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0.1 Problem 1

Mechanics

Physics 311
Fall 2015

Homework 9 (11/20/15, due 12/4/15)

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are
constant.

2. (10 points)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity ~ω.

(1) Using a coordinate system with the origin at the center of the block, calculate the
inertia tensor.

(2) Find the kinetic energy.

(3) Find the angle between the angular velocity ~ω and the angular momentum ~L.

(4) Find the magnitude of the torque that must be exerted on the block if ~ω is constant.

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius a mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45◦ with the vertical.

(1) Show that there are two possible values of the precession rate φ̇ such that the top
precesses steadily at a constant value of θ = 45◦.

(2) Calculate the numerical values for φ̇ if S = 900 rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

...continued on next page...

SOLUTION:

Euler solid body rotation equations are

(𝐼2 − 𝐼3) 𝜔2𝜔3 − 𝐼1�̇�1 = 0 (1)
(𝐼3 − 𝐼1) 𝜔3𝜔1 − 𝐼2�̇�2 = 0 (2)
(𝐼1 − 𝐼2) 𝜔1𝜔2 − 𝐼3�̇�3 = 0 (3)

Where 𝐼1, 𝐼2, 𝐼3 are the body moments of inertia around the principal axes. Multiplying both
sides of (1) by 𝐼1𝜔1 and both sides of (2) by 𝐼2𝜔2 and both sides of (3) by 𝐼3𝜔3 gives

𝜔1𝜔2𝜔3𝐼1𝐼2 − 𝜔1𝜔2𝜔3𝐼1𝐼3 − 𝐼21𝜔1�̇�1 = 0 (1A)

𝜔1𝜔2𝜔3𝐼2𝐼3 − 𝜔1𝜔2𝜔3𝐼1𝐼2 − 𝐼22𝜔2�̇�2 = 0 (2A)

𝜔1𝜔2𝜔3𝐼1𝐼3 − 𝜔1𝜔2𝜔3𝐼2𝐼3 − 𝐼23𝜔3�̇�3 = 0 (3A)

Adding (1A,2A,3A) gives (lots of terms cancel, that has 𝜔1𝜔2𝜔3 in them)

𝐼21𝜔1�̇�1 + 𝐼22𝜔2�̇�2 + 𝐼23𝜔3�̇�3 = 0 (4)

But (4) is the same thing as
1
2
𝑑
𝑑𝑡
𝑳2 = 0

where 𝑳 is the angular momentum vector

𝑳 = {𝐼1𝜔1, 𝐼2𝜔2, 𝐼3𝜔3}

Hence

𝑳2 = 𝑳 ⋅ 𝑳 = �𝐼21𝜔2
1 , 𝐼22𝜔2

2 , 𝐼23𝜔2
3�

Therefore, and since the 𝐼′𝑠 are constant, we find
1
2
𝑑
𝑑𝑡
𝑳2 =

1
2
�2𝐼21𝜔1�̇�1, 2𝐼22𝜔2�̇�2, 2𝐼23𝜔3�̇�3�

= �𝐼21𝜔1�̇�1, 𝐼22𝜔2�̇�2, 𝐼23𝜔3�̇�3� (5)

Comparing (5) and (4), we see they are the same. This means that 1
2
𝑑
𝑑𝑡𝑳

2 = 0 or 𝑳2 is a
constant. Which implies 𝑳 or the angular momentum is a constant vector.

To show that rotational kinetic energy is constant, we need to show that 1
2
(𝜔 ⋅ 𝑳) (which is

the kinetic energy) is constant, where 𝝎 = {𝜔1, 𝜔2, 𝜔3} is the angular velocity vector. But
1
2
𝑑
𝑑𝑡
(𝜔 ⋅ 𝑳) =

1
2
��̇� ⋅𝑳 + 𝜔 ⋅ �̇��
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But we found that �̇� = 0 since 𝑳 is constant. Hence the above becomes
1
2
𝑑
𝑑𝑡
(𝜔 ⋅ 𝑳) =

1
2
�̇� ⋅𝑳 (6)

If we can show that �̇� ⋅𝑳 = 0 then we are done. To do this, we go back to Euler equations
(1,2,3) and now instead of multiplying by 𝐼𝑖𝜔𝑖 as before, we now multiply by just 𝜔𝑖 each
equation. This gives

𝜔1𝜔2𝜔3𝐼2 − 𝜔1𝜔2𝜔3𝐼3 − 𝐼1𝜔1�̇�1 = 0 (1C)

𝜔1𝜔2𝜔3𝐼3 − 𝜔1𝜔2𝜔3𝐼1 − 𝐼2𝜔2�̇�2 = 0 (2C)

𝜔1𝜔2𝜔3𝐼1 − 𝜔1𝜔2𝜔3𝐼2 − 𝐼3𝜔3�̇�3 = 0 (3C)

Adding gives (lots of terms cancel, that has 𝜔1𝜔2𝜔3 in them)

𝐼1𝜔1�̇�1 + 𝐼2𝜔2�̇�2 + 𝐼3𝜔3�̇�3 = 0 (7)

But the above is the same as (6), with a factor of 1
2 . This means �̇� ⋅𝑳 = 0 or 𝑑

𝑑𝑡
(𝜔 ⋅ 𝑳) = 0 or

that the rotational kinetic energy is constant. Which is what we are asked to show.
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0.2 Problem 2

Mechanics

Physics 311
Fall 2015

Homework 9 (11/20/15, due 12/4/15)

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are
constant.

2. (10 points)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity ~ω.

(1) Using a coordinate system with the origin at the center of the block, calculate the
inertia tensor.

(2) Find the kinetic energy.

(3) Find the angle between the angular velocity ~ω and the angular momentum ~L.

(4) Find the magnitude of the torque that must be exerted on the block if ~ω is constant.

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius a mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45◦ with the vertical.

(1) Show that there are two possible values of the precession rate φ̇ such that the top
precesses steadily at a constant value of θ = 45◦.

(2) Calculate the numerical values for φ̇ if S = 900 rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

...continued on next page...

SOLUTION:

X2

X1

X3

~a

~a = {a
2
, a, 3

2
a}

a

2a

3a

x1

x2

x3

0.2.1 Part(1)

We first find 𝐼 (called 𝐽 for now) around the origin of the inertial frame 𝑋1, 𝑋2, 𝑋3 then use

parallel axes theorem to find 𝐼 at the center of the cube at 𝑎 = �12𝑎, 𝑎,
3
2𝑎�. The volume of the
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cube is 𝑎 (2𝑎) (3𝑎) = 6𝑎3.

𝐽11 = 𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 �𝑋2

2 + 𝑋2
3�

= 𝜌 ��
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2𝑋2

2�
3𝑎

0
𝑑𝑋3� + 𝜌 ��

𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3𝑋2

3�

= 𝜌 �𝑎 (3𝑎)�
2𝑎

0
𝑑𝑋2𝑋2

2� + 𝜌 �𝑎 (2𝑎)�
3𝑎

0
𝑑𝑋3𝑋2

3�

= 𝜌
⎡
⎢⎢⎢⎢⎣𝑎 (3𝑎) �

𝑋3
2
3 �

2𝑎

0

⎤
⎥⎥⎥⎥⎦ + 𝜌

⎡
⎢⎢⎢⎢⎣𝑎 (2𝑎) �

𝑋3
3
3 �

3𝑎

0

⎤
⎥⎥⎥⎥⎦

= 𝜌
⎡
⎢⎢⎢⎣3𝑎2

(2𝑎)3

3

⎤
⎥⎥⎥⎦ + 𝜌

⎡
⎢⎢⎢⎣2𝑎2

(3𝑎)3

3

⎤
⎥⎥⎥⎦

= 𝜌 �3𝑎2
8𝑎3

3 � + 𝜌 �2𝑎2
27𝑎3

3 �

= 𝜌8𝑎5 + 𝜌
54𝑎5

3
= 26𝑎5𝜌

=
26
6
𝑎2 �6𝑎3𝜌�

=
13
3
𝑀𝑎2

And

𝐽12 = −𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 (𝑋1𝑋2)

= −𝜌�
𝑎

0
𝑋1𝑑𝑋1�

2𝑎

0
𝑋2𝑑𝑋2�

3𝑎

0
𝑑𝑋3

= −𝜌 �
𝑋2
1
2 �

𝑎

0
�
𝑋2
2
2 �

2𝑎

0
3𝑎

= −𝜌 �
𝑎2

2 � �
4𝑎2

2 � 3𝑎

= −3𝑎5𝜌

= −
3
6
𝑎2 �6𝑎3𝜌�

= −
1
2
𝑀𝑎2
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And

𝐽13 = −𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 (𝑋1𝑋3)

= −𝜌�
𝑎

0
𝑋1𝑑𝑋1�

2𝑎

0
𝑋2�

3𝑎

0
𝑋3𝑑𝑋3

= −𝜌 �
𝑋2
1
2 �

𝑎

0
2𝑎 �

𝑋2
3
2 �

3𝑎

0

= −𝜌
𝑎2

2
2𝑎
9𝑎2

2

= −
9
2
𝑎5𝜌

= −
9
2 (6)

𝑎2 �6𝑎3𝜌�

= −
3
4
𝑀𝑎2

And 𝐽21 = 𝐽12 and

𝐽22 = 𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 �𝑋2

1 + 𝑋2
3�

= 𝜌 ��
𝑎

0
𝑋2
1𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3� + 𝜌 ��

𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3𝑋2

3�

= 𝜌
⎡
⎢⎢⎢⎢⎣�
𝑋3
1
3 �

𝑎

0
(2𝑎) (3𝑎)

⎤
⎥⎥⎥⎥⎦ + 𝜌

⎡
⎢⎢⎢⎢⎣𝑎 (2𝑎) �

𝑋3
3
3 �

3𝑎

0

⎤
⎥⎥⎥⎥⎦

= 𝜌 �
𝑎3

3
(2𝑎) (3𝑎)� + 𝜌

⎡
⎢⎢⎢⎣𝑎 (2𝑎)

(3𝑎)3

3

⎤
⎥⎥⎥⎦

= 𝜌 �
6𝑎5

3 � + 𝜌 �2𝑎2
27𝑎3

3 �

= 𝜌2𝑎5 + 18𝑎5𝜌
= 20𝑎5𝜌

=
20
6
𝑎2 �6𝑎3𝜌�

= 𝑀
20
6
𝑎2



8

And

𝐽23 = −𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 (𝑋2𝑋3)

= −𝜌�
𝑎

0
𝑋1�

2𝑎

0
𝑋2𝑑𝑋2�

3𝑎

0
𝑋3𝑑𝑋3

= −𝜌𝑎 �
𝑋2
2
2 �

2𝑎

0
�
𝑋2
3
2 �

3𝑎

0

= −𝜌𝑎 �
4𝑎2

2 � �
9𝑎2

2 �

= −9𝑎5𝜌

= −
9
6
𝑎2 �6𝑎3𝜌�

= −
9
6
𝑀𝑎2

And 𝐽31 = 𝐽13 and 𝐽32 = 𝐽23 and

𝐽33 = 𝜌�
𝑎

0
𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3 �𝑋2

1 + 𝑋2
2�

= 𝜌 ��
𝑎

0
𝑋2
1𝑑𝑋1�

2𝑎

0
𝑑𝑋2�

3𝑎

0
𝑑𝑋3� + 𝜌 ��

𝑎

0
𝑑𝑋1�

2𝑎

0
𝑋2
2𝑑𝑋2�

3𝑎

0
𝑑𝑋3�

= 𝜌
⎡
⎢⎢⎢⎢⎣�
𝑋3
1
3 �

𝑎

0
(2𝑎) (3𝑎)

⎤
⎥⎥⎥⎥⎦ + 𝜌

⎡
⎢⎢⎢⎢⎣𝑎 �

𝑋3
2
3 �

2𝑎

0
3𝑎
⎤
⎥⎥⎥⎥⎦

= 𝜌 �
𝑎3

3
(2𝑎) (3𝑎)� + 𝜌 �𝑎 �

8𝑎3

3 � 3𝑎�

= 𝜌2𝑎5 + 𝜌8𝑎5

= 10𝑎5𝜌

=
10
6
𝑎2 �6𝑎3𝜌�

= 𝑀
10
6
𝑎2

Therefore

𝐽 = 𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
3 −1

2 −3
4

−1
2

20
6 −9

6
−3
4 −9

6
10
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We now find 𝐼 around the center of the cube where the position vector of the center is

𝑎 = �12𝑎, 𝑎,
3
2𝑎�. Therefore

𝐼11 = 𝐽11 −𝑀�𝑎2 − 𝑎21�

= 𝑀𝑎2
13
3
−𝑀�𝑎22 + 𝑎23�

= 𝑀𝑎2
13
3
−𝑀

⎛
⎜⎜⎜⎜⎝𝑎

2 + �
3
2
𝑎�

2⎞⎟⎟⎟⎟⎠

=
13
12
𝑀𝑎2

And

𝐼12 = 𝐽12 −𝑀 (−𝑎1𝑎2)

= −𝑀𝑎2
1
2
−𝑀�− �

1
2
𝑎� 𝑎�

= 0

And

𝐼13 = 𝐽13 −𝑀 (−𝑎1𝑎3)

= −𝑀𝑎2
3
4
−𝑀�− �

1
2
𝑎�
3
2
𝑎�

= 0

And 𝐼21 = 𝐼12 And

𝐼22 = 𝐽22 −𝑀�𝑎2 − 𝑎22�

= 𝑀𝑎2
20
6
−𝑀�𝑎21 + 𝑎23�

= 𝑀𝑎2
20
6
−𝑀

⎛
⎜⎜⎜⎜⎝�
1
2
𝑎�

2

+ �
3
2
𝑎�

2⎞⎟⎟⎟⎟⎠

=
5
6
𝑀𝑎2

And

𝐼23 = 𝐽23 −𝑀 (−𝑎2𝑎3)

= −𝑀𝑎2
9
6
−𝑀�− (𝑎)

3
2
𝑎�

= 0
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And 𝐼31 = 𝐼31 and 𝐼32 = 𝐼23 and

𝐼33 = 𝐽33 −𝑀�𝑎2 − 𝑎23�

= 𝑀𝑎2
10
6
−𝑀�𝑎21 + 𝑎22�

= 𝑀𝑎2
10
6
−𝑀

⎛
⎜⎜⎜⎜⎝�
1
2
𝑎�

2

+ 𝑎2
⎞
⎟⎟⎟⎟⎠

=
5
12
𝑀𝑎2

Therefore the moment of inertia tensor around the center of mass is

𝐼 = 𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
12 0 0
0 10

12 0
0 0 5

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0.2.2 Part(2)

The kinetic energy is 1
2𝜔 ⋅ 𝐿 where 𝜔 = {𝜔1, 𝜔2, 𝜔3} and

𝐿 = 𝐼𝜔

= 𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
12 0 0
0 10

12 0
0 0 5

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔1

𝜔2

𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
12𝑀𝑎

2𝜔1
10
12𝑀𝑎

2𝜔2
5
12𝑀𝑎

2𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑇 =
1
2
𝜔 ⋅ 𝐿 =

1
2 �
13
12
𝑀𝑎2𝜔2

1 +
10
12
𝑀𝑎2𝜔2

2 +
5
12
𝑀𝑎2𝜔2

3�

=
1
24
𝑀𝑎2 �13𝜔2

1 + 10𝜔2
2 + 5𝜔2

3�

Since body is rotating around the long diagonal. The long diagonal has length�𝑎
2 + (2𝑎)2 + (3𝑎)2 =

√14𝑎, therefore

𝜔 =
𝜔

√14𝑎
{𝑎, 2𝑎, 3𝑎} =

𝜔

√14
{1, 2, 3}

and the above becomes

𝑇 =
1
24
𝑀𝑎2𝜔2 �

13
14
+ 10 �

4
14�

+ 5 �
9
14��

=
7
24
𝑀𝑎2𝜔2
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0.2.3 Part(3)

Using

𝜔 ⋅ 𝐿 = |𝜔| |𝐿| cos𝜃

cos𝜃 = 𝜔 ⋅ 𝐿
|𝜔| |𝐿|

=
14
24𝑀𝑎

2𝜔2

�𝜔
2
1 + 𝜔2

2 + 𝜔2
3�

�13
12𝑀𝑎

2𝜔1�
2
+ �1012𝑀𝑎

2𝜔2�
2
+ � 5

12𝑀𝑎
2𝜔3�

2

=
14
24𝑀𝑎

2𝜔2

�
� 𝜔

√14
�
2
+ � 2𝜔

√14
�
2
+ � 3𝜔

√14
�
2

�
�13
12𝑀𝑎

2 𝜔

√14
�
2
+ �1012𝑀𝑎

2 2𝜔

√14
�
2
+ � 5

12𝑀𝑎
2 3𝜔

√14
�
2

=
14
24𝑀𝑎

2𝜔2

√𝜔2
�

397
1008𝑀

2𝑎4𝜔2

=
14
24

�
397
1008

= 0.92951

Hence

𝜃 = 21.640

0.2.4 Part(4)

Since

𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =
𝑑
𝑑𝑡
(𝑳)𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

=
𝑑
𝑑𝑡
(𝑳)𝑏𝑜𝑑𝑦 + 𝜔 × 𝑳



12

But 𝑑
𝑑𝑡
(𝑳)𝑏𝑜𝑑𝑦 = 0 since 𝑳 = 𝐼𝜔 and 𝐼 is constant and 𝜔 is constant. Therefore

𝜏 = 𝜔 × 𝑳
= 𝜔 × 𝐼𝜔

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔1

𝜔2

𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1 0 0
0 𝐼2 0
0 0 𝐼3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔1

𝜔2

𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔1

𝜔2

𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1𝜔1

𝐼2𝜔2

𝐼3𝜔3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
�

�

𝒊 𝒋 𝒌
𝜔1 𝜔2 𝜔3

𝐼1𝜔1 𝐼2𝜔2 𝐼3𝜔3

�

�

= 𝒊 (𝐼3𝜔2𝜔3 − 𝐼2𝜔2𝜔3) − 𝒋 (𝐼3𝜔3𝜔1 − 𝐼1𝜔1𝜔3) + 𝒌 (𝐼2𝜔2𝜔1 − 𝐼1𝜔1𝜔2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔2𝜔3 (𝐼3 − 𝐼2)
𝜔3𝜔1 (𝐼1 − 𝐼3)
𝜔2𝜔1 (𝐼2 − 𝐼1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above are Euler equations for constant 𝜔, and could have been written down directly
from Euler equations by setting all the �̇�𝑖 = 0 also.

Now, since 𝜔 = 𝜔

√14
{1, 2, 3} and 𝐼1 =

13
12𝑀𝑎

2, 𝐼2 =
10
12𝑀𝑎

2, 𝐼3 =
5
12𝑀𝑎

2, Therefore the above

torque becomes

𝜏 =
𝜔2

14
𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 � 5
12 −

10
12
�

3 �1312 −
5
12
�

2 �1012 −
13
12
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝜔2

14
𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
2
2
−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝜔2𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5
28
1
7
− 1
28

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝜔2𝑀𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.1786
0.1429
−0.0357

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Units check: 1
𝑇2𝑀𝐿

2 = [𝑁] [𝐿] units of torque. OK. The above is the external torque exerted
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on the block.
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0.3 Problem 3

Mechanics

Physics 311
Fall 2015

Homework 9 (11/20/15, due 12/4/15)

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are
constant.

2. (10 points)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity ~ω.

(1) Using a coordinate system with the origin at the center of the block, calculate the
inertia tensor.

(2) Find the kinetic energy.

(3) Find the angle between the angular velocity ~ω and the angular momentum ~L.

(4) Find the magnitude of the torque that must be exerted on the block if ~ω is constant.

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius a mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45◦ with the vertical.

(1) Show that there are two possible values of the precession rate φ̇ such that the top
precesses steadily at a constant value of θ = 45◦.

(2) Calculate the numerical values for φ̇ if S = 900 rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

...continued on next page...

SOLUTION:

0.3.1 Part(1)

Starting with the Euler equations for Gyroscope precession, equations 9.71. in textbook,
page 371, Analytical mechanics, 6th edition, by Fowles and Cassiday

𝑀𝑔𝑙 sin𝜃 = 𝐼𝑥�̈� + 𝐼𝑧𝑆�̇� sin𝜃 − 𝐼𝑦�̇�2 cos𝜃 sin𝜃

0 = 𝐼𝑦
𝑑
𝑑𝑡
��̇� sin𝜃� − 𝐼𝑧𝑆�̇� + 𝐼𝑥�̇��̇� cos𝜃 (1)

0 = 𝐼𝑧�̇�

Where the spin of the disk 𝑆 around its own 𝑧 body axis is

𝑆 = �̇� + �̇� cos𝜃
Instead of drawing this again, which would take sometime, I am showing the diagram from
the book above, page 371 for illustration
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In (1), the length 𝑙 is the distance from center of mass of the combined disc and rod, to the
origin of the inertial frame. This will be 𝑙 = 𝑎

2 . 𝑀 is the total mass of both the disc and the

rod, which will be 𝑀 = 3
2𝑚.

We are told that 𝜃 (𝑡) is constant. Hence �̈� = 0 and first equation in (1) becomes

𝑀𝑔𝑙 sin𝜃 = 𝐼𝑧𝑆�̇� sin𝜃 − 𝐼𝑦�̇�2 cos𝜃 sin𝜃
𝑀𝑔𝑙 = 𝐼𝑧𝑆�̇� − 𝐼𝑦�̇�2 cos𝜃

This is quadratic in �̇�. Solving gives

𝐼𝑦�̇�2 cos𝜃 − 𝐼𝑧𝑆�̇� +𝑀𝑔𝑙 = 0

�̇� =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

=
𝐼𝑧𝑆 ± �

𝐼2𝑧𝑆2 − 4𝐼𝑦 cos𝜃𝑀𝑔𝑙

2 cos𝜃𝐼𝑦
(2)

The only thing left is to calculate 𝐼𝑧 and 𝐼𝑦 for the disc and the rod about the mass center,
then use parallel axes theorem to move this to the pivot, which is the origin of the inertial
frame.

Due to symmetry, the center of mass for both disk and rod is located distance 𝑎
2 from pivot.

Hence 𝑙 = 𝑎
2 . For the disc, its moment of inertial around the spin axes at its center of mass is

(𝐼𝑧)𝑑𝑖𝑠𝑘 = 𝑚
𝑎2

2

And along the 𝑦 axis 𝐼𝑦 = 𝑚
𝑎2

4 . Since the distance of the center of mass from the pivot is 𝑎
2 ,
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we need to adjust 𝐼𝑦 by this distance using parallel axes. Hence

�𝐼𝑦�𝑑𝑖𝑠𝑘 = 𝑚
𝑎2

4
+ 𝑚 �

𝑎
2
�
2

=
1
2
𝑎2𝑚

For the rod, it only has moment of inertial around 𝑦 at the end of the rod. From tables

�𝐼𝑦�𝑟𝑜𝑑 =
�𝑚
2
� � 𝑎

2

3
�. Therefore

𝐼𝑧 = 𝑚
𝑎2

2

𝐼𝑦 = �𝐼𝑦�𝑑𝑖𝑠𝑘 +
�𝐼𝑦�𝑟𝑜𝑑 =

1
2
𝑎2𝑚 +

𝑚
2
𝑎2

3

=
2
3
𝑎2𝑚

From (2), and using 𝜃 = 450 we find, using 𝑀 = 𝑚 + 𝑚
2 =

3
2𝑚 and 𝑙 = 𝑎

2

�̇� =
𝐼𝑧𝑆 ± �

𝐼2𝑧𝑆2 − 4𝐼𝑦 cos𝜃𝑀𝑔𝑙

2 cos𝜃𝐼𝑦
(3)

0.3.2 Part(2)

For 𝜃 = 450 and 𝑆 = 900 rpm, which is 94.248 rad/sec. 𝑎 = 0.1 meter and 𝑙 = 𝑎
2 = 0.05 meter

(3) becomes

�̇� =
�𝑚 𝑎2

2
� (94.248) ±

�
�𝑚 𝑎2

2
�
2
(94.248)2 − 4 �23𝑎

2𝑚� cos �45 � 𝜋
180
�� �3

2𝑚� (9.8) (0.05)

2 cos �45 � 𝜋
180
�� �2

3𝑎
2𝑚�

=
�𝑚 (0.1)2

2
� (94.248) ± 𝑚

�
� (0.1)

2

2
�
2
(94.248)2 − 4 �23 (0.1)

2� cos �45 � 𝜋
180
�� �3

2
� (9.8) (0.05)

2 cos �45 � 𝜋
180
�� �2

3
(0.1)2𝑚�

=
3
4

� (0.1)
2

2
� (94.248)

cos �45 � 𝜋
180
�� (0.1)2

±
3
4
�
� (0.1)

2

2
�
2
(94.248)2 − 4 �23 (0.1)

2� cos �45 � 𝜋
180
�� �3

2
� (9.8) (0.05)

cos �45 � 𝜋
180
�� (0.1)2

= 49. 983 ± 48. 398 rad/sec

Or

�̇� = 939.47 or 15.13 rpm
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0.3.3 Part(3)

From (2) above, repeated below

�̇� =
𝐼𝑧𝑆 ± �

𝐼2𝑧𝑆2 − 4𝐼𝑦 cos𝜃𝑀𝑔𝑙

2 cos𝜃𝐼𝑦
Since �̇� must be real, then 𝐼2𝑧𝑆2 − 4𝐼𝑦 cos𝜃𝑀𝑔𝑙 must be either positive or zero.

𝑆2 − 4𝐼𝑦 cos𝜃𝑀𝑔𝑙 ≥ 0

𝑆2 ≥
4𝐼𝑦 cos𝜃𝑀𝑔𝑙

𝐼2𝑧
For 𝜃 = 0 the above becomes

𝑆2 ≥
4𝐼𝑦𝑀𝑔𝑙
𝐼2𝑧

The above is the condition on spin speed 𝑆 for keeping 𝜃 = 0 . Hence

𝑆2 ≥
4 �23𝑎

2𝑚� �32𝑚� (9.8) 𝑙

�𝑚 𝑎2

2
�
2

≥
156.8
𝑎2

𝑙

≥
156.8
(0.1)2

(0.05)

≥ 784

Therefore

𝑆 ≥ √784
≥ 28 rad/sec

Or

𝑆 ≥ 267. 31 RPM
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0.4 Problem 4

4. (10 points)
Determine the principal moments of inertia and the corresponding principle axes about
the center of mass of a homogeneous circular cone of height h and radius R. (You might
find it easier to calculate the moments in a reference frame with the origin at the apex
first, and then transform to the center of mass system.)

5. (15 points)
A homogeneous slab of thickness a is placed on top of a fixed cylinder of radius R whose
axis is horizontal (as in the Figure below).

(1) Determine the Lagrangian of the system.

(2) Derive the equations of motion and determine the frequency of small oscillations.

(3) Show that the condition for stable equilibrium of the slab, assuming no slipping, is
R > a/2.

(4) Use a computer to plot the potential energy U as a function of the angular displacement
θ for a slab of mass M = 1kg and

(a) R = 20 cm and a = 5 cm, and

(b) R = 10 cm and a = 30 cm.

(5) Show that the potential energy U(θ) has a minimum at θ = 0 for R > a/2, but not for
R < a/2.

SOLUTION:

0.4.1 Solution using Cylindrical coordinates

Will show the solution using Cylindrical coordinates. Then later will also show the solution
using Cartesian coordinates. Using Cylindrical coordinates

x

y

z

θr

r, θ, z are the cylinderical coordinates

The limits of volume integration will be from 𝑧 = 0⋯ℎ and 𝜃 = 0⋯2𝜋. For 𝑟, it depends on
𝑧. Since 𝑟

𝑅 = 𝑧
ℎ , then 𝑟 =

𝑅
ℎ 𝑧, therefore the limit for 𝑟 = 0⋯ 𝑅

ℎ 𝑧. This is when the tip of the
cone at the origin as follows

x

y

z

R

h
r

r
R

= z
h

θ
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The density is 𝜌 = 3𝑀
𝜋𝑅2ℎ . The center of mass is ℎ

4 distance away from the base or 3
4ℎ from

the tip. The moment of inertia is found at the origin (which is the tip of the cone also),
then moved to the center of mass using parallel axes theorem. We know from Cartesian
coordinates that the inertia matrix is found using

𝐽 = 𝜌���

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑧𝑑𝑦𝑑𝑥

Therefore, in cylindrical coordinates this becomes, after using the mapping 𝑥 = 𝑟 cos𝜃, 𝑦 =
𝑟 sin𝜃, 𝑧 = 𝑧

𝐽 = 𝜌�
ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟2 sin2 𝜃 + 𝑧2 −𝑟2 cos𝜃 sin𝜃 −𝑟 cos𝜃𝑧
−𝑟 cos𝜃𝑧 𝑟2 cos2 𝜃 + 𝑧2 −𝑟 sin𝜃𝑧
−𝑟 cos𝜃𝑧 −𝑟 sin𝜃𝑧 𝑟2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑟𝑑𝑟𝑑𝜃𝑑𝑧

Due to symmetry, the o� diagonal elements will be zero. So we only have to perform the
following integration

𝐽 = 𝜌�
ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟2 sin2 𝜃 + 𝑧2 0 0
0 𝑟2 cos2 𝜃 + 𝑧2 0
0 0 𝑟2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑟𝑑𝑟𝑑𝜃𝑑𝑧
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For 𝐽11 we find

𝐽11 = 𝜌�
ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0
�𝑟2 sin2 𝜃 + 𝑧2� 𝑟𝑑𝑟𝑑𝜃𝑑𝑧

= 𝜌�
ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0
�𝑟2 sin2 𝜃� 𝑟𝑑𝑟𝑑𝜃𝑑𝑧 + 𝜌�

ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0
𝑧2𝑟𝑑𝑟𝑑𝜃𝑑𝑧

= 𝜌�
ℎ

0
𝑑𝑧�

2𝜋

0
𝑑𝜃
⎛
⎜⎜⎜⎜⎝�

𝑅
ℎ 𝑧

0
�𝑟3 sin2 𝜃� 𝑑𝑟

⎞
⎟⎟⎟⎟⎠ + 𝜌�

ℎ

0
𝑧2𝑑𝑧�

2𝜋

0
𝑑𝜃
⎛
⎜⎜⎜⎜⎝�

𝑅
ℎ 𝑧

0
𝑟𝑑𝑟
⎞
⎟⎟⎟⎟⎠

= 𝜌�
ℎ

0
𝑑𝑧�

2𝜋

0
sin2 𝜃𝑑𝜃 �

𝑟4

4 �

𝑅
ℎ 𝑧

0
+ 𝜌�

ℎ

0
𝑧2𝑑𝑧�

2𝜋

0
𝑑𝜃 �

𝑟2

2 �

𝑅
ℎ 𝑧

0

=
𝜌
4
𝑅4

ℎ4�
ℎ

0
𝑧4𝑑𝑧�

2𝜋

0
sin2 𝜃𝑑𝜃 +

𝜌
2
𝑅2

ℎ2�
ℎ

0
𝑧4𝑑𝑧�

2𝜋

0
𝑑𝜃

=
𝜌
4
𝑅4

ℎ4�
ℎ

0
𝑧4𝑑𝑧 �

𝜃
2
−
1
4

sin (2𝜃)�
2𝜋

0
+
𝜌
2
𝑅2

ℎ2
2𝜋�

ℎ

0
𝑧4𝑑𝑧

= 𝜋
𝜌
4
𝑅4

ℎ4�
ℎ

0
𝑧4𝑑𝑧 +

𝜌
2
𝑅2

ℎ2
2𝜋 �

𝑧5

5 �
ℎ

0

= 𝜋
𝜌
4
𝑅4

ℎ4 �
𝑧5

5 �
ℎ

0
+ 𝜌

𝑅2

ℎ2
𝜋
ℎ5

5

= 𝜋
𝜌
4
𝑅4

ℎ4
ℎ5

5
+ 𝜌𝑅2𝜋

ℎ3

5

= 𝜋
𝜌
20
𝑅4ℎ + 𝜌𝑅2𝜋

ℎ3

5
Using 𝜌 = 3𝑀

𝜋𝑅2ℎ the above becomes

𝐽11 =
3𝑀
𝜋𝑅2ℎ

𝜋
1
20
𝑅4ℎ +

3𝑀
𝜋𝑅2ℎ

𝑅2𝜋
ℎ3

5

=
3𝑀
20
𝑅2 +

3𝑀
5
ℎ2

For 𝐽22 it will be the same as the above, since the only di�erence is cos2 𝜃 instead of sin2 𝜃
in the integrand. Therefore

𝐽22 =
3𝑀
20
𝑅2 +

3𝑀
5
ℎ2
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For the final entry (the easy one) we have

𝐽33 = 𝜌�
ℎ

0
�

2𝜋

0
�

𝑅
ℎ 𝑧

0
𝑟2𝑟𝑑𝑟𝑑𝜃𝑑𝑧

= 𝜌�
ℎ

0
�

2𝜋

0
�
𝑟4

4 �

𝑅
ℎ 𝑧

0
𝑑𝜃𝑑𝑧

=
𝜌
4
𝑅4

ℎ4�
ℎ

0
𝑧4𝑑𝑧�

2𝜋

0
𝑑𝜃

=
𝜌
4
𝑅4

ℎ4
2𝜋�

ℎ

0
𝑧4𝑑𝑧

=
𝜌
4
𝑅4

ℎ4
2𝜋 �

𝑧5

5 �
ℎ

0

=
𝜌
20
𝑅4

ℎ4
2𝜋ℎ5

Using 𝜌 = 3𝑀
𝜋𝑅2ℎ the above becomes

𝐽33 =
3𝑀
𝜋𝑅2ℎ

1
20
𝑅4

ℎ4
2𝜋ℎ5

=
6
20
𝑀𝑅2

Therefore

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑀
20 𝑅

2 + 3𝑀
5 ℎ

2 0 0
0 3𝑀

20 𝑅
2 + 3𝑀

5 ℎ
2 0

0 0 3
10𝑀𝑅

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using 𝐼𝑖𝑗 = 𝐼𝑐𝑚𝑖𝑗 + 𝑀�𝑎2𝛿𝑖𝑗 − 𝑎𝑖𝑎𝑗�, we now find 𝐼. The vector from the origin to the center of

mass is 𝑎 = �0, 0, 34ℎ�, hence

𝐼11 = �
3𝑀
20
𝑅2 +

3𝑀
5
ℎ2� − 𝑀

⎛
⎜⎜⎜⎜⎝�
3
4
ℎ�

2

− �02�
⎞
⎟⎟⎟⎟⎠

=
3𝑀
20
𝑅2 +

3𝑀
5
ℎ2 −𝑀�

3
4
ℎ�

2

=
3
20
𝑀𝑅2 +

3
80
𝑀ℎ2

And

𝐼22 = 𝐼11
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And

𝐼33 =
3
10
𝑀𝑅2 −𝑀

⎛
⎜⎜⎜⎜⎝�
3
4
ℎ�

2

− �
3
4
ℎ�

2⎞⎟⎟⎟⎟⎠

=
3
10
𝑀𝑅2

Therefore the final inertial matrix around the center of the mass of the cone is

𝐼 = 𝑀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
20𝑅

2 + 3
80ℎ

2 0 0
0 3

20𝑅
2 + 3

80ℎ
2 0

0 0 3
10𝑅

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0.4.2 Solution using Cartesian coordinates

Will find mass moment of inertia tensor at center of base of cone, then use parallel axes to
move it to the center of mass of cone.

R

hr

z

R
r

= h
h−z

y

x

We basically want to perform this integral

𝐽 = 𝜌
𝑧=ℎ

�
𝑧=0

𝑦=𝑦(𝑧max)

�
𝑦=𝑦(𝑧min)

𝑥=𝑥�𝑦max�

�
𝑥=𝑥�𝑦min�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑧𝑑𝑦𝑑𝑥

The limit on 𝑧 is easy. It is from 𝑧 = 0 to 𝑧 = ℎ. Now at specific 𝑧, we need to know the limit
on 𝑦. The radius 𝑟 at some 𝑧 distance from the origin is 𝑟 = 𝑅(ℎ−𝑧)

ℎ as shown above, which is
by proportions. Therefore the limit of integration for 𝑦 is from 𝑦 = −𝑟 to +𝑟. Now we need
to find the limit on 𝑥. At some specific 𝑦 distance from origin, we see from the following
diagram
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R

z

y

x

y
x r

We see from the above that 𝑥2 = 𝑟2 − 𝑦2 but 𝑟 = 𝑅(ℎ−𝑧)
ℎ , hence the limit on 𝑥 is from

−
�
�𝑅(ℎ−𝑧)

ℎ
�
2
− 𝑦2 to +

�
�𝑅(ℎ−𝑧)

ℎ
�
2
− 𝑦2. Now that we found all the limits, the integration is

𝐽 = 𝜌
ℎ

�
0

𝑅(ℎ−𝑧)
ℎ

�
−𝑅(ℎ−𝑧)

ℎ

�
�𝑅(ℎ−𝑧)ℎ �

2
−𝑦2

�

−
�
�𝑅(ℎ−𝑧)ℎ �

2
−𝑦2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑧𝑑𝑦𝑑𝑥

Where 𝜌 = 3𝑀
𝜋𝑅2ℎ .Using computer algebra software to do the integration (too messy by hand),

the above gives

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
10𝑀ℎ

2 + 3
20𝑀𝑅

2 0 0
0 1

10𝑀ℎ
2 + 3

20𝑀𝑅
2 0

0 0 3
10𝑀𝑅

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we use parallel axis to find 𝐼 at center of mass. The center of mass is at 𝑎 = �0, 0, 14ℎ�,
hence

𝐼11 = 𝐽11 −𝑀�𝑎2 − 𝑎21�

=
1
10
𝑀ℎ2 +

3
20
𝑀𝑅2 −𝑀�

1
4
ℎ�

2

=
3
20
𝑀𝑅2 +

3
80
𝑀ℎ2

And

𝐼12 = 𝐽12 −𝑀 (−𝑎1𝑎2)
= 0 −𝑀 (0)
= 0
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And

𝐼13 = 𝐽13 −𝑀 (−𝑎1𝑎3)

= −𝑀𝑎2
3
4
−𝑀�− �

1
2
𝑎�
3
2
𝑎�

= 0

And 𝐼21 = 𝐼12 And

𝐼22 = 𝐽22 −𝑀�𝑎2 − 𝑎22�

=
1
10
𝑀ℎ2 +

3
20
𝑀𝑅2 −𝑀�

1
4
ℎ�

2

=
3
20
𝑀𝑅2 +

3
80
𝑀ℎ2

And

𝐼23 = 𝐽23 −𝑀 (−𝑎2𝑎3)
= 0 −𝑀 (0)
= 0

And 𝐼31 = 𝐼31 and 𝐼32 = 𝐼23 and

𝐼33 = 𝐽33 −𝑀�𝑎2 − 𝑎23�

=
3
10
𝑀𝑅2 −𝑀

⎛
⎜⎜⎜⎜⎝�
1
4
ℎ�

2

− �
1
4
ℎ�

2⎞⎟⎟⎟⎟⎠

=
3
10
𝑀𝑅2

Therefore the moment of inertia tensor around the center of mass

𝐼 = 𝑀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
20𝑅

2 + 3
80ℎ

2 0 0
0 3

20𝑅
2 + 3

80ℎ
2 0

0 0 3
10𝑅

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which is the same as using Cylindrical coordinates (as would be expected).
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0.5 Problem 5

4. (10 points)
Determine the principal moments of inertia and the corresponding principle axes about
the center of mass of a homogeneous circular cone of height h and radius R. (You might
find it easier to calculate the moments in a reference frame with the origin at the apex
first, and then transform to the center of mass system.)

5. (15 points)
A homogeneous slab of thickness a is placed on top of a fixed cylinder of radius R whose
axis is horizontal (as in the Figure below).

(1) Determine the Lagrangian of the system.

(2) Derive the equations of motion and determine the frequency of small oscillations.

(3) Show that the condition for stable equilibrium of the slab, assuming no slipping, is
R > a/2.

(4) Use a computer to plot the potential energy U as a function of the angular displacement
θ for a slab of mass M = 1kg and

(a) R = 20 cm and a = 5 cm, and

(b) R = 10 cm and a = 30 cm.

(5) Show that the potential energy U(θ) has a minimum at θ = 0 for R > a/2, but not for
R < a/2.

SOLUTION:
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0.5.1 Part (1)

C
C′

R

θ

Rθ
θ

a
2

P

R
co
s
θ

Rθ sin θ

θ

a
2
cos θ

origin
x

y

(x, y)
current position of center of mass

position of mass
of mass at
equilibrium

The system has three degrees of freedom �𝑥, 𝑦, 𝜃�. But they are not independent. Because if
we know 𝜃 (𝑡), we can find 𝑥 (𝑡) and 𝑦 (𝑡) (for small angle approximation) as shown below in
equations (1) and (2).

The cylinder itself does not move or rotate. Only the slab has rotational and translational
motion. When the slab center of mass at 𝐶 it is in equilibrium. When the slab center of mass
at point 𝐶′ the location of the center of mass is �𝑥, 𝑦�, where from the diagram above we see
that (for small angle 𝜃)

𝑥 = �𝑅 +
𝑎
2
� sin𝜃 − 𝑅𝜃 cos𝜃 (1)

𝑦 = �𝑅 +
𝑎
2
� cos𝜃 + 𝑅𝜃 sin𝜃 (2)

The distance from 𝐶′ to 𝑂 which is the zero reference for potential energy is therefore
(assuming mass of slab is 𝑀)

𝑈 = 𝑀𝑔𝑦

= 𝑀𝑔 �𝑅𝜃 sin𝜃 + �𝑎
2
+ 𝑅� cos𝜃�

Let the moment of inertial of the slab around the axis of rotation be 𝐼 therefore

𝑇 =
1
2
𝐼�̇�2 +

1
2
𝑀��̇�2 + �̇�2� (3)

Now, we write �̇�2 + �̇�2 above in terms of 𝜃 using (1) and (2). (Initially I did not know if we
should do this or not. So I left the original solution as an appendix in case that was how
we are supposed to do it). Using this method below, we find only one equation of motion,
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not three as in the solution in the appendix.

�̇� = �𝑅 +
𝑎
2
� �̇� cos𝜃 − �𝑅�̇� cos𝜃 + 𝑅𝜃�̇� sin𝜃�

�̇� = − �𝑅 +
𝑎
2
� �̇� sin𝜃 + �𝑅�̇� sin𝜃 + 𝑅𝜃�̇� cos𝜃�

Hence (using CAS for simplification) we find

�̇�2 =
1
4
�̇�2 (𝑎 cos𝜃 + 2𝑅𝜃 sin𝜃)2

Similarly for �̇�2 we find

�̇�2 =
1
4
�̇�2 (𝑎 sin𝜃 − 2𝑅𝜃 cos𝜃)2

Hence (3) becomes

𝑇 =
1
2
𝐼�̇�2 +

1
8
𝑀�̇�2 �(𝑎 cos𝜃 + 2𝑅𝜃 sin𝜃)2 + (𝑎 sin𝜃 − 2𝑅𝜃 cos𝜃)2�

And the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
1
2
𝐼�̇�2 +

1
8
𝑀�̇�2 �(𝑎 cos𝜃 + 2𝑅𝜃 sin𝜃)2 + (𝑎 sin𝜃 − 2𝑅𝜃 cos𝜃)2� − 𝑀𝑔 �𝑅𝜃 sin𝜃 + �𝑎

2
+ 𝑅� cos𝜃�

0.5.2 Part(2)

𝜕𝐿
𝜕𝜃

=
1
2
𝑀�𝑔𝑎 sin𝜃 + 2𝑅𝜃 �−𝑔 cos𝜃 + 𝑅�̇�2��

𝜕𝐿
𝜕�̇�

=
1
4
�4𝐼 + 𝑎2𝑀+ 4𝑀𝑅2𝜃2� �̇�

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 2𝑀𝑅2𝜃�̇�2 +
1
4
�4𝐼 + 𝑎2𝑀+ 4𝑀𝑅2𝜃2� �̈�

Hence
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

= 0

𝐼�̈� +
1
4
𝑀�𝑎2 + 4𝑅2𝜃2� �̈� −

1
2
𝑎𝑔𝑀 sin𝜃 +𝑀𝑅𝜃 �𝑔 cos𝜃 + 𝑅�̇�2� = 0

For small angles, we use sin𝜃 ≈ 𝜃 and cos𝜃 ≈ 1, �̇�2 ≈ 0 and 𝜃2 ≈ 0. The above becomes

𝐼�̈� +
1
4
𝑀𝑎2�̈� −

1
2
𝑎𝑔𝑀𝜃 +𝑀𝑅𝜃𝑔 = 0

�̈� �𝐼 +
1
4
𝑀𝑎2� + 𝜃 �𝑀𝑅𝑔 −

1
2
𝑎𝑔𝑀� = 0

�̈� +
𝑀𝑔 �𝑅 − 1

2𝑎�

�𝐼 + 1
4𝑎

2𝑀�
𝜃 = 0
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The above is now in the form �̈� + 𝜔2
0𝜃 = 0 , therefore the natural frequency is

𝜔0 =

�
⃓
⃓
⃓
⃓
⎷

𝑀𝑔�𝑅 − 1
2𝑎�

�𝐼 + 1
4𝑎

2𝑀�

0.5.3 Part(3)

For stable equilibrium, we need
𝑀𝑔�𝑅− 1

2 𝑎�

�𝐼+ 1
4 𝑎

2𝑀�
> 0 in order to obtain an oscillator (simple harmonic

motion), otherwise the solution will contain pure exponential term and it will blow up. Hence
we need

𝑀𝑔�𝑅 −
1
2
𝑎� > 0

𝑅 −
1
2
𝑎 > 0

𝑅 >
1
2
𝑎

0.5.4 Part(4)

Here is a plot of 𝑀𝑔�𝑅𝜃 sin𝜃 + � 𝑎2 + 𝑅� cos𝜃�, for small angle, using 𝑀 = 1kg. For parts (a)
and (b)
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We see from the above, that in part(b), where 𝑅 < 𝑎
2 , the potential energy at 𝜃 = 0 is not

minimum. This implies 𝜃 = 0 is not a stable equilibrium. While in part(a) it is stable.

0.5.5 Part(5)

𝑈 (𝜃) = 𝑀𝑔 �𝑅𝜃 sin𝜃 + �𝑎
2
+ 𝑅� cos𝜃�

Hence to find where the minimum is
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𝑈′ (𝜃) = 𝑔𝑅𝜃 cos𝜃 − 1
2
𝑔𝑎 sin𝜃

Setting this to zero and for small angle we obtain

0 = 𝑔𝑅𝜃 −
1
2
𝑔𝑎𝜃

0 = 𝜃𝑔 �𝑅 −
1
2
𝑎�

This implies 𝜃 = 0 is where the minimum potential energy is. We know this is stable
equilibrium. Therefore we expect 𝑈′′ (𝜃 = 0) to be positive for a local minimum (from
calculus). We now check the condition for this.

𝑈′′ (𝜃) = −
1
2
𝑔 ((𝑎 − 2𝑅) cos𝜃 + 2𝑅𝜃 sin𝜃)

At 𝜃 = 0 we obtain

𝑈′′ (𝜃 = 0) = −
1
2
𝑔 (𝑎 − 2𝑅)

For the above to be positive, then

𝑎 − 2𝑅 < 0
2𝑅 > 𝑎

𝑅 >
𝑎
2

The above is the condition for having stable equilibrium at 𝜃 = 0. If 𝑅 < 𝑎
2 , then at 𝜃 = 0 the

slab will not be stable, which is not we have shown in part(3).
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0.5.6 Appendix. Second Solution of problem 5

Part(1)

In this solution, we find three equations of motion.

𝑇 =
1
2
𝐼�̇�2 +

1
2
𝑀��̇�2 + �̇�2�

Hence the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
1
2
𝐼�̇�2 +

1
2
𝑀��̇�2 + �̇�2� − 𝑀𝑔 �𝑅𝜃 sin𝜃 + �𝑎

2
+ 𝑅� cos𝜃�

Part(2)

For 𝜃
𝜕𝐿
𝜕𝜃

= −𝑀𝑔 �𝑅 (sin𝜃 + 𝜃 cos𝜃) − �𝑎
2
+ 𝑅� sin𝜃�

𝜕𝐿
𝜕�̇�

= 𝐼�̇�

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝐼�̈�

Hence
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

= 0

𝐼�̈� + 𝑀𝑔 �𝑅 (sin𝜃 + 𝜃 cos𝜃) − �𝑎
2
+ 𝑅� sin𝜃� = 0

For small angles, we use sin𝜃 ≈ 𝜃 and cos𝜃 ≈ 1, and the above becomes

𝐼�̈� + 𝑀𝑔 �2𝑅𝜃 − �
𝑎
2
+ 𝑅�𝜃� = 0

𝐼�̈� + 𝑀𝑔 �𝑅 −
1
2
𝑎� 𝜃 = 0

�̈� +
𝑀𝑔 �𝑅 − 1

2𝑎�

𝐼
𝜃 = 0

The above is now in the form �̈� + 𝜔2
0𝜃 = 0 , therefore the natural frequency is

𝜔0 =

�
⃓
⃓
⎷

𝑀𝑔�𝑅 − 1
2𝑎�

𝐼
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For 𝑥, we have
𝜕𝐿
𝜕𝑥

= 0

𝜕𝐿
𝜕�̇�

= 𝑀�̇�

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝑀�̈�

Hence
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝑥

= 0

𝑀�̈� = 0

For 𝑦 we also obtain

𝑀�̈� = 0

The rest follows as first solution above and will not be repeated.
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