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1 HW 4

1.1 Section 2.6 problem 19

Question Show that 𝑥2𝑦3 + 𝑥 �1 + 𝑦2� 𝑦′ = 0 is not exact, and then becomes exact when multiplied

by 𝜇 �𝑥, 𝑦� = 1
𝑥𝑦3 and then solve.

Solution The first step is to apply theorem two and also check where the ODE is singular. Writing
it as

𝑑𝑦
𝑑𝑥

= 𝑓 �𝑥, 𝑦� =
−𝑥2𝑦3

𝑥 �1 + 𝑦2�

This is non-linear first order ODE. There is a pole at 𝑥 = 0 . From theorem two, this says that
unique solution is not guaranteed to exist since the first condition which says that 𝑓 �𝑥, 𝑦� must be
continuous, was not satisfied. Now the ODE is solved.

𝑀
�𝑥2𝑦3 +

𝑁

�����������𝑥 �1 + 𝑦2�𝑦′ = 0

Hence

𝑀�𝑥, 𝑦� = 𝑥2𝑦3

𝑁�𝑥, 𝑦� = 𝑥 �1 + 𝑦2�

An ODE is exact when 𝜕𝑀
𝜕𝑦 = 𝜕𝑁

𝜕𝑥 . These are now calculated to see if the ODE is exact or not

𝜕𝑀
𝜕𝑦

= 3𝑥2𝑦2

𝜕𝑁
𝜕𝑥

= 1 + 𝑦2

The above shows that that 𝜕𝑀
𝜕𝑦 ≠ 𝜕𝑁

𝜕𝑥 therefore the ODE is not exact. Multiplying the original ODE

by given integrating factor it becomes

�𝜇𝑥2𝑦3� + 𝜇𝑥 �1 + 𝑦2� 𝑦′ = 0
𝑥2𝑦3

𝑥𝑦3
+

1
𝑥𝑦3

𝑥 �1 + 𝑦2� 𝑦′ = 0

𝑥 +
1
𝑦3

�1 + 𝑦2� 𝑦′ = 0

Now 𝑀̄ = 𝑥 and 𝑁̄ = 1
𝑦3
�1 + 𝑦2�. Checking that the new 𝑀̄, 𝑁̄ are indeed exact.

𝜕𝑀̄
𝜕𝑦

= 0

𝜕𝑁̄
𝜕𝑥

= 0

The new ODE is exact. Now the ODE is solved using the standard method.

𝜕Ψ�𝑥, 𝑦�
𝜕𝑥

= 𝑀̄ = 𝑥 (1)

𝜕Ψ�𝑥, 𝑦�
𝜕𝑦

= 𝑁̄ =
1
𝑦3

�1 + 𝑦2� (2)

Integrating (1) w.r.t 𝑥 gives

Ψ =
1
2
𝑥2 + 𝑓 �𝑦� (3)

𝜕Ψ
𝜕𝑦

= 𝑓′ �𝑦�

Comparing the above to (2) in order to solve for 𝑓′ �𝑦� gives

𝑓′ �𝑦� =
1 + 𝑦2

𝑦3

𝑓 �𝑦� = �
1 + 𝑦2

𝑦3
𝑑𝑦 + 𝑐 (4)
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We need now to solve ∫ 1+𝑦2

𝑦3 𝑑𝑦

�
1 + 𝑦2

𝑦3
𝑑𝑦 = �

1
𝑦3
𝑑𝑦 +�

𝑦2

𝑦3
𝑑𝑦

= −
1
2𝑦2

+�
1
𝑦
𝑑𝑦

= −
1
2𝑦2

+ ln �𝑦�

Using the above solution in (4) gives

𝑓 �𝑦� = −
1
2𝑦2

+ ln �𝑦� + 𝑐

Using the above in (3) gives

Ψ =
1
2
𝑥2 −

1
2𝑦2

+ ln �𝑦� + 𝑐

But 𝑑Ψ
𝑑𝑥 = 𝑐0, therefore the above simplifies to, after collecting all constants to one

1
2
𝑥2 −

1
2𝑦2

+ ln �𝑦� = 𝐶 𝑥 ≠ 0

Checking 𝑦 = 0 as solution, shows that putting 𝑦 = 0 in 𝑓 �𝑥, 𝑦� = −𝑥2𝑦3

𝑥�1+𝑦2�
= 0. Hence 𝑦 = 0 is also a

solution.

Summary The solutions are

1
2
𝑥2 −

1
2𝑦2

+ ln �𝑦� = 𝐶 𝑥 ≠ 0, 𝑦 ≠ 0

𝑦 = 0 𝑥 ≠ 0

1.2 Section 2.6 problem 20

Question Show that � sin 𝑦
𝑦 − 2𝑒−𝑥 sin 𝑥� + � cos 𝑦+2𝑒−𝑥 cos 𝑥

𝑦
� 𝑦′ = 0 is not exact, and then becomes exact

when multiplied by 𝜇 �𝑥, 𝑦� = 𝑦𝑒𝑥 and then solve.

Solution First we will check where the ODE is singular. Writing it as

𝑑𝑦
𝑑𝑥

= 𝑓 �𝑥, 𝑦� =

sin 𝑦
𝑦 − 2𝑒−𝑥 sin 𝑥
cos 𝑦+2𝑒−𝑥 cos 𝑥

𝑦

This is non-linear first order ODE. We see a pole at 𝑦 = 0 . Hence 𝑦 ≠ 0. From theorem two, this
says that that unique solution is not guaranteed since first condition which says that 𝑓 �𝑥, 𝑦� must
be continuous, was not satisfied.

𝑀�𝑥, 𝑦� =
sin 𝑦
𝑦

− 2𝑒−𝑥 sin 𝑥

𝑁 �𝑥, 𝑦� =
cos 𝑦 + 2𝑒−𝑥 cos 𝑥

𝑦

An ODE is exact when 𝜕𝑀
𝜕𝑦 = 𝜕𝑁

𝜕𝑥 . These are now calculated to see if the ODE is exact or not

𝜕𝑀
𝜕𝑦

= ln 𝑦 sin 𝑦 +
1
𝑦

cos 𝑦

𝜕𝑁
𝜕𝑥

=
𝜕
𝜕𝑥 �

1
𝑦

cos 𝑦 + 1
𝑦
2𝑒−𝑥 cos 𝑥� =

−1
𝑦
2𝑒−𝑥 cos 𝑥 − 1

𝑦
2𝑒−𝑥 sin 𝑥 =

−2𝑒−𝑥

𝑦
(cos 𝑥 + sin 𝑥)

From above we see that 𝜕𝑀
𝜕𝑦 ≠ 𝜕𝑁

𝜕𝑥 therefore the ODE is not exact. Multiplying the original ODE by

given integrating factor it becomes

𝜇 �
sin 𝑦
𝑦

− 2𝑒−𝑥 sin 𝑥� + 𝜇 �
cos 𝑦 + 2𝑒−𝑥 cos 𝑥

𝑦 � 𝑦′ = 0

𝑦𝑒𝑥 �
sin 𝑦
𝑦

− 2𝑒−𝑥 sin 𝑥� + 𝑦𝑒𝑥 �
cos 𝑦 + 2𝑒−𝑥 cos 𝑥

𝑦 � 𝑦′ = 0

�𝑒𝑥 sin 𝑦 − 2𝑦 sin 𝑥� + �𝑒𝑥 cos 𝑦 + 2 cos 𝑥� 𝑦′ = 0
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Now

𝑀̄ = 𝑒𝑥 sin 𝑦 − 2𝑦 sin 𝑥
𝑁̄ = 𝑒𝑥 cos 𝑦 + 2 cos 𝑥

Checking now the new 𝑀̄, 𝑁̄ are indeed exact.

𝜕𝑀̄
𝜕𝑦

= 𝑒𝑥 cos 𝑦 − 2 sin 𝑥

𝜕𝑁̄
𝜕𝑥

= 𝑒𝑥 cos 𝑦 − 2 sin 𝑥

The new ODE is exact. Now the ODE is solved using the standard method.

𝜕Ψ�𝑥, 𝑦�
𝜕𝑥

= 𝑀̄ = 𝑒𝑥 sin 𝑦 − 2𝑦 sin 𝑥 (1)

𝜕Ψ�𝑥, 𝑦�
𝜕𝑦

= 𝑁̄ = 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 (2)

Integrating (1) w.r.t 𝑥 gives

Ψ = 𝑒𝑥 sin 𝑦 + 2𝑦 cos 𝑥 + 𝑓 �𝑦� (3)

𝜕Ψ
𝜕𝑦

= 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 + 𝑓′ �𝑦�

Comparing the above to (2) in order to solve for 𝑓′ �𝑦� gives

𝑒𝑥 cos 𝑦 + 2 cos 𝑥 + 𝑓′ �𝑦� = 𝑒𝑥 cos 𝑦 + 2 cos 𝑥

𝑓′ �𝑦� = 0

𝑓 �𝑦� = 𝑐 (4)

Substituting the above into (3) gives

Ψ = 𝑒𝑥 sin 𝑦 + 2𝑦 cos 𝑥 + 𝑐

But 𝑑Ψ
𝑑𝑥 = 𝑐0, therefore the above simplifies to, after collecting all constants to one

𝑒𝑥 sin 𝑦 + 2𝑦 cos 𝑥 = 𝐶 𝑦 ≠ 0

1.3 Section 2.6 problem 21

Question Show that 𝑦 + �2𝑥 − 𝑦𝑒𝑦� 𝑦′ = 0 is not exact, and then becomes exact when multiplied by

𝜇 �𝑥, 𝑦� = 𝑦 and then solve.

Solution

𝑀�𝑥, 𝑦� = 𝑦

𝑁 �𝑥, 𝑦� = 2𝑥 − 𝑦𝑒𝑦

An ODE is exact when 𝜕𝑀
𝜕𝑦 = 𝜕𝑁

𝜕𝑥 . These are now calculated to see if the ODE is exact or not

𝜕𝑀
𝜕𝑦

= 1

𝜕𝑁
𝜕𝑥

= 2

From above we see that 𝜕𝑀
𝜕𝑦 ≠ 𝜕𝑁

𝜕𝑥 therefore the ODE is not exact. Multiplying the original ODE by

given integrating factor it becomes

𝜇𝑦 + 𝜇 �2𝑥 − 𝑦𝑒𝑦� 𝑦′ = 0

𝑦2 + �2𝑥𝑦 − 𝑦2𝑒𝑦� 𝑦′ = 0

Now

𝑀̄ = 𝑦2

𝑁̄ = 2𝑥𝑦 − 𝑦2𝑒𝑦

Checking now the new 𝑀̄, 𝑁̄ are indeed exact.

𝜕𝑀̄
𝜕𝑦

= 2𝑦

𝜕𝑁̄
𝜕𝑥

= 2𝑦
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The new ODE is exact. Now the ODE is solved using the standard method.

𝜕Ψ�𝑥, 𝑦�
𝜕𝑥

= 𝑀̄ = 𝑦2 (1)

𝜕Ψ�𝑥, 𝑦�
𝜕𝑦

= 𝑁̄ = 2𝑥𝑦 − 𝑦2𝑒𝑦 (2)

Integrating (1) w.r.t 𝑥 gives

Ψ = 𝑦2𝑥 + 𝑓 �𝑦� (3)

𝜕Ψ
𝜕𝑦

= 2𝑦𝑥 + 𝑓′ �𝑦�

Comparing the above to (2) in order to solve for 𝑓′ �𝑦� gives

2𝑦𝑥 + 𝑓′ �𝑦� = 2𝑥𝑦 − 𝑦2𝑒𝑦

𝑓′ �𝑦� = −𝑦2𝑒𝑦

𝑓 �𝑦� = −�𝑦2𝑒𝑦𝑑𝑦 + 𝑐 (4)

The integral ∫𝑦2𝑒𝑦𝑑𝑦 can be found using integration by parts. Let 𝑢 = 𝑦2, 𝑑𝑣 = 𝑒𝑦 → 𝑑𝑢 = 2𝑦, 𝑣 = 𝑒𝑦,
therefore

�𝑦2𝑒𝑦𝑑𝑦 = �𝑢𝑑𝑣

= 𝑢𝑣 −�𝑣𝑑𝑢

= 𝑦2𝑒𝑦 − 2�𝑦𝑒𝑦𝑑𝑦

Applying integration by parts again to ∫𝑦𝑒𝑦𝑑𝑦, where now 𝑢 = 𝑦, 𝑑𝑣 = 𝑒𝑦 → 𝑑𝑢 = 1, 𝑣 = 𝑒𝑦, the above
becomes

�𝑦2𝑒𝑦𝑑𝑦 = 𝑦2𝑒𝑦 − 2 �𝑦𝑒𝑦 −�𝑒𝑦𝑑𝑦�

= 𝑦2𝑒𝑦 − 2 �𝑦𝑒𝑦 − 𝑒𝑦�

= 𝑦2𝑒𝑦 − 2𝑦𝑒𝑦 + 2𝑒𝑦

= 𝑒𝑦 �𝑦2 − 2𝑦 + 2�

Therefore from (4)

𝑓 �𝑦� = −𝑒𝑦 �𝑦2 − 2𝑦 + 2� + 𝑐

Substituting the above into (3) gives

Ψ = 𝑦2𝑥 − 𝑒𝑦 �𝑦2 − 2𝑦 + 2� + 𝑐

But 𝑑Ψ
𝑑𝑥 = 𝑐0, therefore the above simplifies to, after collecting all constants to one

𝑦2𝑥 − 𝑒𝑦 �𝑦2 − 2𝑦 + 2� = 𝐶

1.4 Section 2.6 problem 22

Question Show that (𝑥 + 2) sin 𝑦 + �𝑥 cos 𝑦� 𝑦′ = 0 is not exact, and then becomes exact when

multiplied by 𝜇 �𝑥, 𝑦� = 𝑥𝑒𝑥 and then solve.

Solution

𝑀�𝑥, 𝑦� = (𝑥 + 2) sin 𝑦

𝑁 �𝑥, 𝑦� = 𝑥 cos 𝑦

An ODE is exact when 𝜕𝑀
𝜕𝑦 = 𝜕𝑁

𝜕𝑥 . These are now calculated to see if the ODE is exact or not

𝜕𝑀
𝜕𝑦

= (𝑥 + 2) cos 𝑦

𝜕𝑁
𝜕𝑥

= cos 𝑦

From above we see that 𝜕𝑀
𝜕𝑦 ≠ 𝜕𝑁

𝜕𝑥 therefore the ODE is not exact. Multiplying the original ODE by

given integrating factor it becomes

𝜇 (𝑥 + 2) sin 𝑦 + 𝜇 �𝑥 cos 𝑦� 𝑦′ = 0

𝑥𝑒𝑥 (𝑥 + 2) sin 𝑦 + 𝑥𝑒𝑥 �𝑥 cos 𝑦� 𝑦′ = 0
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Now

𝑀̄ = �𝑥2𝑒𝑥 + 2𝑥𝑒𝑥� sin 𝑦

𝑁̄ = 𝑥2𝑒𝑥 cos 𝑦
Checking now the new 𝑀̄, 𝑁̄ are indeed exact.

𝜕𝑀̄
𝜕𝑦

= �𝑥2𝑒𝑥 + 2𝑥𝑒𝑥� cos 𝑦

𝜕𝑁̄
𝜕𝑥

= 2𝑥𝑒𝑥 cos 𝑦 + 𝑥2𝑒𝑥 cos 𝑦 = �𝑥2𝑒𝑥 + 2𝑥𝑒𝑥� cos 𝑦

The new ODE is exact. Now the ODE is solved using the standard method.

𝜕Ψ�𝑥, 𝑦�
𝜕𝑥

= 𝑀̄ = �𝑥2𝑒𝑥 + 2𝑥𝑒𝑥� sin 𝑦 (1)

𝜕Ψ�𝑥, 𝑦�
𝜕𝑦

= 𝑁̄ = 𝑥2𝑒𝑥 cos 𝑦 (2)

Integrating (2) w.r.t 𝑦 as it is simpler than integrating (1) w.r.t. 𝑥, gives

Ψ = �𝑥2𝑒𝑥 cos 𝑦𝑑𝑦 = 𝑥2𝑒𝑥 sin 𝑦 + 𝑓 (𝑥) (3)

𝜕Ψ
𝜕𝑥

= 2𝑥𝑒𝑥 sin 𝑦 + 𝑥2𝑒𝑥 sin 𝑦 + 𝑓′ (𝑥)

Comparing the above to (1) in order to solve for 𝑓′ (𝑥) gives

2𝑥𝑒𝑥 sin 𝑦 + 𝑥2𝑒𝑥 sin 𝑦 + 𝑓′ (𝑥) = �𝑥2𝑒𝑥 + 2𝑥𝑒𝑥� sin 𝑦

𝑓′ (𝑥) = 0
𝑓 (𝑥) = 𝑐 (4)

Substituting the above into (3) gives

Ψ = 𝑥2𝑒𝑥 sin 𝑦 + 𝑐

But 𝑑Ψ
𝑑𝑥 = 𝑐0, therefore Ψ = 𝑐1 and the above simplifies to, after collecting all constants to one

𝑥2𝑒𝑥 sin 𝑦 = 𝐶

1.5 Section 2.6 problem 23

Question Show that if
𝑁𝑥−𝑀𝑦

𝑀 = 𝑄 where 𝑄 is function of 𝑦 only, then 𝑀+𝑁𝑦′ = 0 has integrating

factor of form 𝜇 �𝑦� = 𝑒∫𝑄�𝑦�𝑑𝑡

Solution Given the di�erential equation

𝑀�𝑥, 𝑦� + 𝑁 �𝑥, 𝑦�
𝑑𝑦 (𝑥)
𝑑𝑥

= 0

Multiplying by 𝜇 �𝑦� results in

𝜇𝑀 + 𝜇𝑁𝑦′ = 0

The above is exact if

𝜕 �𝜇𝑀�
𝜕𝑦

=
𝜕 �𝜇𝑁�
𝜕𝑥

Performing the above, taking into account that 𝜇 depends on 𝑦 only, results in
𝑑𝜇
𝑑𝑦

𝑀 + 𝜇
𝜕𝑀
𝜕𝑦

= 𝜇
𝜕𝑁
𝜕𝑥

The above is first order ODE in 𝜇
𝑑𝜇
𝑑𝑦

𝑀 = 𝜇
𝜕𝑁
𝜕𝑥

− 𝜇
𝜕𝑀
𝜕𝑦

𝑑𝜇
𝑑𝑦

= 𝜇

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑁
𝜕𝑥 − 𝜕𝑀

𝜕𝑦

𝑀

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Let 𝑄 =
𝜕𝑁
𝜕𝑥 −

𝜕𝑀
𝜕𝑦

𝑀 . If 𝑄 depends on 𝑦 only, then the above ODE is separable. Hence

𝑑𝜇
𝑑𝑦

= 𝜇𝑄 �𝑦�

𝑑𝜇
𝜇

= 𝑄 �𝑦� 𝑑𝑦

Integrating both sides gives

ln �𝜇� = �𝑄�𝑦� 𝑑𝑦 + 𝐶

�𝜇� = 𝑒∫𝑄�𝑦�𝑑𝑦+𝐶

𝜇 �𝑦� = 𝐴𝑒∫𝑄�𝑦�𝑑𝑦

Where 𝐴 is some constant, which can be taken to be 1 leading to the result required to show. The

above procedure works only when 𝑄 =
𝜕𝑁
𝜕𝑥 −

𝜕𝑀
𝜕𝑦

𝑀 happened to be function of 𝑦 only. This complete
the proof.

1.6 Section 2.6 problem 24

Question Show that if
𝑁𝑥−𝑀𝑦

𝑥𝑀−𝑦𝑁 = 𝑅 where 𝑅 is function of 𝑥𝑦 only, then 𝑀+𝑁𝑦′ = 0 has integrating

factor of form 𝜇 �𝑥, 𝑦�. Find the general formula for 𝜇.

Solution Given the di�erential equation

𝑀�𝑥, 𝑦� + 𝑁 �𝑥, 𝑦�
𝑑𝑦 (𝑥)
𝑑𝑥

= 0

Let 𝜇 (𝑡) where 𝑡 = 𝑥𝑦. Multiplying the above with 𝜇 (𝑡) gives

𝜇 (𝑡)𝑀 �𝑥, 𝑦� + 𝜇 (𝑡)𝑁 �𝑥, 𝑦�
𝑑𝑦 (𝑥)
𝑑𝑥

= 0

The above is exact when
𝜕𝜇𝑀
𝜕𝑦

=
𝜕𝜇𝑁
𝜕𝑥

Hence
𝜕𝜇
𝜕𝑦

𝑀 + 𝜇
𝜕𝑀
𝜕𝑦

=
𝜕𝜇
𝜕𝑥

𝑁 + 𝜇
𝜕𝑁
𝜕𝑥

(1)

However,

𝜕𝜇
𝜕𝑦

=
𝑑𝜇
𝑑𝑡

𝜕𝑡
𝑑𝑦

=
𝑑𝜇
𝑑𝑡

𝑥 (2)

And
𝜕𝜇
𝜕𝑥

=
𝑑𝜇
𝑑𝑡

𝜕𝑡
𝑑𝑥

=
𝑑𝜇
𝑑𝑡

𝑦 (3)

Substituting (2,3) into (1) gives

𝑑𝜇
𝑑𝑡

𝑥𝑀 + 𝜇
𝜕𝑀
𝜕𝑦

=
𝑑𝜇
𝑑𝑡

𝑦𝑁 + 𝜇
𝜕𝑁
𝜕𝑥

𝑑𝜇
𝑑𝑡

�𝑥𝑀 − 𝑦𝑁� = 𝜇
𝜕𝑁
𝜕𝑥

− 𝜇
𝜕𝑀
𝜕𝑦

𝑑𝜇 (𝑡)
𝑑𝑡

= 𝜇
�𝜕𝑁
𝜕𝑥 − 𝜕𝑀

𝜕𝑦
�

�𝑥𝑀 − 𝑦𝑁�

In the above, 𝜇 depends on 𝑡 only, where 𝑡 is function of 𝑥𝑦 only. If
� 𝜕𝑁
𝜕𝑥 −

𝜕𝑀
𝜕𝑦

�

�𝑥𝑀−𝑦𝑁�
depends on 𝑡 only, then

the above can be considered a separable first order ODE in 𝜇. Let 𝑅 (𝑡) =
� 𝜕𝑁
𝜕𝑥 −

𝜕𝑀
𝜕𝑦

�

�𝑥𝑀−𝑦𝑁�
and the above

can be written as
𝑑𝜇 (𝑡)
𝑑𝑡

= 𝜇𝑅 (𝑡)
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Since separable, then

𝑑𝜇 (𝑡)
𝜇

= 𝑅 (𝑡) 𝑑𝑡

�
𝑑𝜇
𝜇

= �𝑅𝑑𝑡

ln �𝜇� = �𝑅𝑑𝑡 + 𝐶

�𝜇� = 𝑒∫𝑅𝑑𝑡+𝐶

𝜇 = 𝐴𝑒∫𝑅𝑑𝑡

Where 𝐴 is constant of integration which can be taken to be 1. Hence 𝜇 = 𝑒∫𝑅𝑑𝑡. This works only if
𝑅 is function of 𝑡 only.

1.7 Section 2.7 problem 20

August 7, 2012 21:03 c02 Sheet number 82 Page number 112 cyan black

112 Chapter 2. First Order Differential Equations

20. Convergence of Euler’s Method. It can be shown that under suitable conditions on f ,
the numerical approximation generated by the Euler method for the initial value problem
y′ = f (t, y), y(t0) = y0 converges to the exact solution as the step size h decreases. This is
illustrated by the following example. Consider the initial value problem

y′ = 1− t + y, y(t0) = y0.

(a) Show that the exact solution is y = φ(t) = (y0 − t0)et−t0 + t.
(b) Using the Euler formula, show that

yk = (1+ h)yk−1 + h − htk−1, k = 1, 2, . . . .

(c) Noting that y1 = (1+ h)(y0 − t0) + t1, show by induction that

yn = (1+ h)n(y0 − t0) + tn (i)

for each positive integer n.
(d) Consider a fixed point t > t0 and for a given n choose h = (t − t0)/n. Then tn = t for
every n. Note also that h → 0 as n → ∞. By substituting for h in Eq. (i) and letting n → ∞,
show that yn → φ(t) as n → ∞.
Hint: lim

n→∞(1+ a/n)n = ea.

In each of Problems 21 through 23, use the technique discussed in Problem 20 to show that
the approximation obtained by the Euler method converges to the exact solution at any fixed
point as h → 0.

21. y′ = y, y(0) = 1
22. y′ = 2y − 1, y(0) = 1 Hint: y1 = (1+ 2h)/2+ 1/2
23. y′ = 1

2 − t + 2y, y(0) = 1 Hint: y1 = (1+ 2h) + t1/2

2.8 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that
under certain conditions on f (t, y), the initial value problem

y′ = f (t, y), y(t0) = y0 (1)

has a unique solution in some interval containing the point t0.
In some cases (for example, if the differential equation is linear) the existence

of a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case, it is necessary to
adopt an indirect approach that demonstrates the existence of a solution of Eqs. (1)

1.7.1 part a

𝑦′ = 1 − 𝑡 + 𝑦
𝑦 (𝑡0) = 𝑦0

This is linear first order ODE. Writing it as 𝑦′−𝑦 = 1−𝑡, then the integrating factor is 𝜇 = 𝑒−∫𝑑𝑡 = 𝑒−𝑡
and the ODE becomes

𝑑
𝑑𝑡

�𝑦𝑒−𝑡� = 𝑒−𝑡 (1 − 𝑡)

Integrating both sides

𝑦𝑒−𝑡 = �𝑒−𝑡 (1 − 𝑡) 𝑑𝑡 + 𝑐

= �𝑒−𝑡𝑑𝑡 −� 𝑡𝑒−𝑡𝑑𝑡 + 𝑐 (1)

But ∫ 𝑡𝑒−𝑡𝑑𝑡 = ∫𝑢𝑑𝑣 where 𝑢 = 𝑡, 𝑑𝑣 = 𝑒−𝑡 → 𝑑𝑢 = 1, 𝑣 = −𝑒−𝑡, hence

�𝑡𝑒−𝑡𝑑𝑡 = 𝑢𝑣 −�𝑣𝑑𝑢

= −𝑡𝑒−𝑡 +�𝑒−𝑡𝑑𝑡

= −𝑡𝑒−𝑡 − 𝑒−𝑡
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Putting this result in (1) gives

𝑦𝑒−𝑡 = −𝑒−𝑡 − �−𝑡𝑒−𝑡 − 𝑒−𝑡� + 𝑐

= −𝑒−𝑡 + 𝑡𝑒−𝑡 + 𝑒−𝑡 + 𝑐
= 𝑡𝑒−𝑡 + 𝑐

Therefore solving for 𝑦 gives

𝑦 = 𝑡 + 𝑐𝑒𝑡 (2)

The constant 𝑐 is now found from initial conditions.

𝑦0 = 𝑡0 + 𝑐𝑒𝑡0

𝑐 = �𝑦0 − 𝑡0� 𝑒−𝑡0

Substituting 𝑐 found back into (2) gives the final solution

𝑦 = 𝑡 + �𝑦0 − 𝑡0� 𝑒−𝑡0𝑒𝑡

= �𝑦0 − 𝑡0� 𝑒𝑡−𝑡0 + 𝑡 (3)

1.7.2 Part b

Euler formula is

𝑦𝑘 = ℎ𝑓 �𝑡𝑘−1, 𝑦𝑘−1� + 𝑦𝑘−1 𝑘 = 1, 2, 3,⋯ (1)

Where in this problem 𝑓 �𝑡𝑘−1, 𝑦𝑘−1� is the RHS of 𝑦′ = 1 − 𝑡 + 𝑦 but evaluated at 𝑡𝑘−1. Hence

𝑓 �𝑡𝑘−1, 𝑦𝑘−1� = 1 − 𝑡𝑘−1 + 𝑦𝑘−1
Substituting this into (1) gives

𝑦𝑘 = ℎ �1 − 𝑡𝑘−1 + 𝑦𝑘−1� + 𝑦𝑘−1
= ℎ − ℎ𝑡𝑘−1 + ℎ𝑦𝑘−1 + 𝑦𝑘−1
= (1 + ℎ) 𝑦𝑘−1 + ℎ − ℎ𝑡𝑘−1 𝑘 = 1, 2, 3,⋯

Which is the required formula asked to derive.

1.7.3 Part c

The formula given 𝑦1 = (1 + ℎ) �𝑦0 − 𝑡0� + 𝑡1 can be found as follows. Since

𝑦1 = 𝑦0 + ℎ𝑓 �𝑡0, 𝑦0�

= 𝑦0 + ℎ �1 − 𝑡0 + 𝑦0�

= 𝑦0 + ℎ − ℎ𝑡1 + ℎ𝑦0
Adding 𝑡0 − 𝑡0 to the above will not changed anything, hence

𝑦1 = 𝑦0 + ℎ − ℎ𝑡1 + ℎ𝑦0 + 𝑡0 − 𝑡0
But 𝑡1 = 𝑡0 + ℎ by definition, hence the above becomes, by replacing 𝑡0 + ℎ above with 𝑡1

𝑦1 = 𝑦0 + 𝑡1 − ℎ𝑡1 + ℎ𝑦0 − 𝑡0
Simplifying

𝑦1 = �𝑦0 − 𝑡0� + ℎ �𝑦0 − 𝑡0� + 𝑡1
= (1 + ℎ) �𝑦0 − 𝑡0� + 𝑡1

Now the question will be answered. Need to show that 𝑦𝑛 = (1 + ℎ)𝑛 �𝑦0 − 𝑡0� + 𝑡𝑛 is true, using in-
duction. This is true for 𝑘 = 1 as shown above. Now assuming it is true for 𝑘, we then need to show
it is true for 𝑘 + 1.

By assumption, it is true for 𝑘, hence

𝑦𝑘 = (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘 (1)

But using Euler formula

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 �𝑡𝑘, 𝑦𝑘�

= 𝑦𝑘 + ℎ �1 − 𝑡𝑘 + 𝑦𝑘� (2)
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Substituting (1) into RHS of (2)

𝑦𝑘+1 = �(1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘� + ℎ �1 − 𝑡𝑘 + �(1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘��

= (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘 + ℎ − ℎ𝑡𝑘 + ℎ �(1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘�

= (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘 + ℎ − ℎ𝑡𝑘 + ℎ (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + ℎ𝑡𝑘
= (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘 + ℎ + ℎ (1 + ℎ)𝑘 �𝑦0 − 𝑡0�

But 𝑡𝑘 + ℎ = 𝑡𝑘+1 by definition, hence

𝑦𝑘+1 = (1 + ℎ)𝑘 �𝑦0 − 𝑡0� + 𝑡𝑘+1 + ℎ (1 + ℎ)𝑘 �𝑦0 − 𝑡0�

= (1 + ℎ)𝑘 �𝑦0 − 𝑡0� (1 + ℎ) + 𝑡𝑘+1
= (1 + ℎ)𝑘+1 �𝑦0 − 𝑡0� + 𝑡𝑘+1

The above shows it is true for 𝑘+ 1 given it is true for 𝑘. Therefore, it is true for any positive integer
𝑛.

1.7.4 Part d

Using

𝑦𝑛 = (1 + ℎ)𝑛 �𝑦0 − 𝑡0� + 𝑡𝑛

Replacing ℎ = 𝑡𝑛−𝑡0
𝑛 in the above gives

𝑦𝑛 = �1 + �
𝑡𝑛 − 𝑡0
𝑛

��
𝑛
�𝑦0 − 𝑡0� + 𝑡𝑛

Taking the limit

lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

�1 + �
𝑡𝑛 − 𝑡0
𝑛

��
𝑛
�𝑦0 − 𝑡0� + lim

𝑛→∞
𝑡𝑛

But lim𝑛→∞ 𝑡𝑛 = 𝑡, hence replacing all 𝑡𝑛 with 𝑡 in the above gives

lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

�1 + �
𝑡 − 𝑡0
𝑛

��
𝑛
�𝑦0 − 𝑡0� + 𝑡

Using hint that lim𝑛→∞ �1 + 𝑎
𝑛
�
𝑛
= 𝑒𝑎 the above simplifies to

𝑦 (𝑡) = lim
𝑛→∞

𝑦𝑛

= 𝑒(𝑡−𝑡0) �𝑦0 − 𝑡0� + 𝑡

Which is the analytical solution found in part (a).

1.8 Section 3.1 problem 1

Find the general solution to 𝑦′′ + 2𝑦′ − 3𝑦 = 0.

This is second order, linear, constant coe�cient ODE. Letting 𝑦 = 𝑒𝑟𝑡 and replacing this into the
ODE gives

𝑒𝑟𝑡 �𝑟2 + 2𝑟 − 3� = 0

Since 𝑒𝑟𝑡 ≠ 0, the above reduces to what is called the characteristic equation of the ODE

𝑟2 + 2𝑟 − 3 = 0

Which can be written as (𝑟 − 1) (𝑟 + 3) = 0. Hence 𝑟1 = 1, 𝑟2 = −3. Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒−3𝑡

1.9 Section 3.1 problem 2

Find the general solution to 𝑦′′ + 3𝑦′ + 2𝑦 = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE

𝑟2 + 3𝑟 + 2 = 0
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Which can be written as (𝑟 + 1) (𝑟 + 2) = 0. Hence 𝑟1 = −1, 𝑟2 = −2. Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡

1.10 Section 3.1 problem 3

Find the general solution to 6𝑦′′ − 𝑦′ − 𝑦 = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE

6𝑟2 − 𝑟 − 1 = 0

Hence 𝑟 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎 = 1±√1−4(6)(−1)

12 = 1±√1+24
12 = 1±5

12 . Hence 𝑟1 =
1
2 , 𝑟2 =

−1
3 . Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒
1
2 𝑡 + 𝑐2𝑒

−1
3 𝑡

1.11 Section 3.1 problem 4

Find the general solution to 2𝑦′′ − 3𝑦′ + 𝑦 = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE

2𝑟2 − 3𝑟 + 1 = 0

Hence 𝑟 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎 = 3±√9−4(2)(1)

4 = 3±1
4 . Hence 𝑟1 = 1, 𝑟2 =

1
2 . Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒
1
2 𝑡

1.12 Section 3.1 problem 5

Find the general solution to 𝑦′′ + 5𝑦′ = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE

𝑟2 + 5𝑟 = 0

Which can be written as 𝑟 (𝑟 + 5) = 0, hence 𝑟1 = 0, 𝑟2 = −5.Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1 + 𝑐2𝑒−5𝑡

1.13 Section 3.1 problem 6

Find the general solution to 4𝑦′′ − 9𝑦 = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE

4𝑟2 − 9 = 0

Therefore 𝑟2 = 9
4 or 𝑟 = ±�

9
4 = ± 3

2 . Hence 𝑟1 =
3
2 , 𝑟2 = − 3

2 .Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒
3
2 𝑡 + 𝑐2𝑒

− 3
2 𝑡

1.14 Section 3.1 problem 7

Find the general solution to 𝑦′′ − 9𝑦′ + 9𝑦 = 0.
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This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE is

𝑟2 − 9𝑟 + 9 = 0

Hence 𝑟 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎 = 9±√81−4(1)(9)

2 = 9±√81−36
2 = 9±√45

2 = 9±3√5
2 . Hence 𝑟1 = 9+3√5

2 , 𝑟2 = 9−3√5
2 .

Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒
9+3√5

2 𝑡 + 𝑐2𝑒
9−3√5

2 𝑡

1.15 Section 3.1 problem 8

Find the general solution to 𝑦′′ − 2𝑦′ − 2𝑦 = 0.

This is second order, linear, constant coe�cient ODE. The characteristic equation of the ODE is

𝑟2 − 2𝑟 − 2 = 0

Hence 𝑟 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎 = 2±√4−4(1)(−2)

2 = 2±√4+8
2 = 2±√12

2 = 2±2√3
2 = 1 ± √3. Hence 𝑟1 = 1 + √3, 𝑟2 = 1 − √3.

Therefore the solution is

𝑦 (𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

Where 𝑐1, 𝑐2 are constants which can be found from initial conditions. Hence the general solution is

𝑦 (𝑡) = 𝑐1𝑒
�1+√3�𝑡 + 𝑐2𝑒

�1−√3�𝑡
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