, where $\Delta=b^{2}-4 a c=25-(4)(6)=1$. Since $\Delta>0$, the roots will be real and distinct. The roots are

$$
\begin{aligned}
r_{1,2} & =\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{5}{12} \pm \frac{1}{12}
\end{aligned}
$$

Hence the roots are $r_{1}=\frac{1}{2}, r_{2}=\frac{1}{3}$. Roots are real and distinct. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{1}{2} t} \\
& y_{2}=e^{\frac{1}{3} t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{\frac{1}{2} t}+c_{2} e^{\frac{1}{3} t}
\end{aligned}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(0)=4)$ to the general solution gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives $y^{\prime}(t)=\frac{1}{2} c_{1} e^{\frac{1}{2} t}+\frac{1}{3} c_{2} e^{\frac{1}{3} t}$. Applying second initial condition to this results in

$$
\begin{equation*}
0=\frac{1}{2} c_{1}+\frac{1}{3} c_{2} \tag{2}
\end{equation*}
$$

Equation (1,2) are now solved for c_{1}, c_{2}. From (1), $c_{1}=4-c_{2}$. Substituting this into (2) gives

$$
\begin{aligned}
0 & =\frac{1}{2}\left(4-c_{2}\right)+\frac{1}{3} c_{2} \\
& =2-\frac{1}{2} c_{2}+\frac{1}{3} c_{2} \\
& =2-\frac{1}{6} c_{2}
\end{aligned}
$$

Hence $c_{2}=12$. Therefore $c_{1}=4-12=-8$. Hence

$$
\begin{aligned}
& c_{1}=-8 \\
& c_{2}=12
\end{aligned}
$$

Substituting these back into the general solution gives

$$
y(t)=-8 e^{\frac{1}{2} t}+12 e^{\frac{1}{3} t}
$$

Since $e^{\frac{1}{2} t}$ grows faster than $e^{\frac{1}{3} t}$ and since $e^{\frac{1}{2} t}$ has negative coefficient, then the solution will go to $-\infty$ as t increases. Here is sketch of the solution

1.4 Section 3.1 problem 12

Find the solution to $y^{\prime \prime}+3 y^{\prime}=0 ; y(0)=-2, y^{\prime}(0)=3$ and sketch the solution and describe its behavior as t increases.
solution
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
r^{2}+3 r & =0 \\
r(r+3) & =0
\end{aligned}
$$

Hence the roots are $r_{1}=0, r_{2}=-3$. Roots are real and distinct. The two solutions are

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=e^{-3 t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
y=c_{1}+c_{2} e^{-3 t}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(0)=-2)$ to the general solution gives

$$
\begin{equation*}
-2=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives $y^{\prime}(t)=-3 c_{2} e^{-3 t}$. Applying second initial condition to this results in

$$
\begin{equation*}
3=-3 c_{2} \tag{2}
\end{equation*}
$$

Hence $c_{2}=-1$. Therefore $c_{1}=-1$. Substituting these back into the general solution gives

$$
y(t)=-1-e^{-3 t}
$$

As $t \rightarrow \infty$, the term $e^{-3 t} \rightarrow 0$ and we are left with -1 . Hence $\lim _{t-\infty} y(t)=-1$. Here is sketch of the solution

1.5 Section 3.1 problem 13

Find the solution to $y^{\prime \prime}+5 y^{\prime}+3 y=0 ; y(0)=1, y^{\prime}(0)=0$ and sketch the solution and describe its behavior as t increases.
solution
The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
r^{2}+5 r+3=0
$$

Hence $r_{1,2}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$, where $\Delta=b^{2}-4 a c=25-(4)(3)=13$. Since $\Delta>0$, the roots will be real and distinct. The roots are

$$
\begin{aligned}
r_{1,2} & =\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5}{2} \pm \frac{\sqrt{13}}{2}
\end{aligned}
$$

Hence the roots are $r_{1}=\frac{-5}{2}+\frac{\sqrt{13}}{2}, r_{2}=\frac{-5}{2}-\frac{\sqrt{13}}{2}$. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t} \\
& y_{2}=e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
y=c_{1} e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+c_{2} e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(0)=1)$ to the general solution gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives

$$
y^{\prime}(t)=c_{1}\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+c_{2}\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}
$$

Applying second initial condition to this results in

$$
\begin{equation*}
0=c_{1}\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right)+c_{2}\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) \tag{2}
\end{equation*}
$$

From (1), $c_{1}=1-c_{2}$ and from (2)

$$
\begin{aligned}
0 & =\left(1-c_{2}\right)\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right)+c_{2}\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) \\
& =\frac{-5}{2}+\frac{\sqrt{13}}{2}+\frac{5}{2} c_{2}-\frac{\sqrt{13}}{2} c_{2}-\frac{5}{2} c_{2}-\frac{\sqrt{13}}{2} c_{2} \\
& =-\frac{5}{2}+\frac{\sqrt{13}}{2}-\sqrt{13} c_{2} \\
c_{2} & =\frac{-5}{2 \sqrt{13}}+\frac{1}{2} \\
& =\frac{-5+\sqrt{13}}{2 \sqrt{13}}
\end{aligned}
$$

Therefore $c_{1}=1+\frac{5-\sqrt{13}}{2 \sqrt{13}}$ and the solution becomes

$$
\begin{aligned}
y(t) & =\left(1+\frac{5-\sqrt{13}}{2 \sqrt{13}}\right) e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+\left(\frac{-5+\sqrt{13}}{2 \sqrt{13}}\right) e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t} \\
& =e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+\frac{5-\sqrt{13}}{2 \sqrt{13}} e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+\left(\frac{-5+\sqrt{13}}{2 \sqrt{13}}\right) e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t} \\
& =e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+\frac{5 \sqrt{13}-13}{26} e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+\left(\frac{-5 \sqrt{13}+13}{26}\right) e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t} \\
& =\frac{1}{26}\left(26 e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+(5 \sqrt{13}-13) e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+(-5 \sqrt{13}+13) e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}\right) \\
& =\frac{1}{26}\left(26 e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+5 \sqrt{13} e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}-13 e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}-5 \sqrt{13} e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}+13 e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}\right) \\
& =\frac{1}{26}\left(13 e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}+5 \sqrt{13} e^{\left(\frac{-5}{2}+\frac{\sqrt{13}}{2}\right) t}-5 \sqrt{13} e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}+13 e^{\left(\frac{-5}{2}-\frac{\sqrt{13}}{2}\right) t}\right)
\end{aligned}
$$

Here is sketch of the solution showing that $y \rightarrow 0$ as $t \rightarrow \infty$

1.6 Section 3.1 problem 14

Find the solution to $2 y^{\prime \prime}+y^{\prime}-4 y=0 ; y(0)=0, y^{\prime}(0)=1$ and sketch the solution and describe its behavior as t increases.

solution

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
2 r^{2}+r-4=0
$$

Hence $r_{1,2}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$, where $\Delta=b^{2}-4 a c=1-(4)(2)(-4)=33$. Since $\Delta>0$, the roots will be real
and distinct. The roots are

$$
\begin{aligned}
r_{1,2} & =\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1}{4} \pm \frac{\sqrt{33}}{4}
\end{aligned}
$$

Hence the roots are $r_{1}=\frac{1}{4}+\frac{\sqrt{33}}{4}, r_{2}=\frac{1}{4}-\frac{\sqrt{33}}{4}$. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) t} \\
& y_{2}=e^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
y=c_{1} e^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) t}+c_{2} e^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) t}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $\left.(y)=0\right)$ to the general solution gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives

$$
y^{\prime}(t)=c_{1}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) e^{\left(\frac{1}{4}+\frac{\sqrt{33}}{4}\right) t}+c_{2}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) e^{\left(\frac{1}{4}-\frac{\sqrt{33}}{4}\right) t}
$$

Applying second initial condition to this results in

$$
\begin{equation*}
1=c_{1}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right)+c_{2}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) \tag{2}
\end{equation*}
$$

From (1), $c_{1}=-c_{2}$ and from (2)

$$
\begin{aligned}
1 & =-c_{2}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right)+c_{2}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) \\
& =\frac{1}{4} c_{2}-\frac{\sqrt{33}}{4} c_{2}-\frac{1}{4} c_{2}-\frac{\sqrt{33}}{4} c_{2} \\
& =\frac{-\sqrt{33}}{2} c_{2} \\
c_{2} & =\frac{-2}{\sqrt{33}}
\end{aligned}
$$

Therefore $c_{1}=\frac{2}{\sqrt{33}}$ and the solution becomes

$$
y=\frac{2}{\sqrt{33}} e^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) t}-\frac{2}{\sqrt{33}} e^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) t}
$$

Since $-\frac{1}{4}+\frac{\sqrt{33}}{4}=1.186$ and $-\frac{1}{4}-\frac{\sqrt{33}}{4}=-1.686$ then the above can be written as

$$
y=\frac{2}{\sqrt{33}} e^{1.186 t}-\frac{2}{\sqrt{33}} e^{-1.186 t}
$$

Then we see that as $t \rightarrow \infty$ the second term $e^{-1.186 t} \rightarrow 0$ and we are left with $e^{1.186 t}$ which will go to ∞
for large t. Hence

$$
\lim _{t \rightarrow \infty} y(t)=\infty
$$

Here is sketch of the solution

1.7 Section 3.1 problem 15

Find the solution to $y^{\prime \prime}+8 y^{\prime}-9 y=0 ; y(1)=1, y^{\prime}(1)=0$ and sketch the solution and describe its behavior as t increases.

solution

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
\begin{aligned}
r^{2}+8 r-9 & =0 \\
(r-1)(r+9) & =0
\end{aligned}
$$

Hence the roots are $r_{1}=1, r_{2}=-9$. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{t} \\
& y_{2}=e^{-9 t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
y=c_{1} e^{t}+c_{2} e^{-9 t}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(1)=1)$ to the general solution gives

$$
\begin{equation*}
1=c_{1} e^{1}+c_{2} e^{-9} \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives

$$
y^{\prime}(t)=c_{1} e^{t}-9 c_{2} e^{-9 t}
$$

Applying second initial condition to this results in

$$
\begin{equation*}
0=c_{1} e^{1}-9 c_{2} e^{-9} \tag{2}
\end{equation*}
$$

From (1), $c_{1}=\frac{1-c_{2} e^{-9}}{e^{1}}=e^{-1}-c_{2} e^{-10}$ and from (2)

$$
\begin{aligned}
0 & =\left(e^{-1}-c_{2} e^{-10}\right) e^{1}-9 c_{2} e^{-9} \\
& =1-c_{2} e^{-9}-9 c_{2} e^{-9} \\
& =1+c_{2}\left(-e^{-9}-9 e^{-9}\right) \\
0 & =1+c_{2}\left(-10 e^{-9}\right)
\end{aligned}
$$

Hence

$$
c_{2}=\frac{1}{10} e^{9}
$$

Therefore $c_{1}=e^{-1}-c_{2} e^{-10}=e^{-1}-\frac{1}{10} e^{9} e^{-10}=e^{-1}-\frac{1}{10} e^{-1}=\frac{9}{10} e^{-1}$ and the solution becomes

$$
\begin{aligned}
y & =\frac{9}{10} e^{-1} e^{t}+\frac{1}{10} e^{9} e^{-9 t} \\
& =\frac{9}{10} e^{t-1}+\frac{1}{10} e^{9-9 t}
\end{aligned}
$$

Then we see that as $t \rightarrow \infty$ the second term $e^{9-9 t} \rightarrow 0$ and we are left with e^{t-1} which will go to ∞ for large t. Hence

$$
\lim _{t \rightarrow \infty} y(t)=\infty
$$

Here is sketch of the solution.

1.8 Section 3.1 problem 16

Find the solution to $4 y^{\prime \prime}-y=0 ; y(-2)=1, y^{\prime}(-2)=-1$ and sketch the solution and describe its behavior as t increases.

solution

The characteristic equation is found by substituting $y=e^{r t}$ into the ODE and simplifying, giving

$$
4 r^{2}-1=0
$$

Hence the roots are $r_{1}= \pm \frac{1}{2}$. The two solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{1}{2} t} \\
& y_{2}=e^{-\frac{1}{2} t}
\end{aligned}
$$

The general solution is linear combination of the above two solutions

$$
y=c_{1} e^{\frac{1}{2} t}+c_{2} e^{-\frac{1}{2} t}
$$

Now c_{1}, c_{2} are found from initial conditions. Applying first initial condition $(y(-2)=1)$ to the general solution gives

$$
\begin{equation*}
1=c_{1} e^{-1}+c_{2} e \tag{1}
\end{equation*}
$$

Taking time derivative of the general solution gives

$$
y^{\prime}(t)=\frac{1}{2} c_{1} e^{\frac{1}{2} t}-\frac{1}{2} c_{2} e^{-\frac{1}{2} t}
$$

Applying second initial condition to this results in

$$
\begin{equation*}
-1=\frac{1}{2} c_{1} e^{-1}-\frac{1}{2} c_{2} e \tag{2}
\end{equation*}
$$

From (1), $c_{1}=\frac{1-c_{2} e}{e^{-1}}=e-c_{2} e^{2}$ and from (2)

$$
\begin{aligned}
-1 & =\frac{1}{2}\left(e-c_{2} e^{2}\right) e^{-1}-\frac{1}{2} c_{2} e \\
& =\frac{1}{2}-\frac{1}{2} c_{2} e-\frac{1}{2} c_{2} e \\
& =\frac{1}{2}-c_{2} e
\end{aligned}
$$

Hence

$$
c_{2}=\frac{1}{2} e^{-1}+e^{-1}=\frac{3}{2} e^{-1}
$$

Therefore $c_{1}=e-\left(\frac{3}{2} e^{-1}\right) e^{2}=e-\frac{3}{2} e=-\frac{1}{2} e$ and the solution becomes

$$
\begin{aligned}
y & =c_{1} e^{\frac{1}{2} t}+c_{2} e^{-\frac{1}{2} t} \\
& =-\frac{1}{2} e e^{\frac{1}{2} t}+\frac{3}{2} e^{-1} e^{\frac{-1}{2} t} \\
& =-\frac{1}{2} e^{1+\frac{t}{2}}+\frac{3}{2} e^{-1-\frac{t}{2}}
\end{aligned}
$$

Then we see that as $t \rightarrow \infty$ the second term $e^{-1-\frac{t}{2}} \rightarrow 0$ and we are left with $-\frac{1}{2} e^{1+\frac{t}{2}}$ which will go to $-\infty$ for large t. Hence

$$
\lim _{t \rightarrow \infty} y(t)=-\infty
$$

Here is sketch of the solution.

1.9 Section 3.2 problem 1

Find the Wronskian of the given pair of functions $e^{2 t}, e^{-\frac{3 t}{2}}$
solution
We are given $y_{1}(t)=e^{2 t}, y_{2}(t)=e^{\frac{-3}{2} t}$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{2 t} & e^{-\frac{3 t}{2}} \\
2 e^{2 t} & -\frac{2}{3} e^{-\frac{3 t}{2}}
\end{array}\right| \\
& =\frac{-3}{2} e^{\frac{t}{2}}-2 e^{\frac{t}{2}} \\
& =\frac{-7}{2} e^{\frac{t}{2}}
\end{aligned}
$$

1.10 Section 3.2 problem 2

Find the Wronskian of the given pair of functions $\cos t, \sin t$

solution

We are given $y_{1}(t)=\cos t, y_{2}(t)=\sin t$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right| \\
& =\cos ^{2} t+\sin ^{2} t \\
& =1
\end{aligned}
$$

1.11 Section 3.2 problem 3

Find the Wronskian of the given pair of functions $e^{-2 t}, t e^{-2 t}$
solution
We are given $y_{1}(t)=e^{-2 t}, y_{2}(t)=t e^{-2 t}$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right| \\
& =\left(e^{-2 t}\right)\left(e^{-2 t}-2 t e^{-2 t}\right)+2 e^{-2 t} t e^{-2 t} \\
& =e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t} \\
& =e^{-4 t}
\end{aligned}
$$

1.12 Section 3.2 problem 4

Find the Wronskian of the given pair of functions $x, x e^{x}$
solution
We are given $y_{1}(x)=x, y_{2}(x)=x e^{x}$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right| \\
& =\left|\begin{array}{cc}
x & x e^{x} \\
1 & e^{x}+x e^{x}
\end{array}\right| \\
& =(x)\left(e^{x}+x e^{x}\right)-x e^{x} \\
& =x e^{x}+x^{2} e^{x}-x e^{x} \\
& =x^{2} e^{x}
\end{aligned}
$$

1.13 Section 3.2 problem 5

Find the Wronskian of the given pair of functions $e^{t} \sin t, e^{t} \cos t$
solution
We are given $y_{1}(t)=e^{t} \sin t, y_{2}(t)=e^{t} \cos t$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{t} \sin t & e^{t} \cos t \\
e^{t} \sin t+e^{t} \cos t & e^{t} \cos t-e^{t} \sin t
\end{array}\right| \\
& =\left(e^{t} \sin t\right)\left(e^{t} \cos t-e^{t} \sin t\right)-e^{t} \cos t\left(e^{t} \sin t+e^{t} \cos t\right) \\
& =e^{2 t} \sin t \cos t-e^{2 t} \sin ^{2} t-e^{2 t} \cos t \sin t-e^{2 t} \cos ^{2} t \\
& =-e^{2 t} \sin ^{2} t-e^{2 t} \cos ^{2} t \\
& =-2 e^{2 t}\left(\sin ^{2} t+\cos ^{2} t\right) \\
& =-2 e^{2 t}
\end{aligned}
$$

1.14 Section 3.2 problem 6

Find the Wronskian of the given pair of functions $\cos ^{2} \theta, 1+\cos 2 \theta$

solution

We are given $y_{1}(\theta)=\cos ^{2} \theta, y_{2}(\theta)=1+\cos 2 \theta$, hence by definition, the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1}(\theta) & y_{2}(\theta) \\
y_{1}^{\prime}(\theta) & y_{2}^{\prime}(\theta)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos ^{2} \theta & 1+\cos 2 \theta \\
-2 \cos \theta \sin \theta & -2 \sin 2 \theta
\end{array}\right| \\
& =-2 \cos ^{2} \theta \sin 2 \theta-(1+\cos 2 \theta)(-2 \cos \theta \sin \theta) \\
& =-2 \cos ^{2} \theta \sin 2 \theta-(-2 \cos \theta \sin \theta-2 \cos \theta \sin \theta \cos 2 \theta) \\
& =-2 \cos ^{2} \theta \sin 2 \theta+2 \cos \theta \sin \theta+2 \cos \theta \sin \theta \cos 2 \theta
\end{aligned}
$$

Using $\cos 2 \theta=2 \cos ^{2} \theta-1$ And $\sin 2 \theta=2 \sin \theta \cos \theta$ the above becomes

$$
\begin{aligned}
W & =-2 \cos ^{2} \theta(2 \sin \theta \cos \theta)+2 \cos \theta \sin \theta+2 \cos \theta \sin \theta\left(2 \cos ^{2} \theta-1\right) \\
& =-4 \cos ^{3} \theta \sin \theta+2 \cos \theta \sin \theta+4 \cos ^{3} \theta \sin \theta-2 \cos \theta \sin \theta \\
& =-4 \cos ^{3} \theta \sin \theta+4 \cos ^{3} \theta \sin \theta \\
& =0
\end{aligned}
$$

We could also see that $W=0$ more directly, by noticing that $y_{1}=\cos ^{2} \theta=1-\sin ^{2} \theta$ and since $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$ then

$$
\begin{aligned}
y_{1} & =\cos ^{2} \theta \\
& =1-\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) \\
& =\frac{1}{2}+\frac{1}{2} \cos 2 \theta \\
& =\frac{1}{2}(1+\cos 2 \theta)
\end{aligned}
$$

Therefore, $y_{1}=\frac{1}{2} y_{2}$. Hence y_{2} is just a scaled version of y_{1} and so these are two solutions are not linearly independent functions, (parallel to each others in vector space view) and so we expect that the Wronskian to be zero.

