# HW 4, Math 319, Fall 2016 

## Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

## Contents

1 HW 4 ..... 2
1.1 Section 2.6 problem 19 ..... 2
1.2 Section 2.6 problem 20 ..... 3
1.3 Section 2.6 problem 21 ..... 4
1.4 Section 2.6 problem 22 ..... 5
1.5 Section 2.6 problem 23 ..... 6
1.6 Section 2.6 problem 24 ..... 7
1.7 Section 2.7 problem 20 ..... 8
1.7.1 part a ..... 8
1.7.2 Part b ..... 9
1.7.3 Part c ..... 9
1.7.4 Part d ..... 10
1.8 Section 3.1 problem 1 ..... 10
1.9 Section 3.1 problem 2 ..... 10
1.10 Section 3.1 problem 3 ..... 11
1.11 Section 3.1 problem 4 ..... 11
1.12 Section 3.1 problem 5 ..... 11
1.13 Section 3.1 problem 6 ..... 11
1.14 Section 3.1 problem 7 ..... 11
1.15 Section 3.1 problem 8 ..... 12

## 1 HW 4

### 1.1 Section 2.6 problem 19

Question Show that $x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0$ is not exact, and then becomes exact when multiplied by $\mu(x, y)=\frac{1}{x y^{3}}$ and then solve.

Solution The first step is to apply theorem two and also check where the ODE is singular. Writing it as

$$
\frac{d y}{d x}=f(x, y)=\frac{-x^{2} y^{3}}{x\left(1+y^{2}\right)}
$$

This is non-linear first order ODE. There is a pole at $x=0$. From theorem two, this says that unique solution is not guaranteed to exist since the first condition which says that $f(x, y)$ must be continuous, was not satisfied. Now the ODE is solved.

$$
\overbrace{x^{2} y^{3}}^{M}+\overbrace{x\left(1+y^{2}\right)}^{N} y^{\prime}=0
$$

Hence

$$
\begin{aligned}
& M(x, y)=x^{2} y^{3} \\
& N(x, y)=x\left(1+y^{2}\right)
\end{aligned}
$$

An ODE is exact when $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. These are now calculated to see if the ODE is exact or not

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=3 x^{2} y^{2} \\
& \frac{\partial N}{\partial x}=1+y^{2}
\end{aligned}
$$

The above shows that that $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ therefore the ODE is not exact. Multiplying the original ODE by given integrating factor it becomes

$$
\begin{aligned}
\left(\mu x^{2} y^{3}\right)+\mu x\left(1+y^{2}\right) y^{\prime} & =0 \\
\frac{x^{2} y^{3}}{x y^{3}}+\frac{1}{x y^{3}} x\left(1+y^{2}\right) y^{\prime} & =0 \\
x+\frac{1}{y^{3}}\left(1+y^{2}\right) y^{\prime} & =0
\end{aligned}
$$

Now $\bar{M}=x$ and $\bar{N}=\frac{1}{y^{3}}\left(1+y^{2}\right)$. Checking that the new $\bar{M}, \bar{N}$ are indeed exact.

$$
\begin{aligned}
& \frac{\partial \bar{M}}{\partial y}=0 \\
& \frac{\partial \bar{N}}{\partial x}=0
\end{aligned}
$$

The new ODE is exact. Now the ODE is solved using the standard method.

$$
\begin{align*}
& \frac{\partial \Psi(x, y)}{\partial x}=\bar{M}=x  \tag{1}\\
& \frac{\partial \Psi(x, y)}{\partial y}=\bar{N}=\frac{1}{y^{3}}\left(1+y^{2}\right) \tag{2}
\end{align*}
$$

Integrating (1) w.r.t $x$ gives

$$
\begin{align*}
\Psi & =\frac{1}{2} x^{2}+f(y)  \tag{3}\\
\frac{\partial \Psi}{\partial y} & =f^{\prime}(y)
\end{align*}
$$

Comparing the above to (2) in order to solve for $f^{\prime}(y)$ gives

$$
\begin{align*}
f^{\prime}(y) & =\frac{1+y^{2}}{y^{3}} \\
f(y) & =\int \frac{1+y^{2}}{y^{3}} d y+c \tag{4}
\end{align*}
$$

We need now to solve $\int \frac{1+y^{2}}{y^{3}} d y$

$$
\begin{aligned}
\int \frac{1+y^{2}}{y^{3}} d y & =\int \frac{1}{y^{3}} d y+\int \frac{y^{2}}{y^{3}} d y \\
& =-\frac{1}{2 y^{2}}+\int \frac{1}{y} d y \\
& =-\frac{1}{2 y^{2}}+\ln |y|
\end{aligned}
$$

Using the above solution in (4) gives

$$
f(y)=-\frac{1}{2 y^{2}}+\ln |y|+c
$$

Using the above in (3) gives

$$
\Psi=\frac{1}{2} x^{2}-\frac{1}{2 y^{2}}+\ln |y|+c
$$

But $\frac{d \Psi}{d x}=c_{0}$, therefore the above simplifies to, after collecting all constants to one

$$
\frac{1}{2} x^{2}-\frac{1}{2 y^{2}}+\ln |y|=C \quad x \neq 0
$$

Checking $y=0$ as solution, shows that putting $y=0$ in $f(x, y)=\frac{-x^{2} y^{3}}{x\left(1+y^{2}\right)}=0$. Hence $y=0$ is also a solution.

Summary The solutions are

$$
\begin{array}{rlrl}
\frac{1}{2} x^{2}-\frac{1}{2 y^{2}}+\ln |y| & =C \quad x \neq 0, y \neq 0 \\
y & =0 & x \neq 0
\end{array}
$$

### 1.2 Section 2.6 problem 20

Question Show that $\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime}=0$ is not exact, and then becomes exact when multiplied by $\mu(x, y)=y e^{x}$ and then solve.
Solution First we will check where the ODE is singular. Writing it as

$$
\frac{d y}{d x}=f(x, y)=\frac{\frac{\sin y}{y}-2 e^{-x} \sin x}{\frac{\cos y+2 e^{-x} \cos x}{y}}
$$

This is non-linear first order ODE. We see a pole at $y=0$. Hence $y \neq 0$. From theorem two, this says that that unique solution is not guaranteed since first condition which says that $f(x, y)$ must be continuous, was not satisfied.

$$
\begin{aligned}
& M(x, y)=\frac{\sin y}{y}-2 e^{-x} \sin x \\
& N(x, y)=\frac{\cos y+2 e^{-x} \cos x}{y}
\end{aligned}
$$

An ODE is exact when $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. These are now calculated to see if the ODE is exact or not

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\ln y \sin y+\frac{1}{y} \cos y \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(\frac{1}{y} \cos y+\frac{1}{y} 2 e^{-x} \cos x\right)=\frac{-1}{y} 2 e^{-x} \cos x-\frac{1}{y} 2 e^{-x} \sin x=\frac{-2 e^{-x}}{y}(\cos x+\sin x)
\end{aligned}
$$

From above we see that $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ therefore the ODE is not exact. Multiplying the original ODE by given integrating factor it becomes

$$
\begin{aligned}
\mu\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+\mu\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime} & =0 \\
y e^{x}\left(\frac{\sin y}{y}-2 e^{-x} \sin x\right)+y e^{x}\left(\frac{\cos y+2 e^{-x} \cos x}{y}\right) y^{\prime} & =0 \\
\left(e^{x} \sin y-2 y \sin x\right)+\left(e^{x} \cos y+2 \cos x\right) y^{\prime} & =0
\end{aligned}
$$

Now

$$
\begin{aligned}
\bar{M} & =e^{x} \sin y-2 y \sin x \\
\bar{N} & =e^{x} \cos y+2 \cos x
\end{aligned}
$$

Checking now the new $\bar{M}, \bar{N}$ are indeed exact.

$$
\begin{aligned}
& \frac{\partial \bar{M}}{\partial y}=e^{x} \cos y-2 \sin x \\
& \frac{\partial \bar{N}}{\partial x}=e^{x} \cos y-2 \sin x
\end{aligned}
$$

The new ODE is exact. Now the ODE is solved using the standard method.

$$
\begin{align*}
& \frac{\partial \Psi(x, y)}{\partial x}=\bar{M}=e^{x} \sin y-2 y \sin x  \tag{1}\\
& \frac{\partial \Psi(x, y)}{\partial y}=\bar{N}=e^{x} \cos y+2 \cos x \tag{2}
\end{align*}
$$

Integrating (1) w.r.t $x$ gives

$$
\begin{align*}
\Psi & =e^{x} \sin y+2 y \cos x+f(y)  \tag{3}\\
\frac{\partial \Psi}{\partial y} & =e^{x} \cos y+2 \cos x+f^{\prime}(y)
\end{align*}
$$

Comparing the above to (2) in order to solve for $f^{\prime}(y)$ gives

$$
\begin{align*}
e^{x} \cos y+2 \cos x+f^{\prime}(y) & =e^{x} \cos y+2 \cos x \\
f^{\prime}(y) & =0 \\
f(y) & =c \tag{4}
\end{align*}
$$

Substituting the above into (3) gives

$$
\Psi=e^{x} \sin y+2 y \cos x+c
$$

But $\frac{d \Psi}{d x}=c_{0}$, therefore the above simplifies to, after collecting all constants to one

$$
e^{x} \sin y+2 y \cos x=C \quad y \neq 0
$$

### 1.3 Section 2.6 problem 21

Question Show that $y+\left(2 x-y e^{y}\right) y^{\prime}=0$ is not exact, and then becomes exact when multiplied by $\overline{\mu(x, y)}=y$ and then solve.
Solution

$$
\begin{aligned}
& M(x, y)=y \\
& N(x, y)=2 x-y e^{y}
\end{aligned}
$$

An ODE is exact when $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. These are now calculated to see if the ODE is exact or not

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=1 \\
& \frac{\partial N}{\partial x}=2
\end{aligned}
$$

From above we see that $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ therefore the ODE is not exact. Multiplying the original ODE by given integrating factor it becomes

$$
\begin{aligned}
& \mu y+\mu\left(2 x-y e^{y}\right) y^{\prime}=0 \\
& y^{2}+\left(2 x y-y^{2} e^{y}\right) y^{\prime}=0
\end{aligned}
$$

Now

$$
\begin{aligned}
\bar{M} & =y^{2} \\
\bar{N} & =2 x y-y^{2} e^{y}
\end{aligned}
$$

Checking now the new $\bar{M}, \bar{N}$ are indeed exact.

$$
\begin{aligned}
& \frac{\partial \bar{M}}{\partial y}=2 y \\
& \frac{\partial \bar{N}}{\partial x}=2 y
\end{aligned}
$$

The new ODE is exact. Now the ODE is solved using the standard method.

$$
\begin{align*}
& \frac{\partial \Psi(x, y)}{\partial x}=\bar{M}=y^{2}  \tag{1}\\
& \frac{\partial \Psi(x, y)}{\partial y}=\bar{N}=2 x y-y^{2} e^{y} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t $x$ gives

$$
\begin{align*}
\Psi & =y^{2} x+f(y)  \tag{3}\\
\frac{\partial \Psi}{\partial y} & =2 y x+f^{\prime}(y)
\end{align*}
$$

Comparing the above to (2) in order to solve for $f^{\prime}(y)$ gives

$$
\begin{align*}
2 y x+f^{\prime}(y) & =2 x y-y^{2} e^{y} \\
f^{\prime}(y) & =-y^{2} e^{y} \\
f(y) & =-\int y^{2} e^{y} d y+c \tag{4}
\end{align*}
$$

The integral $\int y^{2} e^{y} d y$ can be found using integration by parts. Let $u=y^{2}, d v=e^{y} \rightarrow d u=2 y, v=e^{y}$, therefore

$$
\begin{aligned}
\int y^{2} e^{y} d y & =\int u d v \\
& =u v-\int v d u \\
& =y^{2} e^{y}-2 \int y e^{y} d y
\end{aligned}
$$

Applying integration by parts again to $\int y e^{y} d y$, where now $u=y, d v=e^{y} \rightarrow d u=1, v=e^{y}$, the above becomes

$$
\begin{aligned}
\int y^{2} e^{y} d y & =y^{2} e^{y}-2\left(y e^{y}-\int e^{y} d y\right) \\
& =y^{2} e^{y}-2\left(y e^{y}-e^{y}\right) \\
& =y^{2} e^{y}-2 y e^{y}+2 e^{y} \\
& =e^{y}\left(y^{2}-2 y+2\right)
\end{aligned}
$$

Therefore from (4)

$$
f(y)=-e^{y}\left(y^{2}-2 y+2\right)+c
$$

Substituting the above into (3) gives

$$
\Psi=y^{2} x-e^{y}\left(y^{2}-2 y+2\right)+c
$$

But $\frac{d \Psi}{d x}=c_{0}$, therefore the above simplifies to, after collecting all constants to one

$$
y^{2} x-e^{y}\left(y^{2}-2 y+2\right)=C
$$

### 1.4 Section 2.6 problem 22

Question Show that $(x+2) \sin y+(x \cos y) y^{\prime}=0$ is not exact, and then becomes exact when multiplied by $\mu(x, y)=x e^{x}$ and then solve.

## Solution

$$
\begin{aligned}
& M(x, y)=(x+2) \sin y \\
& N(x, y)=x \cos y
\end{aligned}
$$

An ODE is exact when $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. These are now calculated to see if the ODE is exact or not

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=(x+2) \cos y \\
& \frac{\partial N}{\partial x}=\cos y
\end{aligned}
$$

From above we see that $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ therefore the ODE is not exact. Multiplying the original ODE by given integrating factor it becomes

$$
\begin{aligned}
\mu(x+2) \sin y+\mu(x \cos y) y^{\prime} & =0 \\
x e^{x}(x+2) \sin y+x e^{x}(x \cos y) y^{\prime} & =0
\end{aligned}
$$

Now

$$
\begin{aligned}
\bar{M} & =\left(x^{2} e^{x}+2 x e^{x}\right) \sin y \\
\bar{N} & =x^{2} e^{x} \cos y
\end{aligned}
$$

Checking now the new $\bar{M}, \bar{N}$ are indeed exact.

$$
\begin{aligned}
& \frac{\partial \bar{M}}{\partial y}=\left(x^{2} e^{x}+2 x e^{x}\right) \cos y \\
& \frac{\partial \bar{N}}{\partial x}=2 x e^{x} \cos y+x^{2} e^{x} \cos y=\left(x^{2} e^{x}+2 x e^{x}\right) \cos y
\end{aligned}
$$

The new ODE is exact. Now the ODE is solved using the standard method.

$$
\begin{align*}
& \frac{\partial \Psi(x, y)}{\partial x}=\bar{M}=\left(x^{2} e^{x}+2 x e^{x}\right) \sin y  \tag{1}\\
& \frac{\partial \Psi(x, y)}{\partial y}=\bar{N}=x^{2} e^{x} \cos y \tag{2}
\end{align*}
$$

Integrating (2) w.r.t $y$ as it is simpler than integrating (1) w.r.t. $x$, gives

$$
\begin{align*}
\Psi & =\int x^{2} e^{x} \cos y d y=x^{2} e^{x} \sin y+f(x)  \tag{3}\\
\frac{\partial \Psi}{\partial x} & =2 x e^{x} \sin y+x^{2} e^{x} \sin y+f^{\prime}(x)
\end{align*}
$$

Comparing the above to (1) in order to solve for $f^{\prime}(x)$ gives

$$
\begin{align*}
2 x e^{x} \sin y+x^{2} e^{x} \sin y+f^{\prime}(x) & =\left(x^{2} e^{x}+2 x e^{x}\right) \sin y \\
f^{\prime}(x) & =0 \\
f(x) & =c \tag{4}
\end{align*}
$$

Substituting the above into (3) gives

$$
\Psi=x^{2} e^{x} \sin y+c
$$

But $\frac{d \Psi}{d x}=c_{0}$, therefore $\Psi=c_{1}$ and the above simplifies to, after collecting all constants to one

$$
x^{2} e^{x} \sin y=C
$$

### 1.5 Section 2.6 problem 23

Question Show that if $\frac{N_{x}-M_{y}}{M}=Q$ where $Q$ is function of $y$ only, then $M+N y^{\prime}=0$ has integrating factor of form $\mu(y)=e^{\int Q(y) d t}$
Solution Given the differential equation

$$
M(x, y)+N(x, y) \frac{d y(x)}{d x}=0
$$

Multiplying by $\mu(y)$ results in

$$
\mu M+\mu N y^{\prime}=0
$$

The above is exact if

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}
$$

Performing the above, taking into account that $\mu$ depends on $y$ only, results in

$$
\frac{d \mu}{d y} M+\mu \frac{\partial M}{\partial y}=\mu \frac{\partial N}{\partial x}
$$

The above is first order ODE in $\mu$

$$
\begin{aligned}
\frac{d \mu}{d y} M & =\mu \frac{\partial N}{\partial x}-\mu \frac{\partial M}{\partial y} \\
\frac{d \mu}{d y} & =\mu\left(\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}\right)
\end{aligned}
$$

Let $Q=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}$. If $Q$ depends on $y$ only, then the above ODE is separable. Hence

$$
\begin{aligned}
& \frac{d \mu}{d y}=\mu Q(y) \\
& \frac{d \mu}{\mu}=Q(y) d y
\end{aligned}
$$

Integrating both sides gives

$$
\begin{aligned}
\ln |\mu| & =\int Q(y) d y+C \\
|\mu| & =e^{\int Q(y) d y+C} \\
\mu(y) & =A e^{\int Q(y) d y}
\end{aligned}
$$

Where $A$ is some constant, which can be taken to be 1 leading to the result required to show. The above procedure works only when $Q=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}$ happened to be function of $y$ only. This complete the proof.

### 1.6 Section 2.6 problem 24

Question Show that if $\frac{N_{x}-M_{y}}{x M-y N}=R$ where $R$ is function of $x y$ only, then $M+N y^{\prime}=0$ has integrating factor of form $\mu(x, y)$. Find the general formula for $\mu$.
Solution Given the differential equation

$$
M(x, y)+N(x, y) \frac{d y(x)}{d x}=0
$$

Let $\mu(t)$ where $t=x y$. Multiplying the above with $\mu(t)$ gives

$$
\mu(t) M(x, y)+\mu(t) N(x, y) \frac{d y(x)}{d x}=0
$$

The above is exact when

$$
\frac{\partial \mu M}{\partial y}=\frac{\partial \mu N}{\partial x}
$$

Hence

$$
\begin{equation*}
\frac{\partial \mu}{\partial y} M+\mu \frac{\partial M}{\partial y}=\frac{\partial \mu}{\partial x} N+\mu \frac{\partial N}{\partial x} \tag{1}
\end{equation*}
$$

However,

$$
\begin{equation*}
\frac{\partial \mu}{\partial y}=\frac{d \mu}{d t} \frac{\partial t}{d y}=\frac{d \mu}{d t} x \tag{2}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{\partial \mu}{\partial x}=\frac{d \mu}{d t} \frac{\partial t}{d x}=\frac{d \mu}{d t} y \tag{3}
\end{equation*}
$$

Substituting (2,3) into (1) gives

$$
\begin{aligned}
\frac{d \mu}{d t} x M+\mu \frac{\partial M}{\partial y} & =\frac{d \mu}{d t} y N+\mu \frac{\partial N}{\partial x} \\
\frac{d \mu}{d t}(x M-y N) & =\mu \frac{\partial N}{\partial x}-\mu \frac{\partial M}{\partial y} \\
\frac{d \mu(t)}{d t} & =\mu \frac{\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)}{(x M-y N)}
\end{aligned}
$$

In the above, $\mu$ depends on $t$ only, where $t$ is function of $x y$ only. If $\frac{\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)}{(x M-y N)}$ depends on $t$ only, then the above can be considered a separable first order ODE in $\mu$. Let $R(t)=\frac{\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)}{(x M-y N)}$ and the above can be written as

$$
\frac{d \mu(t)}{d t}=\mu R(t)
$$

Since separable, then

$$
\begin{aligned}
\frac{d \mu(t)}{\mu} & =R(t) d t \\
\int \frac{d \mu}{\mu} & =\int R d t \\
\ln |\mu| & =\int R d t+C \\
|\mu| & =e^{\int R d t+C} \\
\mu & =A e^{\int R d t}
\end{aligned}
$$

Where $A$ is constant of integration which can be taken to be 1 . Hence $\mu=e^{\int_{\text {Rdt }} \text {. This works only if }}$ $R$ is function of $t$ only.

### 1.7 Section 2.7 problem 20

20. Convergence of Euler's Method. It can be shown that under suitable conditions on $f$, the numerical approximation generated by the Euler method for the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$ converges to the exact solution as the step size $h$ decreases. This is illustrated by the following example. Consider the initial value problem

$$
y^{\prime}=1-t+y, \quad y\left(t_{0}\right)=y_{0} .
$$

(a) Show that the exact solution is $y=\phi(t)=\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t$.
(b) Using the Euler formula, show that

$$
y_{k}=(1+h) y_{k-1}+h-h t_{k-1}, \quad k=1,2, \ldots .
$$

(c) Noting that $y_{1}=(1+h)\left(y_{0}-t_{0}\right)+t_{1}$, show by induction that

$$
\begin{equation*}
y_{n}=(1+h)^{n}\left(y_{0}-t_{0}\right)+t_{n} \tag{i}
\end{equation*}
$$

for each positive integer $n$.
(d) Consider a fixed point $t>t_{0}$ and for a given $n$ choose $h=\left(t-t_{0}\right) / n$. Then $t_{n}=t$ for every $n$. Note also that $h \rightarrow 0$ as $n \rightarrow \infty$. By substituting for $h$ in Eq. (i) and letting $n \rightarrow \infty$, show that $y_{n} \rightarrow \phi(t)$ as $n \rightarrow \infty$.
Hint: $\lim _{n \rightarrow \infty}(1+a / n)^{n}=e^{a}$.

### 1.7.1 part a

$$
\begin{aligned}
y^{\prime} & =1-t+y \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

This is linear first order ODE. Writing it as $y^{\prime}-y=1-t$, then the integrating factor is $\mu=e^{-\int d t}=e^{-t}$ and the ODE becomes

$$
\frac{d}{d t}\left(y e^{-t}\right)=e^{-t}(1-t)
$$

Integrating both sides

$$
\begin{align*}
y e^{-t} & =\int e^{-t}(1-t) d t+c \\
& =\int e^{-t} d t-\int t e^{-t} d t+c \tag{1}
\end{align*}
$$

But $\int t e^{-t} d t=\int u d v$ where $u=t, d v=e^{-t} \rightarrow d u=1, v=-e^{-t}$, hence

$$
\begin{aligned}
\int t e^{-t} d t & =u v-\int v d u \\
& =-t e^{-t}+\int e^{-t} d t \\
& =-t e^{-t}-e^{-t}
\end{aligned}
$$

Putting this result in (1) gives

$$
\begin{aligned}
y e^{-t} & =-e^{-t}-\left(-t e^{-t}-e^{-t}\right)+c \\
& =-e^{-t}+t e^{-t}+e^{-t}+c \\
& =t e^{-t}+c
\end{aligned}
$$

Therefore solving for $y$ gives

$$
\begin{equation*}
y=t+c e^{t} \tag{2}
\end{equation*}
$$

The constant $c$ is now found from initial conditions.

$$
\begin{aligned}
y_{0} & =t_{0}+c e^{t_{0}} \\
c & =\left(y_{0}-t_{0}\right) e^{-t_{0}}
\end{aligned}
$$

Substituting $c$ found back into (2) gives the final solution

$$
\begin{align*}
y & =t+\left(y_{0}-t_{0}\right) e^{-t_{0}} e^{t} \\
& =\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t \tag{3}
\end{align*}
$$

### 1.7.2 Part b

Euler formula is

$$
\begin{equation*}
y_{k}=h f\left(t_{k-1}, y_{k-1}\right)+y_{k-1} \quad k=1,2,3, \cdots \tag{1}
\end{equation*}
$$

Where in this problem $f\left(t_{k-1}, y_{k-1}\right)$ is the RHS of $y^{\prime}=1-t+y$ but evaluated at $t_{k-1}$. Hence

$$
f\left(t_{k-1}, y_{k-1}\right)=1-t_{k-1}+y_{k-1}
$$

Substituting this into (1) gives

$$
\begin{aligned}
y_{k} & =h\left(1-t_{k-1}+y_{k-1}\right)+y_{k-1} \\
& =h-h t_{k-1}+h y_{k-1}+y_{k-1} \\
& =(1+h) y_{k-1}+h-h t_{k-1} \quad k=1,2,3, \cdots
\end{aligned}
$$

Which is the required formula asked to derive.

### 1.7.3 Part c

The formula given $y_{1}=(1+h)\left(y_{0}-t_{0}\right)+t_{1}$ can be found as follows. Since

$$
\begin{aligned}
y_{1} & =y_{0}+h f\left(t_{0}, y_{0}\right) \\
& =y_{0}+h\left(1-t_{0}+y_{0}\right) \\
& =y_{0}+h-h t_{1}+h y_{0}
\end{aligned}
$$

Adding $t_{0}-t_{0}$ to the above will not changed anything, hence

$$
y_{1}=y_{0}+h-h t_{1}+h y_{0}+t_{0}-t_{0}
$$

But $t_{1}=t_{0}+h$ by definition, hence the above becomes, by replacing $t_{0}+h$ above with $t_{1}$

$$
y_{1}=y_{0}+t_{1}-h t_{1}+h y_{0}-t_{0}
$$

Simplifying

$$
\begin{aligned}
y_{1} & =\left(y_{0}-t_{0}\right)+h\left(y_{0}-t_{0}\right)+t_{1} \\
& =(1+h)\left(y_{0}-t_{0}\right)+t_{1}
\end{aligned}
$$

Now the question will be answered. Need to show that $y_{n}=(1+h)^{n}\left(y_{0}-t_{0}\right)+t_{n}$ is true, using induction. This is true for $k=1$ as shown above. Now assuming it is true for $k$, we then need to show it is true for $k+1$.

By assumption, it is true for $k$, hence

$$
\begin{equation*}
y_{k}=(1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k} \tag{1}
\end{equation*}
$$

But using Euler formula

$$
\begin{align*}
y_{k+1} & =y_{k}+h f\left(t_{k}, y_{k}\right) \\
& =y_{k}+h\left(1-t_{k}+y_{k}\right) \tag{2}
\end{align*}
$$

Substituting (1) into RHS of (2)

$$
\begin{aligned}
y_{k+1} & =\left((1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}\right)+h\left(1-t_{k}+\left((1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}\right)\right) \\
& =(1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}+h-h t_{k}+h\left((1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}\right) \\
& =(1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}+h-h t_{k}+h(1+h)^{k}\left(y_{0}-t_{0}\right)+h t_{k} \\
& =(1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k}+h+h(1+h)^{k}\left(y_{0}-t_{0}\right)
\end{aligned}
$$

But $t_{k}+h=t_{k+1}$ by definition, hence

$$
\begin{aligned}
y_{k+1} & =(1+h)^{k}\left(y_{0}-t_{0}\right)+t_{k+1}+h(1+h)^{k}\left(y_{0}-t_{0}\right) \\
& =(1+h)^{k}\left(y_{0}-t_{0}\right)(1+h)+t_{k+1} \\
& =(1+h)^{k+1}\left(y_{0}-t_{0}\right)+t_{k+1}
\end{aligned}
$$

The above shows it is true for $k+1$ given it is true for $k$. Therefore, it is true for any positive integer $n$.

### 1.7.4 Part d

Using

$$
y_{n}=(1+h)^{n}\left(y_{0}-t_{0}\right)+t_{n}
$$

Replacing $h=\frac{t_{n}-t_{0}}{n}$ in the above gives

$$
y_{n}=\left(1+\left(\frac{t_{n}-t_{0}}{n}\right)\right)^{n}\left(y_{0}-t_{0}\right)+t_{n}
$$

Taking the limit

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(1+\left(\frac{t_{n}-t_{0}}{n}\right)\right)^{n}\left(y_{0}-t_{0}\right)+\lim _{n \rightarrow \infty} t_{n}
$$

But $\lim _{n \rightarrow \infty} t_{n}=t$, hence replacing all $t_{n}$ with $t$ in the above gives

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(1+\left(\frac{t-t_{0}}{n}\right)\right)^{n}\left(y_{0}-t_{0}\right)+t
$$

Using hint that $\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}$ the above simplifies to

$$
\begin{aligned}
y(t) & =\lim _{n \rightarrow \infty} y_{n} \\
& =e^{\left(t-t_{0}\right)}\left(y_{0}-t_{0}\right)+t
\end{aligned}
$$

Which is the analytical solution found in part (a).

### 1.8 Section 3.1 problem 1

Find the general solution to $y^{\prime \prime}+2 y^{\prime}-3 y=0$.
This is second order, linear, constant coefficient ODE. Letting $y=e^{r t}$ and replacing this into the ODE gives

$$
e^{r t}\left(r^{2}+2 r-3\right)=0
$$

Since $e^{r t} \neq 0$, the above reduces to what is called the characteristic equation of the ODE

$$
r^{2}+2 r-3=0
$$

Which can be written as $(r-1)(r+3)=0$. Hence $r_{1}=1, r_{2}=-3$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-3 t}
$$

### 1.9 Section 3.1 problem 2

Find the general solution to $y^{\prime \prime}+3 y^{\prime}+2 y=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

$$
r^{2}+3 r+2=0
$$

Which can be written as $(r+1)(r+2)=0$. Hence $r_{1}=-1, r_{2}=-2$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

### 1.10 Section 3.1 problem 3

Find the general solution to $6 y^{\prime \prime}-y^{\prime}-y=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

$$
6 r^{2}-r-1=0
$$

Hence $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1 \pm \sqrt{1-4(6)(-1)}}{12}=\frac{1 \pm \sqrt{1+24}}{12}=\frac{1 \pm 5}{12}$. Hence $r_{1}=\frac{1}{2}, r_{2}=\frac{-1}{3}$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{\frac{-1}{3} t}
$$

### 1.11 Section 3.1 problem 4

Find the general solution to $2 y^{\prime \prime}-3 y^{\prime}+y=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

$$
2 r^{2}-3 r+1=0
$$

Hence $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{3 \pm \sqrt{9-4(2)(1)}}{4}=\frac{3 \pm 1}{4}$. Hence $r_{1}=1, r_{2}=\frac{1}{2}$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} 2^{\frac{1}{e^{2}} t}
$$

### 1.12 Section 3.1 problem 5

Find the general solution to $y^{\prime \prime}+5 y^{\prime}=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

$$
r^{2}+5 r=0
$$

Which can be written as $r(r+5)=0$, hence $r_{1}=0, r_{2}=-5$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1}+c_{2} e^{-5 t}
$$

### 1.13 Section 3.1 problem 6

Find the general solution to $4 y^{\prime \prime}-9 y=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE

$$
4 r^{2}-9=0
$$

Therefore $r^{2}=\frac{9}{4}$ or $r= \pm \sqrt{\frac{9}{4}}= \pm \frac{3}{2}$. Hence $r_{1}=\frac{3}{2}, r_{2}=-\frac{3}{2}$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{\frac{3}{2} t}+c_{2} e^{-\frac{3}{2} t}
$$

### 1.14 Section 3.1 problem 7

Find the general solution to $y^{\prime \prime}-9 y^{\prime}+9 y=0$.

This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE is

$$
r^{2}-9 r+9=0
$$

Hence $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{9 \pm \sqrt{81-4(1)(9)}}{2}=\frac{9 \pm \sqrt{81-36}}{2}=\frac{9 \pm \sqrt{45}}{2}=\frac{9 \pm 3 \sqrt{5}}{2}$. Hence $r_{1}=\frac{9+3 \sqrt{5}}{2}, r_{2}=\frac{9-3 \sqrt{5}}{2}$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{\frac{9+3 \sqrt{5}}{2} t}+c_{2} e^{\frac{9-3 \sqrt{5}}{2} t}
$$

### 1.15 Section 3.1 problem 8

Find the general solution to $y^{\prime \prime}-2 y^{\prime}-2 y=0$.
This is second order, linear, constant coefficient ODE. The characteristic equation of the ODE is

$$
r^{2}-2 r-2=0
$$

Hence $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 \pm \sqrt{4-4(1)(-2)}}{2}=\frac{2 \pm \sqrt{4+8}}{2}=\frac{2 \pm \sqrt{12}}{2}=\frac{2 \pm 2 \sqrt{3}}{2}=1 \pm \sqrt{3}$. Hence $r_{1}=1+\sqrt{3}, r_{2}=1-\sqrt{3}$. Therefore the solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Where $c_{1}, c_{2}$ are constants which can be found from initial conditions. Hence the general solution is

$$
y(t)=c_{1} e^{(1+\sqrt{3}) t}+c_{2} e^{(1-\sqrt{3}) t}
$$

