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0.1 Problem 1

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are

constant.
SOLUTION:
Euler solid body rotation equations are
(I = 3) wawz = L1y =0 (1)
(I3 - I1) wswy — L, =0 (2)
(Ih — ) wiwy — Iz =0 (3)

Where I, I,, I3 are the body moments of inertia around the principal axes. Multiplying both
sides of (1) by I;w; and both sides of (2) by L,w, and both sides of (3) by Izw; gives

0)10)20)311[2 - w1w2w31113 - 1%0)1(1.)1 =0 (1A)
(1)16()20)3[213 - 0)10)20)31112 — 1%0)20-)2 =0 (2A)
0)10)2(1)31113 - a)la)za)31213 - I§w3d)3 =0 (3A)

Adding (1A,2A,3A) gives (lots of terms cancel, that has w;w,w3 in them)

I%a)la')l + I%Cl)zd)z + I:;z)a)3d)3 =0 (4)
But (4) is the same thing as
1d
-—I1%2=0
2dt

where L is the angular momentum vector
L = {lywy, hw,, 3w}
Hence
I1?=L-L= [I%w%, Bw?, I%a)%}
Therefore, and since the I’s are constant, we find

1d 1 ) : .
EELZ = E {21%0)10)1,21%0)20)2, 2132)0)30)3}

= [I%%d)vlngd)zf I§w3d)3} (4)

. . 1d .
Comparing (5) and (4), we see they are the same. This means that EELZ =0orL?isa
constant. Which implies L or the angular momentum is a constant vector.

. . . 1 C .
To show that rotational kinetic energy is constant, we need to show that 5 (w - L) (which is
the kinetic energy) is constant, where w = {wy, w,, w3} is the angular velocity vector. But



But we found that L = 0 since L is constant. Hence the above becomes

1d 1
If we can show that @ -L = 0 then we are done. To do this, we go back to Euler equations
(1,2,3) and now instead of multiplying by [;w; as before, we now multiply by just w; each

equation. This gives

(1)10)20)312 - a)la)za)313 - Ila)lcbl =0 (1C)
0)10)20)313 - 0)10)2(1)311 - Iza)zd)z =0 (QC)
a)la)za)311 - a)la)za)312 - I3a)3a')3 =0 (BC)

Adding gives (lots of terms cancel, that has w;w,w; in them)

L 1 + hwywy + Izwzwz =0 (7)

But the above is the same as (6), with a factor of % This means @ -L =0 or % (w-L)=0or
that the rotational kinetic energy is constant. Which is what we are asked to show.



0.2 Problem 2

2. (10 points)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity &.

(1) Using a coordinate system with the origin at the center of the block, calculate the
inertia tensor.

(2) Find the kinetic energy.
(3) Find the angle between the angular velocity & and the angular momentum L.

(4) Find the magnitude of the torque that must be exerted on the block if & is constant.

SOLUTION:

L2
3a

2a 4

Ql
\
o

0.2.1 Part(1)

We first find I (called | for now) around the origin of the inertial frame X;, X,, X3 then use

parallel axes theorem to find I at the center of the cube at a = {%a, a, ga}. The volume of the



cube is a(2a) (3a) = 64°.
a1
Jin = Pf dX;
Jo
=p
=p
=p

:p a

=p

And

20 a
f X, f dX; (X3 + X3)
0 0

a 20 3a
f dX, f dX,X3 f dX3]+ o
Y 0 0 0

[ 20
a(3a) f dXzXﬁ] +p
[ 0

32£l
2

3)
30

tp

3
%] +p [2(12

27a3

+ Y [26127

(3a)’

a(2a)

a 24 3a
f dX, f dX, f dX;;X%]
0 0 0
a
f dX3X§]
0
X; )301]
0

a(2a)( 3

|
|

5

a 20 a
Ji2 = —Pf dX1f dXzf dX3 (X1X3)
0 0 0

a 20 3a
—p f deXl f XZdXZ dX3
0 0 0
X3

)
()7

2
= -3a°p
= —%az (6a3p)

1
= ——Ma?
5 a

Xt

2
2



And

20 a
J13 :—Pf dX1f dXzf dX3 (X1X3)

20
= —pf deXl Xzf X3dX3

And J5; = ]2 and

a 20 a
fzzzpf Xmf dXzf dXs (X3 + X3)
24 3a 3a
=p f dexlf dXzf dX3]+p f X f dXzf dX3X§]
0

X3 3a

a(2a)(?) ]
0

(3a)° l

3 a
=p (X—) (2a) Ba) |+ p
0

3

[ 23
=p (Za) (3a)] +p

[ 6a° N 2711
= —_— a —_—
Pl |7P1™" 3

= p2a° +18a°p
=20a°p
20
5 (62°p)
20

=M=
6[1

a(2a)




And

And J3; = Ji3 and J3; = J»3 and
a 20 a
]33:Pf Xmf dXzf dXs (X3 + X3)
0 0 0
[ ~a 20 3a a 20 3a
=p f X3dX, f X, f dX3]+p f X, f X2dX, f dX3]
[0 0 0 0 0 0
[ a 2a
X3
a(?z) 3a]
0
8a® 3
al—13a
3

3
=p (ﬁ) (20)3a)| + p
0

3

3
= p|5 a) (3a)]+p

= p2a° + p8a®
=10a°p
10
= gaz (6a%p)
10
- M—g2
=
Therefore
B3 1 3
3 a4
J=Ma*|-- = -2
BN
i 6 6



We now find I around the center of the cube where the position vector of the center is

»_[1 3
a= {Za, a, za}. Therefore
In =] —M(EQ - “%)
13
= Mazg -M (a% + a%)
2
13 3
= Mazg —M[a2 + (Ea) J
13
= — Mda?
12
And
Lip = Jip = M (-a143)
= —Ma21 -M|- 1a a
B 2 2
=0
And

L1z = J13 — M (-aya3)
= —Mazg—M (L4 Ea
B 4 27)2
=0
And 121 = 112 And
Ly = ]2 —M(E)Z - 5’%)

20
= Ma>—= - M (d} +a3)
2 2
20 1 3
= Ma>— - M||5a| +|5

And
Ipz = Jo3 — M (-azas)

9 3
a2 ol a2
= Ma6 M( (a)za)
=0



10

And 131 = 131 and 132 = 123 and
I3 = J33 —M(ﬁ2 - a%)

= Maz% -M (a% + a%)

2
= Mazg -M [(la) + az]

6 2
5
= —Mua?
P Rat
Therefore the moment of inertia tensor around the center of mass is
13
o 0 0
I=Ma?|0 g 0
00 2

12

0.2.2 Part(2)

.. L1
The kinetic energy is @ - L where w = {w, wp, w3} and

L=Iw
g 0 0 (0]
=Ma?|0 2 0||w;
5
0 0 E W3
gMﬁzwl
= ?Mﬂza)z
> 2
12Mﬂ w3
Hence
1 1/(13 10 5
T = EC() -L = E (EMaza)lz + EMﬂzwg + EMQZCU%)

1
= M (1302 +10w3 + 5w2)

Since body is rotating around the long diagonal. The long diagonal has length \/ a2 + (2a)* + (3a)* =
\/ﬂa, therefore

w w
=——1a,2a,3a} = —

Vida Vi4

1 13 4 9
T= - Ma?w? (2 +10( = | +5(=
24T (14+ (14)+ (14))

7
= ﬁMﬁlza}Z

w {1/ 2/ 3}

and the above becomes



0.2.3 Part(3)

Using
w L =|w||L|cosO
w-L
cosf = ——
|ewl |L|
4, 5 o
_ ﬁMﬂ @
2 2 2 [(1Byr o 2 (10 2 2 5 a2 2
Wi + wy + wiy[| pMatw, | +| ZMa‘w, ) + | S Matws
4, 5 o
3 ﬁMﬂ w
2 2 2 2 2 2
N 20 3o B2 10 22_“)) (i 23_“))
\/(m) () () \/(le” i) +lEmeg) +(Gme
gMaza)z
o2 37 ar2,4,02
w 1008Ma(‘)
14
_ 24
7
1008
= 0.92951
Hence
9 = 21.64°
0.2.4 Part(4)
Since
d
Lexternal = E( )inertial
d

:E(L)bodyJ“wXL

11



12

d . . .
But " (L), dy = 0 since L = Iw and I is constant and w is constant. Therefore

T=wXL
=wXlw

w1 I, 0 0)fan
wy | X0 L, Of|w,
w3 0 0 L)\ws
w1 L,

wy | X Lw,

ws) \lzws

i Ji k

Wy Wy W3

Ly hw, Izws

i ([zwyw3 — hwows) — j (zwswy — [Jjwws) + k (Lw,wy — [Lwiwy)
wyws (I3 = I)

wzwi (I - 1I3)

wpwi (I = Ih)

The above are Euler equations for constant w, and could have been written down directly
from Euler equations by setting all the @; = 0 also.

Now, since w =

torque becomes

\/%{1,2,3} and I; = gMaz,Iz = gMaz,k = 15—2Ma2, Therefore the above
5 10
. [elz-%)
Y EY )
T= 14Ma 3(12 12)
10 13
2(5-3)
_3
w2 2
= —Ma?
11 a 21
2
_5
28
= w?Ma?| :
7
1
" 28
-0.1786
= w?Ma?| 0.1429
-0.0357

Units check: %ML2 = [N][L] units of torque. OK. The above is the external torque exerted



on the block.

13
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0.3 Problem 3

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius ¢ mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45° with the vertical.

(1) Show that there are two possible values of the precession rate (;5 such that the top
precesses steadily at a constant value of 6 = 45°.

(2) Calculate the numerical values for ¢ if S = 900rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

SOLUTION:

0.3.1 Part(1)

Starting with the Euler equations for Gyroscope precession, equations 9.71. in textbook,
page 371, Analytical mechanics, 6th edition, by Fowles and Cassiday

Mglsin 6 = 1,6 + [,S¢ sin 6 — I,¢* cos Osin 6

d, . . . .
o:%E@mm9y4§e+gwm%a 1)
0=15
Where the spin of the disk S around its own z body axis is
S=1v+¢dcosO

Instead of drawing this again, which would take sometime, I am showing the diagram from
the book above, page 371 for illustration
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\ x’ (line of nodes)
(a) (b)

Figure 9.7.1 The simple gyroscope.

In (1), the length [ is the distance from center of mass of the combined disc and rod, to the
origin of the inertial frame. This will be [ = g M is the total mass of both the disc and the

rod, which will be M = gm

We are told that O (t) is constant. Hence 6 = 0 and first equation in (1) becomes
Mglsin 0 = L,S¢ sin 0 - I,¢? cos O sin O
Mgl = L,S¢ — I,¢* cos 0

This is quadratic in ¢. Solving gives

I,p? cos 6 — I,S¢ + Mgl = 0

oo —b + Vb2 — 4ac

2a
LS+ \/12252 — 41, cos OMgl
- 2cos 0l @

The only thing left is to calculate I, and I, for the disc and the rod about the mass center,
then use parallel axes theorem to move this to the pivot, which is the origin of the inertial
frame.

Due to symmetry, the center of mass for both disk and rod is located distance % from pivot.
Hence | = g For the disc, its moment of inertial around the spin axes at its center of mass is

a2

(L) g = M=

2
And along the y axis [, = m%. Since the distance of the center of mass from the pivot is g,
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we need to adjust I, by this distance using parallel axes. Hence

a2 a\2
I =m—+m|=
(y)disk " m(z)
1
= —a’m
2

For the rod, it only has moment of inertial around y at the end of the rod. From tables
m ﬂz
(1) = (3)(%) Therefore

I = a
z —mi
1 m a?
Iy - (Iy)dzsk (y)rod - E 2m+ E?
= %azm
3

From (2), and using 6 = 45° we find, using M = m + % = gm and [ = g

LS+ \/12252 — 41, cos OMgl

(]B - 2 cos Qly (3)

0.3.2 Part(2)

For 0 = 45° and S = 900 rpm, which is 94.248 rad/sec. a = 0.1 meter and [ = g = 0.05 meter
(3) becomes

() ©4248) = \/ (m;)z (94.248)" ~ 4 3a2m) cos (45 (15)) (3m) 9.8) 009
2con (15 7)) (]

( o1 )(94 248) +m\/ ((O 1) ) (94.248)2 —4( 0.1) )cos (45()) (g)(9.8) (0.05)
2cos (45 (1)) (5 (0.1) m)

o (%) es () wa2us2 a2 <o-1>)cos(45(180>)(§)<9-8><0-05>

4 cos (45 ( )) (017> 4 cos (45 (1 80)) (0.1)
=49.983 + 48.398 rad/sec

¢ =

Or

¢ =939.47 or 15.13 rpm
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0.3.3 Part(3)

From (2) above, repeated below

LS+ \/1352 — 41, cos OMgl
= 2cos 01,

Since ¢ must be real, then I25? — 4], cos OMgl must be either positive or zero.
% — 41, cos BMgl > 0

2> 41, cos OMgl

2T

For 6 = 0 the above becomes

41, Mgl
2 Y
&2 =5

The above is the condition on spin speed S for keeping 6 = 0. Hence

4(§a2m) (gm) (9.8)1

o]

[

2>

156.8
> o)
156.8

(0.1)
> 784

(0.05)

Therefore

S> V784

> 28 rad/sec

S >267.31 RPM
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0.4 Problem 4

4. (10 points)
Determine the principal moments of inertia and the corresponding principle axes about
the center of mass of a homogeneous circular cone of height h and radius R. (You might
find it easier to calculate the moments in a reference frame with the origin at the apex
first, and then transform to the center of mass system.)

SOLUTION:

0.4.1 Solution using Cylindrical coordinates

Will show the solution using Cylindrical coordinates. Then later will also show the solution
using Cartesian coordinates. Using Cylindrical coordinates

r,0, z are the cylinderical coordinates

The limits of volume integration will be from z=0---h and 6 = 0--- 2n. For r, it depends on
z. Since % = %, then r = Ez, therefore the limit for » =0 --- %z. This is when the tip of the
cone at the origin as follows

v/l
I
SN
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The density is p = :TA;Ih The center of mass is © distance away from the base or 21 from
the tip. The moment of inertia is found at the origin (which is the tip of the cone also),

then moved to the center of mass using parallel axes theorem. We know from Cartesian
coordinates that the inertia matrix is found using

v +22  —xy -z
J=p f f f —xy x*+z>  —yz |dzdydx
-xz —yz X2 +y?

Therefore, in cylindrical coordinates this becomes, after using the mapping x =rcos 0,y =
rsinf,z =z

R 2sin?0+22 —r2cosOsin® —rcos Oz

h 21~z
J=p f f f " —rcos0z  r?cos?0+z2 —rsin Oz [rdrdOdz
0ovo Yo

—rcos 0z —rsin 6z r?

Due to symmetry, the off diagonal elements will be zero. So we only have to perform the
following integration

R 2 sin? 0 + 72 0 0

h 27T ZZ
J=p f f f 0 r2cos? 6 +z2 0 |rdrdOdz
0vJo Yo 0 0 2
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For J;; we find

(r2 sin® 0 + zz) rdrd6dz

R
f (?sin® 0) rdrd@dz+pf f fh Z2rdrd6dz
0
h 271 ﬁz 271 Ez
fdzf d@f (2 sin? 6) dr +pf 2dzf d@f rdr
o Yo 0 0

27 4 h 271 Zar
= f f sin QdG[ ] + pf Zdzf do [—]
0 2
_pK f iz f sin? 6do + £ f Adz f 0
4Kt h2

R* 0 1 R? h
_P f z4dz [— — —sin (26) + E—an z4dz
0

Il

o)
e L
< )

Il
i)

’x!

e 2 4 2 h?

h
_ BR_4fh4 PR [Z
=Ty P T 5

pR4[ ]h R IP
5

i |5 PR
_ PR e
=Ty s PRTS
7%,
= R4 + pR*t—
20 5
Using p = E the above becomes
3M 1 3M K
R + ——R?>n—
=R 20 TR s
3M 3M
= —R*+ —n?
20 5

For J,, it will be the same as the above, since the only difference is cos? 6 instead of sin® 0
in the integrand. Therefore

3M
— RZ hZ
] 22 20
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For the final entry (the easy one) we have

h 27 %z
Jz=p f f f r*rdrd0dz
0vJo Yo
R
h 2 [ 4 s
= pf f [—] d0dz
ovo [4]

==—— | z%z do
h

4
= BR—an z4dz
0

pR,
=L
2072
. 3M
Using p = — the above becomes
4
MR,
niR?h 20 I*
6

= —MR?
20

J33

Therefore
TER2 4 22 0 0
— SMp2  3Myo
J= 0 R+ h . 0
3 AMR2
0 0 MR
Using I; = Ifjm +M (azél-]- - aia]-), we now find I. The vector from the origin to the center of

mass is a = {0, 0, Zh}, hence

= (5 ) () - @)

2
3M_, 3M 3
=R+ 2 - M(Zh
20 5 (4 )
3 3
—_ = 2, 7 2
= SGMR? + oM

And

122 = Ill
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And
2 2
3 3 3
Iss = —MR%2 - M|[=h| - [=h
o =g (3] - (31
3
= —MR?
10
Therefore the final inertial matrix around the center of the mass of the cone is
352, 342
20R +80h \ 203 i 0
I1=M 0 %R + %I’l 30
3p2
0 0 10R

0.4.2 Solution using Cartesian coordinates

Will find mass moment of inertia tensor at center of base of cone, then use parallel axes to
move it to the center of mass of cone.

R _ _h A
r ~ h—z I
|
|
T4 | b
5 |
|
- _ _ A 4
R > Y
x
We basically want to perform this integral
i=h y=YCma)  =max) (2422 -y -z
J=p f f f —xy  x*>+z2  —yz |dzdydx
20 y=ymin)  x=x(ymin) -xz -yz X’ +y?
The limit on z is easy. It is from z = 0 to z = h. Now at specific z, we need to know the limit
on y. The radius r at some z distance from the origin is r = R(]:Z) as shown above, which is

by proportions. Therefore the limit of integration for y is from y = —r to +7. Now we need
to find the limit on x. At some specific y distance from origin, we see from the following
diagram
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R(h-z)

We see from the above that x> = 2 — y? but r = , hence the limit on x is from

R(r-2) | R(1-2) |
—\/ (T) -2 to +\/ (T) — y%. Now that we found all the limits, the integration is

h A " v+z2 —xy -z
J=p f f f —xy x*+z>  —yz |dzdydx
0 _RG2) 2 Xz —yz X2+
h — (%) —]/2 y y

Where p = %.Using computer algebra software to do the integration (too messy by hand),
the above gives

Lam2 . 3arp2
10Mh + 20MR 1 0 , 0
— 2 2
]— 0 EMh + Z)MR ; 0
0 0 =~ MR?

10

Now we use parallel axis to find I at center of mass. The center of mass is at @ = {O, 0, ih},

hence
Ijy = Ji — M (a® - a3)
2
1 3 1
— M2+ ~MR2 - M(~h
oM+ MR- M (4 )
3 3
. RZ -~ h2
20 MR+ goM
And

Lip = J12 = M (-aq4)
—0-M(0)
=0
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And
Lz = J13 - M (-aya3)

3 11\3
g3
=0

And I; = I;; And
Iy = Jp — M (@ - aj)

2
1 3 1
= —Mh? + —MR? —M(—h)

10 20 4
3 3
= 2 MR? + = M2
20+ 50
And

Iz = Jo3 — M (-ayas)
— 0-M(0)
=0

And 131 = 131 and 132 = 123 and
Ig = Ja3 — M (% - a3)

:%Mw—MH?Y‘G@j

_ 3 MR2
10
Therefore the moment of inertia tensor around the center of mass
“R2+ 22 0 0
_ 3p2, 342
I=M 0 zoR + 8Oh 0

3 52
0 0 ER

Which is the same as using Cylindrical coordinates (as would be expected).
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0.5 Problem 5

5. (15 points)
A homogeneous slab of thickness a is placed on top of a fixed cylinder of radius R whose
axis is horizontal (as in the Figure below).

(1) Determine the Lagrangian of the system.
(2) Derive the equations of motion and determine the frequency of small oscillations.

(3) Show that the condition for stable equilibrium of the slab, assuming no slipping, is
R>a/2.

(4) Use a computer to plot the potential energy U as a function of the angular displacement
0 for a slab of mass M = 1kg and

(a) R=20cm and a = 5cm, and
(b) R=10cm and a = 30 cm.

(5) Show that the potential energy U(#) has a minimum at § = 0 for R > a/2, but not for
R <a/2.

SOLUTION:
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0.5.1 Part (1)

current position of center of mass
RO sin 6 /V(Ly)

position of mass
of mass at
equilibrium

origin

The system has three degrees of freedom (x, Y, 6). But they are not independent. Because if
we know 0 (t), we can find x (t) and y () (for small angle approximation) as shown below in
equations (1) and (2).

The cylinder itself does not move or rotate. Only the slab has rotational and translational
motion. When the slab center of mass at C it is in equilibrium. When the slab center of mass
at point C’ the location of the center of mass is (x,y , where from the diagram above we see
that (for small angle 0)

x:(R+g)sin8—R9(:osQ (1)

y=(R+35)cos0+ROsinG )

The distance from C’ to O which is the zero reference for potential energy is therefore
(assuming mass of slab is M)

u = Mgy
= Mg (RQ sin 0 + (g + R) oS 6)
Let the moment of inertial of the slab around the axis of rotation be I therefore
1. . 1
_ 2 2, o0
T—EIQ +§M(x +y) (3)

Now, we write > + /> above in terms of 0 using (1) and (2). (Initially I did not know if we
should do this or not. So I left the original solution as an appendix in case that was how
we are supposed to do it). Using this method below, we find only one equation of motion,
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not three as in the solution in the appendix.
i = (R + g) OcosO - (R90089 +R6981n6)
= —(R + g) §'sin 6 + (ROsin 0 + RO\ cos 6)
Hence (using CAS for simplification) we find
¥ = }192 (a cos O + 2RO sin 6)°
Similarly for #? we find
% = 3192 (asin 6 — 2RO cos O)°
Hence (3) becomes
T= %192 + %Méz ((acos 0+ 2ROsin 0)” + (asin O - 2RO cos 6)*)

And the Lagrangian is
L=T-U

1 0 1 0 . 2 . 2 . a
= S16% + M0 ((acos 6 + 2RO sin 6)* + (asin 6 — 2RO cos 6) )—Mg(RGsm6+(§+R)COSG)

0.5.2 Part(2)

gL _ 1M (ga sin 6 + 2RO (—g cos 6 + RQZ))
20 2
JL 1 )
_ 2 202
5 = 7 (41 + @M+ 4MR*6) 0
d&L_ 2 52 1 2 202\ A
E&—Q_zMR 00 +Z(4I+aM+4MR6)9
Hence
ddL JL
dtdo 90

16 + }LM (a2 + 4R26%) 0 - %agM sin @ + MRO (g cos 0 + R0?) = 0
For small angles, we use sin0 = 6 and cos 0 ~ 1, 62 = 0 and 62 = 0. The above becomes
16 + }LMaZQ - %agMG + MROg =0
0 (I + }LMaz) +0 (MRg - %agM) =0
Mg (R - %a)

0 + -
(I + ZIZZM)

0=0
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The above is now in the form 6 + w30 = 0, therefore the natural frequency is
1
Mg (R - Eﬂ)

12
(I+leM)

Wy =

0.5.3 Part(3)

Mg(R—%a)
(I+}1a2M)
motion), otherwise the solution will contain pure exponential term and it will blow up. Hence

we need

> 0 in order to obtain an oscillator (simple harmonic

For stable equilibrium, we need

1
M¢[R - = 0
g( 2a)>
R ! >0
Za

R > —-a
2

0.5.4 Part(4)

Here is a plot of Mg (R@ sin @ + (g + R) cos 6), for small angle, using M = 1kg. For parts (a)
and (b)

potential energy as function of the angle, part(a) potential energy as function of the angle, part(b)
2.261
24501
2.25¢
) )
3 2.24 3 2.445¢
= =3
oupiol & o 23 S
=1 =1
24401
2.22f
2.21F
2.435(,

6 (degree) O (degree)

We see from the above, that in part(b), where R < g, the potential energy at 6 = 0 is not
minimum. This implies 6 = 0 is not a stable equilibrium. While in part(a) it is stable.

055 Part(5)
U(6) = Mg (R@ sin 6 + (g + R) cos 9)

Hence to find where the minimum is
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1
U’ (0) = gROcos O — 781 sin 6
Setting this to zero and for small angle we obtain

1
0=gRO - Ega@

1
0=0¢|R-=
This implies 6 = 0 is where the minimum potential energy is. We know this is stable

equilibrium. Therefore we expect U"” (0 = 0) to be positive for a local minimum (from
calculus). We now check the condition for this.

u” (o) = —%g((a —2R) cos O + 2RO sin O)
At 6 = 0 we obtain
u”e=0)= —%g(u —2R)
For the above to be positive, then

a-2R <0
2R > a

R>a
2

The above is the condition for having stable equilibrium at 6 = 0. If R < %, then at 6 = 0 the
slab will not be stable, which is not we have shown in part(3).
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0.5.6 Appendix. Second Solution of problem 5
Part(1)

In this solution, we find three equations of motion.

T= %19‘2 + %M (2 +12)

Hence the Lagrangian is

L=T-U
Loy Im (# +97) - Mg (R@ sin 6 + (E + R) cos 6)
2 2 2
Part(2)
For 6
JL i a .
36 = —Mg(R(st + 6 cosO) — (E +R)sm9)
L1
00
d JL ..
—_—— = I
dt 06 0
Hence
dJdL JL 0
dt 96 96

Ié+Mg(R(sin9+ 6 cos 0) — (g +R)sin9) =0
For small angles, we use sin 0 = 0 and cos 0 = 1, and the above becomes
1é+Mg(2R9— (g +R) 9) =0
. 1
I@+Mg(R— Ea)@ =0

1
Mg (R - Ea) -
— 0=
The above is now in the form 6 + w360 = 0, therefore the natural frequency is
1
Mg (R - Ea)
I

0 +

Wy =



For x, we have

Hence

Mx=0
For y we also obtain

Mij=0

The rest follows as first solution above and will not be repeated.
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