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Problem 1

Consider a small ball of radius s and moment of inertia I rolling off of a
sphere of radius R. At what angle does the ball leave the surface of the sphere if
it is gently displaced from the top (i.e. total energy is equal to potential energy
of a stationary ball at the top)?

A lot of the new difficulty of this problem (relative to the particle sliding off
of a sphere) comes from setting up the constraints correctly.

The Lagrangian (without constraints) is given by:

1 o 1.
Em(f2 +7r26%) + EI({)Z — mgrcos

The distance from the center of the big sphere to the center of the small
sphere is R + s, so the natural constraint for that is » = R 4+ s. We also need
to constrain the rolling of the ball relative to the motion of the ball along the
sphere. The simplest constraint that will work is setting the arclength along
the ball to the arclength along the surface of the sphere, i.e. RO = s¢ (I was
being overly cautious when I said that this wouldn’t work in discussion). So
the constraint function is given by Ai(r — R — s) + A2(R@ — s¢) and now our
equations of motion become:

mf-mr€2+mgcos0+A1 =0
m(r?0 + 2rid) + mgrsind + \yR = 0

I¢—Aas=0

With some substitutions from the constraint equations and their time deriva-
tives we can reduce this to:

—m(R + 5)6* + mgcosf+ )\ =0

m(R + 5)%6 + mg(R + s)sin 0 + (?)215 =0
And to completely solve this problem we need to use éonservation of energy.
The Hamiltonian (total energy) of the system is given by

. : . R.
%m(v*2 +7262) + %I¢2 +mgrcosf = %m(R+s)292 + %I(;é))2 +mg(R+s)cosf

And since the ball has been ’gently pushed’ from the top of the sphere we
have
1

%m(R-i— s)* + 5](?)2 6% + mg(R + s) cos§ = mg(R + s)



The ball will leave the surface of the sphere when the constraint force (cor-
responding to the normal force) that keeps the radius fixed changes signs, i.e.
when \; = 0. So we have

m(R + s)6* = mgcos @
Putting these two together we have
1 _R.,] gcosb

1 2 2 _
[2m(R+s) + 2I(S) ] RT3 +mg(R + s)cos§ = mg(R + s)

[m(R +5)2+ I(i.:—)2 +2m(R + s)2] cosf = 2m(R + s)?
2m(R + s)?
3m(R+ s)2 + I(£)2

which you can see reduces to % when I = 0, consistent with the simpler
version of the problem.

cosf =



Problem 2

The Lagrangian of a free particle in a magnetic field is given by L = im(£2+
%) + q(AzZ + AyY), where A is the magnetic vector potential (whose curl is
the magnetic field). Consider the field given by A; = ay, A, = 0. Find the
equations of motion and solve them. Find an integral of motion that is not
energy and confirm that it is conserved.

The Lagrangian in this case is given by

1 . . .
—2-m(:::2 +9%) + qoyi
So the equations of motion are given by

mi+qay =0

myj —qaz =0
Let 8 = 2= and note that we have %' + fij = 0 and therefore
T 4624 =0

Which is the equation of a harmonic oscillator in &. The same equation can
be derived for 7, so we know the solution must have the form

i = Acos(Bt + ¢)

§ = Boos(Bt + )

Plugging these into the original equations constrains A, ¢, B, and v relative
to each other. Assume without loss of generality that ¢ = 0, then you can show
that the solution must be of the form

= Acosft

7 = Asin ft

So integrating gives the full solution:

A .
:z:=:ro+Esmﬂt

A
Yy=1yo — —BCOSﬂt

For the integral of motion notice that the Lagrangian has no z dependence,
therefore the corresponding generalized momentum % must be conserved.

oL .
— = mT + qay
ozt



Plugging in the solution we got gives

mAcos Bt + ga(yo — % cos Bt) = gayo

which is in fact a conserved quantity. There actually is an analogous gener-
alized momentum for y but it is less obvious why it should be conserved.



Problem 4

Consider an anharmonic (or nonlinear) spring with potential energy V =
1kr? + tar* (k,a > 0) spinning at some fixed angular frequency wo with a
mass at the end. What are the equilibrium positions of the system as a function
of wp and which equilibria are stable?

The coordinates in this problem are given by

T = 1 coswyt
y = rsinwot
with derivatives
T = 7 coswpt — Twp sin wgt

Y = rsinwpt + rwp cos wot

So our kinetic energy is given by

T= -;-m(v'"2 + r2w?)

And our Lagrangian is

L= %m(?‘2 +r2wl) - %k:r2 - i—ar"

Giving equation of motion

mit = —(k — w)r — ar®

This is at equilibrium when # = 0 or in other words (k — w)r + ar3 = 0.

This is always solved by » = 0, but it is also solved by r = + “—’ga_—k If
wg < k then these solutions are imaginary and unphysical. Although it’s a little
unusal relative to polar coordinates the way we set up the coordinate system
allows negative r, so both of the equilibria are physical once k¥ < wg, although
they look very similar. The stability of the equilibrium is determined by the
derivative of the force as a function of position, which is £ (—(k—wd)r —ar®) =
—(k —wd) —3ar?. At r = 0 this is negative (and therefore stable) when w? < k
and positive (and therefore unstable) when k < w2. At the other two equilibria
we have —(k — wg) — 3(,#‘2’&_—’c = 2(k —wd). So these equilibria are stable only if
the 7 = 0 equilibrium is unstable, i.e. when w? < k.

For the critical w2 = k case we have m# = —ar3 for the equations of motion.
The second derivative test fails to determine stability, since it gives 0, so we
need to consider the fourth derivative of the energy (the third derivative of the
force) which is —6a, which is always negative and therefore stable.



Problem 3

Consider a double pendulum (i.e. a rod attached to another rod by a hinge)
with both rods the same length £, where the inner rod is constrained to rotate
at a fixed angular velocity wg. What is the frequency of small oscillations of the
system if there is no gravity?

While it would be possible with constraints it would be simpler to set this
problem up directly in terms of the coordinates. The coordinates are given by
(where 6 is the angle of the second pendulum relative to some fixed vertical
axis) :

z = £(coswot + cos §)

y = £(sinwgt + sin §)

The time derivatives of these are

& = —8(wosinwgt + §sin )

i = £(wp cos wot + 6 cos )
So our kinetic energy is (using the trig identity sinasinbd + cosacosb =
cos(a — b))
1 .2 .ov_1 252 o j
T= Em(m +9%) = —2-m€ (6% + w§ + 2wob cos(6 — wot))

And there is no potential energy since the system is somewhere where there’s
no gravity (like space). So now we have the equation of motion is

mE26—2me2ug sin(—wot ) (§—wo)+2me3wof sin(6—wot) = me26+2me2wi sin(6—wot) = 0

Now since we’re free to change coordinate systems, a more transparent co-
ordiante system would be ¢ = 6 — wot, @ = 0 — wp, ¢ = 6. In these coordinate
we have

me2é + 2mlPwising = 0
Which we know from experience is the equation of motion of a pendulum.

In particular in the small ¢ approximation this becomes

me%p + 2mbPuio =0

b+2wip=0
So the frequency of small oscillations is given by w = v/2wp. This form
makes sense in terms of dimensional analysis. We could have figured out at the

beginning that that answer needed to be of the form w = #uwp for some fixed
number #.



