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0.1 Section 2.2 problem 1

Solve 𝑦′ = 𝑥2

𝑦

This is first order non-linear ODE. In the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous
everywhere except at the line 𝑦 = 0. Now the ODE is solved by separation

𝑦
𝑑𝑦
𝑑𝑥

= 𝑥2

𝑦𝑑𝑦 = 𝑥2𝑑𝑥

Integrating

�𝑦𝑑𝑦 = �𝑥2𝑑𝑥

𝑦2

2
=

𝑥3

3
+ 𝑐

Since initial conditions is not gives, the solution is left in implicit form (as mentioned in discussion
class, Thursday Sept. 29, 2016)

𝑦2 = 2
3𝑥

3 + 𝑐0 𝑦 ≠ 0

0.2 Section 2.2 problem 2

Solve 𝑦′ = 𝑥2

𝑦�1+𝑥3�

This is first order non-linear ODE. In the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous
everywhere except at line 𝑦 = 0 and at line 𝑥 = −1. Now the ODE is solved by separation

𝑦
𝑑𝑦
𝑑𝑥

=
𝑥2

�1 + 𝑥3�

𝑦𝑑𝑦 =
𝑥2

�1 + 𝑥3�
𝑑𝑥

Integrating

�𝑦𝑑𝑦 = �
𝑥2

�1 + 𝑥3�
𝑑𝑥

To integrate ∫ 𝑥2

�1+𝑥3�
𝑑𝑥 let 𝑢 = 1+𝑥3, hence 𝑑𝑢

𝑑𝑥 = 3𝑥2. Therefore the integral becomes ∫ 𝑥2

𝑢
𝑑𝑢
3𝑥2 =

1
3
∫ 𝑑𝑢

𝑢 =
1
3 ln |𝑢| = 1

3 ln �1 + 𝑥3�. Hence the above becomes

𝑦2

2
=

1
3

ln �1 + 𝑥3� + 𝑐

𝑦2 =
2
3

ln �1 + 𝑥3� + 𝑐1

Since initial condition is not gives, the solution is left in implicit form
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𝑦2 = 2
3 ln �1 + 𝑥3� + 𝑐1 𝑦 ≠ 0, 𝑥 ≠ −1

0.3 Section 2.2 problem 3

Solve 𝑦′ = −𝑦2 sin 𝑥

This is first order non-linear ODE. In the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous

everywhere and 𝜕𝑓
𝜕𝑦 = −2𝑦 sin (𝑥) is also continuous everywhere but unbounded at 𝑦 = −∞. This is

separable, assuming 𝑦 ≠ 0 and dividing by 𝑦2 the ODE becomes

1
𝑦2

𝑑𝑦
𝑑𝑥

= − sin (𝑥)

𝑑𝑦
𝑦2

= − sin () 𝑥𝑑𝑥

Integrating

�
𝑑𝑦
𝑦2

= −� sin (𝑥) 𝑑𝑥

−
1
𝑦
= cos (𝑥) + 𝑐

1
𝑦
= − cos (𝑥) + 𝑐1

Therefore the solution is

𝑦 (𝑥) = 1
𝑐1−cos(𝑥) 𝑦 ≠ 0

The reason for 𝑦 ≠ 0 was the assumption to divide by 𝑦2 above. Another solution is

𝑦 (𝑥) = 0

0.4 Section 2.2 problem 4

Solve 𝑦′ = 3𝑥2−1
3+2𝑦

This is first order non-linear ODE. In the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous

everywhere except at 3 + 2𝑦 = 0 or 𝑦 = − 3
2 . Now the ODE is solved by separation.

�3 + 2𝑦�
𝑑𝑦
𝑑𝑥

= 3𝑥2 − 1

�3 + 2𝑦� 𝑑𝑦 = �3𝑥2 − 1� 𝑑𝑥

Integrating

��3 + 2𝑦� 𝑑𝑦 = ��3𝑥2 − 1� 𝑑𝑥

𝑦2 + 3𝑦 = 𝑥3 − 𝑥 + 𝑐

Complete the square
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𝑦2 + 3𝑦 + �
3
2�

2

= 𝑥3 − 𝑥 + 𝑐 + �
3
2�

2

Since initial condition is not gives, the solution is left in implicit form.

�𝑦 + 3
2
�
2
= 𝑥3 − 𝑥 + 𝑐0 𝑦 ≠ − 3

2

0.5 Section 2.2 problem 5

𝑦′ = cos2 (𝑥) cos2 �2𝑦�

This is first order non-linear ODE. In the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous.

𝜕𝑓
𝜕𝑦

= cos2 (𝑥) 2 cos �2𝑦� �−2 sin �2𝑦��

= −4 cos2 (𝑥) cos �2𝑦� sin �2𝑦�

Which is continuous everywhere and bounded. Hence a solution exist and is unique. Now the ODE
is solved by separation.

Case cos2 �2𝑦� ≠ 0

To divide by cos2 �2𝑦�, then for cos2 �2𝑦� ≠ 0 or cos �2𝑦� ≠ 0 or 2𝑦 ≠ �𝑛 + 1
2
� 𝜋 or 𝑦 ≠ �𝑛 + 1

2
� 𝜋

4 for all
integers.

1
cos2 �2𝑦�

𝑑𝑦
𝑑𝑥

= cos2 (𝑥)

�
𝑑𝑦

cos2 �2𝑦�
= � cos2 (𝑥) 𝑑𝑥 (1)

Now ∫ 𝑑𝑦
cos2�2𝑦�

= 1
2 tan �2𝑦� and

� cos2 (𝑥) 𝑑𝑥 = �
1 + cos (2𝑥)

2
𝑑𝑥

= ��
1
2
+

cos (2𝑥)
2 � 𝑑𝑥

=
1
2
𝑥 +

1
2

sin (2𝑥)
2

+ 𝑐1

=
𝑥
2
+

sin (2𝑥)
4

+ 𝑐1

Hence (1) becomes
1
2

tan �2𝑦� =
𝑥
2
+

sin (2𝑥)
4

+ 𝑐1

tan �2𝑦� = 𝑥 +
1
2

sin (2𝑥) + 𝑐

Since initial condition is not gives, the solution is left in implicit form.
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Case cos2 �2𝑦� = 0

This is when cos �2𝑦� = 0 or 2𝑦 = �𝑛 + 1
2
� 𝜋 or 𝑦 = �𝑛 + 1

2
� 𝜋

2 for all integers. In this case the solution is

𝑦 = �𝑛 +
1
2�

𝜋
2

Summary of solution 𝑦 (𝑥)
⎧⎪⎪⎨
⎪⎪⎩

tan �2𝑦� = 𝑥 + 1
2 sin (2𝑥) + 𝑐 cos2 �2𝑦� ≠ 0

�𝑛 + 1
2
� 𝜋

2 cos2 �2𝑦� = 0

0.6 Section 2.2 problem 6

Solve 𝑥𝑦′ = �1 − 𝑦2�
1
2

This is nonlinear first order of the form 𝑦′ = 𝑓 �𝑥, 𝑦� where 𝑓 �𝑥, 𝑦� =
�1−𝑦2�

1
2

𝑥 . This is continuous
everywhere except at 𝑥 = 0. ODE is solved by separation.

Case 1 − 𝑦2 ≠ 0

Or 𝑦2 ≠ 1 or 𝑦 ≠ ±1, then dividing by �1 − 𝑦2�
1
2 and integrating

�
𝑑𝑦

�1 − 𝑦2�
1
2

= �
𝑑𝑥
𝑥

arcsin �𝑦� = ln |𝑥| + 𝑐

𝑦 (𝑥) = sin (ln |𝑥| + 𝑐)

Hence the solution is

𝑦 (𝑥) = sin (ln |𝑥| + 𝑐) 𝑦 ≠ ±1, 𝑥 ≠ 0

Case 1 − 𝑦2 = 0

Then

𝑦 (𝑥) = ±1

Summary of solutions

⎧⎪⎪⎨
⎪⎪⎩

𝑦 (𝑥) = sin (ln |𝑥| + 𝑐) 𝑦 ≠ ±1, 𝑥 ≠ 0
𝑦 (𝑥) = ±1 𝑥 ≠ 0

0.7 Section 2.2 problem 7

Solve 𝑑𝑦
𝑑𝑥 = 𝑥−𝑒−𝑥

𝑦+𝑒𝑦

This is non-linear first order ODE of the form 𝑦′ = 𝑓 �𝑥, 𝑦�. The function 𝑓 �𝑥, 𝑦� is continuous every-
where except at 𝑦 which is the solution of 𝑒𝑦 + 𝑦 = 0. Using a computer, this is 𝑦𝑐 = −0.567143⋯. The
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ODE is solved by separation

��𝑦 + 𝑒𝑦� 𝑑𝑦 = �(𝑥 − 𝑒−𝑥) 𝑑𝑥

𝑦2

2
+ 𝑒𝑦 =

𝑥2

2
+ 𝑒−𝑥 + 𝑐

Hence the solution is given by

𝑦2 + 2𝑒𝑦 − 𝑥2 − 2𝑒−𝑥 = 𝑐1 𝑦 ≠ 𝑦𝑐

0.8 Section 2.2 problem 8

Solve 𝑑𝑦
𝑑𝑥 = 𝑥2

1+𝑦2

This is non-linear first order ODE of the form 𝑦′ = 𝑓 �𝑥, 𝑦� where 𝑓 �𝑥, 𝑦� is continuous everywhere
except at 𝑦 = ±1. The ODE is solved by separation

�1 + 𝑦2� 𝑑𝑦 = 𝑥2𝑑𝑥

𝑦 +
𝑦3

3
=

𝑥3

3
+ 𝑐1

Hence the solution is given by

𝑦3 + 3𝑦 − 𝑥3 = 𝑐 𝑦 = ±1

Since initial condition is not gives, the solution is left in implicit form.

0.9 Section 2.3 problem 1

To reduce confusion, let 𝑥 be the substance which causes the concentration in the die. Let 𝑄 (𝑡) be
the mass (normally called the amount, but saying mass is more clear than saying amount) of 𝑥 at
time 𝑡. Hence 𝑄 (0) = 200𝑔 since initial concentration was 1[𝑔/𝐿] and the volume is 200[𝐿].

The goal is to find an ODE that describes how 𝑄 (𝑡) changes in time. That is, how the mass of 𝑥 in
the tank changes in time. Knowing the mass of 𝑥 at any time in the tank, gives the concentration
also, since the tank volume is fixed at 200[𝐿]. So the concentration can always be found using 𝑄(𝑡)

200 .
Using

𝑑𝑄
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (1)

Where 𝑅𝑖𝑛 is rate of 𝑥 moving into the tank, i.e. how many grams of 𝑥 is being poured in per minute,
which is zero, since fresh water is moving in. 𝑅𝑜𝑢𝑡 is rate of 𝑥 moving out, i.e. how many grams of 𝑥
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is leaving the tank per minute. This is found as follows

𝑅𝑜𝑢𝑡 =
𝑄 (𝑡)
200

�gram�
[L]

× 2 �
L
min �

=
2
200

𝑄 (𝑡)
�gram�
[min]

Hence (1) becomes
𝑑𝑄
𝑑𝑡

= 0 − 100𝑄 (𝑡)

= −100𝑄 (𝑡)

Solving the ODE, for 𝑄 (𝑡) ≠ 0
𝑑𝑄
𝑄

= −100𝑑𝑡

ln |𝑄| = −100𝑡 + 𝑐

Since 𝑄 represent mass, it can not be negative, then there is no need to use |𝑄|.

ln𝑄 = −100𝑡 + 𝑐
𝑄 (𝑡) = 𝐴𝑒−100𝑡

At 𝑡 = 0,𝑄 (0) = 200[𝑔], hence 𝐴 = 200 from the above. The solution becomes

𝑄 (𝑡) = 200𝑒−100𝑡

Since initial 𝑄 was 200[𝑔] then 1% of that is 2. Solving for time gives

2 = 200𝑒−100𝑡0

0.01 = 𝑒−100𝑡0

ln (0.01) = −100𝑡0
Solving on the computer gives

𝑡0 = 460.517[min]

Hence it takes 460.517 minutes for the mass of 𝑥 to reach 1% of its original amount of 200 gram. This
is also the same amount of time for the concentration of 𝑥 to reach 1% of its original amount of
1 �𝑔/𝐿�. It is easier to work with mass in the ODE, and then convert to concentration when needed.

0.10 Section 2.3 problem 2
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Let 𝑦 (𝑡) be the mass of salt at time 𝑡 in the tank in grams. Hence 𝑦 (0) = 0 since tank initially contains
pure water. The goal is to find an ODE that describes how 𝑦 (𝑡) changes in time. That is, how the
mass of salt in the tank changes in time. Using

𝑑𝑦
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (1)

Where 𝑅𝑖𝑛 is rate of mass of salt moving into the tank, i.e. how many grams of salt is being poured
in per minute, which is

𝑅𝑖𝑛 = 𝛾 �
gram
L

� × 2 �
L

min �

= 2𝛾 �
gram
min �

And 𝑅𝑜𝑢𝑡 is rate of salt moving out, i.e. how many grams of salt is leaving the tank per minute. This
is found as follows

𝑅𝑜𝑢𝑡 =
𝑦 (𝑡)
120

�gram�
[L]

× 2 �
L

min �

=
1
60

𝑦 (𝑡) �
gram
min �

Hence (1) becomes
𝑑𝑦 (𝑡)
𝑑𝑡

= 2𝛾 −
1
60

𝑦 (𝑡)

With 𝑦 (0) = 0. The ODE is linear and first order, of the form 𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) with 𝑝 (𝑡) = 1
60 and

𝑔 (𝑡) = 2𝛾. Since both 𝑝 (𝑡) , 𝑔 (𝑡) are continuous then a solution exist and is unique.

𝑦′ +
1
60

𝑦 = 2𝛾

Integrating factor is 𝑒∫
1
60 𝑑𝑡 = 𝑒

1
60 𝑡, therefore

𝑑
𝑑𝑡

�𝑒
1
60 𝑡𝑦� = 2𝛾𝑒

1
60 𝑡

Integrating

𝑒
1
60 𝑡𝑦 = 2𝛾�𝑒

1
60 𝑡𝑑𝑡

= 2𝛾
𝑒

1
60 𝑡

1
60

+ 𝑐

= 120𝛾𝑒
1
60 𝑡 + 𝑐

Hence

𝑦 (𝑡) = 120𝛾 + 𝑐
−𝑡
60

In the above, 𝑦 (𝑡) is the mass of salt in grams in the tank at time 𝑡. Hence the concentration of salt
in the tank at time 𝑡 can always be found by dividing 𝑦 (𝑡) by the volume of the tank. In the limit, as
𝑡 → ∞ then from above

lim
𝑡→∞

𝑦 (𝑡) = 120𝛾
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0.11 Section 2.3 problem 3

This problem is solved in two stages. The first ODE is used to find what the amount of salt in the
tank will be after 10 minutes. Then a new ODE is set up, with this value as its initial conditions, in
order to find the amount of salt in the tank after an additional 10 minutes.

First 10 minutes

Let 𝑦1 (𝑡) be the mass of salt at time 𝑡 in the tank in lbs. Hence 𝑦1 (0) = 0 since tank initially contains
pure water. The goal is to find an ODE that describes how 𝑦1 (𝑡) changes in time. That is, how the
mass of salt in the tank changes in time. Using

𝑑𝑦1
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (1)

Where 𝑅𝑖𝑛 is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being poured in
per minute, which is

𝑅𝑖𝑛 =
1
2 �

lb
gallon �

× 2 �
gallon
min �

= 1 �
lb

min �

And 𝑅𝑜𝑢𝑡 is rate of salt moving out, i.e. how many grams of salt is leaving the tank per minute. This
is found as follows

𝑅𝑜𝑢𝑡 =
𝑦1 (𝑡)
100

[lb]
�gallon�

× 2 �
gallon
min �

=
1
50

𝑦1 (𝑡) �
lb

min �

Hence (1) becomes
𝑑𝑦1 (𝑡)
𝑑𝑡

= 1 −
1
50

𝑦1 (𝑡)

With 𝑦1 (0) = 0. The ODE is linear and first order, of the form 𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) with 𝑝 (𝑡) = 1
50 and

𝑔 (𝑡) = 1. Since both 𝑝 (𝑡) , 𝑔 (𝑡) are continuous then a solution exist and is unique.

𝑦′1 +
1
50

𝑦1 = 1

Integrating factor is 𝑒∫
1
50 𝑑𝑡 = 𝑒

1
50 𝑡, therefore

𝑑
𝑑𝑡

�𝑒
1
50 𝑡𝑦1� = 𝑒

1
50 𝑡
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Integrating

𝑒
1
50 𝑡𝑦 = �𝑒

1
50 𝑡𝑑𝑡

= 50𝑒
1
50 𝑡 + 𝑐

Hence

𝑦1 (𝑡) = 50 + 𝑐
−𝑡
50

To find 𝑐, from initial conditions

0 = 𝑦1 (0)
= 50 + 𝑐

𝑐 = −50

Hence the solution to the first phase is

𝑦1 (𝑡) = 50 − 50
−𝑡
50

= 50 �1 − 𝑒
−𝑡
50 �

After 𝑡 = 10 minutes

𝑦1 (10) = 50 �1 − 𝑒
−1
5 �

The above value is now used as initial conditions for new problem. The new problem will use 𝑡 = 0
as initial time for simplicity, but it is understood that 10 minutes has already elapsed in global scale.

Second phase

Let 𝑦2 (𝑡) be the mass of salt at time 𝑡 in the tank in grams. Hence

𝑦2 (0) = 𝑦1 (10)

= 50 �1 − 𝑒
−1
5 �

From phase one above, this is the amount of salt in lbs in the tank at this moment. The goal is to find
an ODE that describes how 𝑦2 (𝑡) changes in time. That is, how the mass of salt in the tank changes
in time. Using

𝑑𝑦2
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (2)

Where 𝑅𝑖𝑛 is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being poured in
per minute. But now 𝑅𝑖𝑛 = 0 since fresh water is poured in. And 𝑅𝑜𝑢𝑡 is rate of salt moving out, i.e.
how many lbs of salt is leaving the tank per minute. This is found as follows

𝑅𝑜𝑢𝑡 =
𝑦2 (𝑡)
100

[lb]
�gallon�

× 2 �
gallon
min �

=
1
50

𝑦2 (𝑡) �
lb

min �
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Hence (2) becomes
𝑑𝑦2 (𝑡)
𝑑𝑡

= 0 −
1
50

𝑦2 (𝑡)

= −
1
50

𝑦2 (𝑡)

The ODE is linear and first order, of the form 𝑦′ +𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) with 𝑝 (𝑡) = 1
50 and 𝑔 (𝑡) = 0. Since both

𝑝 (𝑡) , 𝑔 (𝑡) are continuous then a solution exist and is unique. This is separable.

𝑑𝑦2
𝑦2

= −
1
50

𝑑𝑡

ln �𝑦2� = −
𝑡
50

+ 𝑐1

𝑦2 (𝑡) = 𝑐𝑒
−𝑡
50 (3)

To find 𝑐, from initial conditions 𝑦2 (0) = 50 �1 − 𝑒
−1
5 �, hence

50 �1 − 𝑒
−1
5 � = 𝑐

Hence the solution (3) to the second phase is

𝑦2 (𝑡) = 50 �1 − 𝑒
−1
5 � 𝑒

−𝑡
50

After 𝑡 = 10 minutes (which will be 20 in global scale)

𝑦2 (10) = 50 �1 − 𝑒
−1
5 � 𝑒

−1
5

= 7.4205 lbs

Therefore after 20 minutes from the global initial time (or 10 minutes from the start of the second
phase), the mass of salt in tank is 7.4205 lbs. Therefore the concentration at the same moment, if

needed, will be 7.420 5
100 � lbs

gallon � = 0.074 � lbs
gallon �.

0.12 Section 2.3 problem 4

Let 𝑦 (𝑡) be the mass of salt at time 𝑡 in the tank in lbs. Hence 𝑦 (0) = 100 since tank initially contains
that much salt. The goal is to find an ODE that describes how 𝑦 (𝑡) changes in time. That is, how the
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mass of salt in the tank changes in time. Using

𝑑𝑦
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (1)

Where 𝑅𝑖𝑛 is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being poured in
per minute, which is

𝑅𝑖𝑛 = 1 �
lb

gallon �
× 3 �

gallon
min �

= 3 �
lb

min �

And 𝑅𝑜𝑢𝑡 is rate of salt moving out, i.e. how many lbs of salt is leaving the tank per minute. This is
found as follows

𝑅𝑜𝑢𝑡 =
𝑦 (𝑡)
𝑉 (𝑡)

[lb]
�gallon�

× 2 �
gallon
min � (2)

Where 𝑉 (𝑡) is the volume of the whole mixture at time 𝑡. This is di�erent from earlier problems
where volume was constant. This is because in this problem the rate of pouring into the tank is larger
than the rate of flow out of the tank. The volume at time 𝑡 can easily be found as

𝑉 (𝑡) = 200 �gallon� + 3 �
gallon
min � 𝑡 [min] − 2 �

gallon
min � 𝑡[min

= (200 + 𝑡) �gallon�

This means at any time 𝑡, there will be 200 + 𝑡 gallons of mixture in the tank. This value is now used
in (2) above to complete the solution. Note that the tank will overflow when 200 + 𝑡 = 500 since 500
is the maximum size of the tank. Going back to (2) now it becomes

𝑅𝑜𝑢𝑡 =
𝑦 (𝑡)

200 + 𝑡
[lb]

�gallon�
× 2 �

gallon
min �

=
2𝑦 (𝑡)
200 + 𝑡

Therefore (1) becomes

𝑦′ = 3 −
2𝑦

200 + 𝑡
This is linear ODE of first order of the form 𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) where 𝑝 (𝑡) = 2

200+𝑡 and 𝑔 (𝑡). Both are
continuous for 𝑡 ≥ 0 hence there will be a unique solution for 𝑡 ≥ 0. Now the ODE is solved using an
integration factor

𝑑𝑦
𝑑𝑡

+
2𝑦

200 + 𝑡
= 3

The integrating factor is 𝑒2∫
1

200+𝑡 𝑑𝑡. To evaluate ∫ 1
200+𝑡𝑑𝑡, let 𝑢 = 200 + 𝑡, hence 𝑑𝑢

𝑑𝑡 = 1 and the integral

becomes ∫ 1
𝑢𝑑𝑢 = ln |𝑢| Therefore ∫ 1

200+𝑡𝑑𝑡 = ln |200 + 𝑡| and the integrating factor is 𝑒2 ln|200+𝑡| =
|200 + 𝑡|2 = (200 + 𝑡)2. Therefore now that the integrating is found, the solution can be written as

𝑑
𝑑𝑡

�𝑦 (200 + 𝑡)2� = 3 (200 + 𝑡)2

Integrating both sides gives

𝑦 (200 + 𝑡)2 = 3�(200 + 𝑡)2 𝑑𝑡
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Let 𝑢 = 200 + 𝑡, then 𝑑𝑢
𝑑𝑡 = 𝑡, hence ∫ (200 + 𝑡)2 𝑑𝑡 = ∫𝑢2𝑑𝑢 = 𝑢3

3 + 𝑐1 =
(200+𝑡)3

3 + 𝑐1. Therefore the above
becomes

𝑦 (200 + 𝑡)2 = 3
⎛
⎜⎜⎜⎝
(200 + 𝑡)3

3
+ 𝑐1

⎞
⎟⎟⎟⎠

= (200 + 𝑡)3 + 𝑐

Solving for 𝑦 (𝑡) gives

𝑦 (𝑡) = (200 + 𝑡) + 𝑐
(200+𝑡)2

(3)

Now 𝑐 is found from initial conditions. Given that 𝑦 (0) = 100, then from the above

100 = 200 +
𝑐

(200)2

= 200 +
𝑐

40000
𝑐 = (−100) (40000)
= −4 × 106

Therefore the solution (3) becomes

𝑦 (𝑡) = (200 + 𝑡) −
4 × 106

(200 + 𝑡)2
(4)

Now the above ODE is only valid until the tank overflows. This value of time is found by solving
200 + 𝑡 = 500 for 𝑡, which gives 𝑡 = 300. Hence (4) becomes

𝑦 (𝑡) = (200 + 𝑡) − 4×106

(200+𝑡)2
0 ≤ 𝑡 ≤ 300 (5)

At 𝑡 = 300 minutes, the mass of salt in lbs is therefore 𝑦 (300) which is

𝑦 (300) = (200 + 300) −
4 × 106

(200 + 300)2

= 484 [lbs]

And since the volume now is 500 gallons, then the concentration at time 𝑡 = 300 minutes is

484
500 �

lbs
gallon �

= 0.968 �
lbs

gallon �

If the tank had infinite capacity, then using the solution found in (5) and dividing by current volume,
which was found before to be 200 + 𝑡 and then taking the limit 𝑡 → ∞ gives the answer. Let 𝜌 (𝑡) be
now the concentration in � lbs

gallon � at any time 𝑡. Then

𝜌 (𝑡) =
(200 + 𝑡) − 4×106

(200+𝑡)2

𝑉 (𝑡)
=

(200 + 𝑡) − 4×106

(200+𝑡)2

200 + 𝑡

= 1 −
4 × 106

200 + 𝑡
As 𝑡 → ∞ then 𝜌 (𝑡) → 1. Therefore at 300 minutes the concentration is 96.8% of the theoretical limit.
The following is a plot of 𝜌 (𝑡) as function of time. At 𝑡 = 0 the concentration is 0.5 since this is the
initial condition.



14

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

Time (minutes)

co
nc
en
tr
at
io
n

Problem 2.3 number 4

0.13 Section 2.4 problem 1

Determine an interval which the given initial value problem is valid. (𝑡 − 3) 𝑦′ + ln (𝑡) 𝑦 = 2𝑡 with
𝑦 (1) = 2.

This is linear first order ODE. In standard form it becomes 𝑦′ + ln(𝑡)
𝑡−3 𝑦 = 2𝑡

𝑡−3 , and comparing to
𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) =
ln (𝑡)
𝑡 − 3

𝑔 (𝑡) =
2𝑡
𝑡 − 3

𝑝 (𝑡) is not not continuous at 𝑡 = 3 and also at 𝑡 = 0 since ln (0) = −∞. 𝑔 (𝑡) is not continuous at 𝑡 = 3.
Therefore the region must include initial point, which is 𝑡 = 1 but not include 𝑡 = 3 nor 𝑡 = 0. Hence

0 < 𝑡 < 3

And for forward only ODE the region is

1 ≤ 𝑡 < 3

0.14 Section 2.4 problem 2

Determine an interval which the given initial value problem is valid. 𝑡 (𝑡 − 4) 𝑦′ + 𝑦 = 2𝑡 with 𝑦 (2) = 1.

This is linear first order ODE. In standard form it becomes 𝑦′ + 1
𝑡(𝑡−4)𝑦 = 2

(𝑡−4) , and comparing to
𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) =
1

𝑡 (𝑡 − 4)

𝑔 (𝑡) =
2

(𝑡 − 4)
𝑝 (𝑡) is not continuous at 𝑡 = 0 and 𝑡 = 4 while 𝑔 (𝑡) is not continuous at 𝑡 = 4. Therefore the region
must include initial point, which is 𝑡 = 2 but not include 𝑡 = 4 nor 𝑡 = 0. Hence

0 < 𝑡 < 4
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And for forward only ODE the region is

2 ≤ 𝑡 < 4

0.15 Section 2.4 problem 3

Determine an interval which the given initial value problem is valid. 𝑦′+tan (𝑡) 𝑦 = sin (𝑡) with 𝑦 (𝜋) = 0.

This is linear first order ODE. Comparing to 𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) = tan (𝑡)
𝑔 (𝑡) = sin (𝑡)

𝑔 (𝑡) is continuous everywhere but 𝑝 (𝑡) is not continuous at �⋯ , −𝜋
2 ,

𝜋
2 ,

3𝜋
2 ,⋯� therefore the region

must be between 𝜋
2 and 3𝜋

2 since the initial point 𝜋 is inside this region. Hence

𝜋
2
< 𝑡 < 1.5𝜋

0.16 Section 2.4 problem 4

Determine an interval which the given initial value problem is valid. �4 − 𝑡2� 𝑦′ + 2𝑡𝑦 = 3𝑡2 with
𝑦 (−3) = 1.

This is linear first order ODE. In standard form it becomes 𝑦′ + 2𝑡
�4−𝑡2�

𝑦 = 3𝑡2

�4−𝑡2�
, and comparing to

𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) =
2𝑡

�4 − 𝑡2�

𝑔 (𝑡) =
3𝑡2

�4 − 𝑡2�

𝑝 (𝑡) is not not continuous at 𝑡2 = 4 or 𝑡 = ±2 and the same for 𝑔 (𝑡). Therefore the region must include
initial point, which is 𝑡 = −3 but not include 𝑡 = ±2. Hence

−∞ < 𝑡 < −2

And for forward only ODE the region is

−3 ≤ 𝑡 < −2

0.17 Section 2.4 problem 5

Determine an interval which the given initial value problem is valid. �4 − 𝑡2� 𝑦′ + 2𝑡𝑦 = 3𝑡2 with
𝑦 (1) = −3.

This is linear first order ODE. In standard form it becomes 𝑦′ + 2𝑡
�4−𝑡2�

𝑦 = 3𝑡2

�4−𝑡2�
, and comparing to

𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) =
2𝑡

�4 − 𝑡2�

𝑔 (𝑡) =
3𝑡2

�4 − 𝑡2�
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𝑝 (𝑡) is not not continuous at 𝑡2 = 4 or 𝑡 = ±2 and the same for 𝑔 (𝑡). Therefore the region must include
initial point, which is 𝑡 = 1 but not include 𝑡 = ±2. Hence

−2 < 𝑡 < 2

And for forward only ODE the region is

1 ≤ 𝑡 < 2

0.18 Section 2.4 problem 6

Determine an interval which the given initial value problem is valid. ln (𝑡) 𝑦′ + 𝑦 = 1
tan(𝑡) with 𝑦 (2) = 3.

This is linear first order ODE. In standard form it becomes 𝑦′ + 1
ln(𝑡)𝑦 =

1
tan(𝑡) ln(𝑡) , and comparing to

𝑦′ + 𝑝 (𝑡) 𝑦 = 𝑔 (𝑡) then

𝑝 (𝑡) =
1

ln (𝑡)

𝑔 (𝑡) =
1

tan (𝑡) ln (𝑡)
When 𝑡 = 1 then ln (𝑡) = 0 and 𝑝 (𝑡) becomes unbounded. And since for real 𝑡 then 𝑡 must remain
positive, else ln (𝑡) becomes complex. Then 𝑝 (𝑡) says that 𝑡 ≥ 0 and 𝑡 ≠ 1. Looking at 𝑔 (𝑡) then
tan (𝑡) = 0 when 𝑡 = {⋯ , −𝜋, 𝜋,⋯} hence the region that includes initial point 𝑡0 = 2 must be inside
these. Therefore the singular points are 𝑡 = 1, −𝜋, 𝜋 and 𝑡 ≥ 0. Putting all these together, the region is

1 < 𝑡 < 𝜋

And for forward only ODE the region is

2 ≤ 𝑡 < 𝜋
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