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0.1 Problem 1

Mechanics

Physics 311
Fall 2015

Homework 3 (9/25/15, due 10/2/15)

1. (5 points)
A uniform rope of total mass m and total length l lies on a table, with a length z hanging
over the edge. Find the differential equation of motion.

2. (10 points)
A particle of mass m perched on top of a smooth hemisphere of radius R is disturbed
slightly, so that it begins to slide down the side. Use Lagrange multipliers to find the
normal force of constraint exerted by the hemisphere on the particle and determine the
angle relative to the vertical at which it leaves the hemisphere.

3. (10 points)
Consider the object shown in the figure below, which has a half-sphere of radius a as the
bottom part and a cone on top. The center of mass (P ) is at a distance b from the ground
when the object is standing upright. Let I be the moment of inertia. Find the frequency
of small oscillations if the object is disturbed slightly from its upright position. What
happens if a = b or b > a?

...continued on next page...

SOLUTION

z

l − z

U = 0

U = − 1
2z

z
lmg

T = 1
2
z
lmż2 + 1

2
l−z
l mż2

C.M. at half way

The top portion of the rope moves with same speed as the hanging portion. Hence 𝑧 is used
to describe the motion as the generalized coordinate. From the above

𝑈 = − �
1
2
𝑧� �

𝑧
𝑙
�𝑚𝑔 = −

1
2 �
𝑧2

𝑙 �
𝑚𝑔

𝑇 =
1
2
�
𝑧
𝑙
�𝑚�̇�2 +

1
2 �
𝑙 − 𝑧
𝑙 �𝑚�̇�2 =

1
2
𝑚�̇�2

In finding 𝑈 we used 1
2 since the center of mass of the hanging part is half way over the

length. So the potential energy is taken from the center of mass. In the above, �̇� is used
for both parts of the rope, since both parts move with same speed. Applying Lagrangian
equations gives

𝐿 = 𝑇 − 𝑈

=
1
2
𝑚�̇�2 +

1
2 �
𝑧2

𝑙 �
𝑚𝑔

Hence
𝜕𝐿
𝜕𝑧

=
𝑧
𝑙
𝑚𝑔

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝑚�̈�
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And therefore
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝑧

= 0

𝑚�̈� −
𝑧
𝑙
𝑚𝑔 = 0

�̈� =
𝑧
𝑙
𝑔

When 𝑧 = 0 then the acceleration is zero as expected. When 𝑧 = 𝑙
2 then �̈� = 1

2𝑔 and when
𝑧 = 𝑙 then �̈� = 𝑔 as expected since in this case the rope will all be falling down on its own
weight due to gravity and should have 𝑔 as the acceleration.

0.2 Problem 2

Mechanics

Physics 311
Fall 2015

Homework 3 (9/25/15, due 10/2/15)

1. (5 points)
A uniform rope of total mass m and total length l lies on a table, with a length z hanging
over the edge. Find the differential equation of motion.

2. (10 points)
A particle of mass m perched on top of a smooth hemisphere of radius R is disturbed
slightly, so that it begins to slide down the side. Use Lagrange multipliers to find the
normal force of constraint exerted by the hemisphere on the particle and determine the
angle relative to the vertical at which it leaves the hemisphere.

3. (10 points)
Consider the object shown in the figure below, which has a half-sphere of radius a as the
bottom part and a cone on top. The center of mass (P ) is at a distance b from the ground
when the object is standing upright. Let I be the moment of inertia. Find the frequency
of small oscillations if the object is disturbed slightly from its upright position. What
happens if a = b or b > a?

...continued on next page...

SOLUTION

θ

polar position (r, θ)

U = mgr sin θ

g

R

T = 1
2m(ṙ2 + r2θ̇2)

constraint f(r, θ) = r −R = 0

Generalized coordinates used r, θ

There are two coordinates 𝑟, 𝜃 (polar) and one constraint

𝑓 (𝑟, 𝜃) = 𝑟 − 𝑅 = 0 (1)
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Now we set up the equations of motion for 𝑚

𝑇 =
1
2
𝑚 ��̇�2 + 𝑟2�̇�2�

𝑈 = 𝑚𝑔𝑟 sin𝜃
𝐿 = 𝑇 − 𝑈

=
1
2
𝑚 ��̇�2 + 𝑟2�̇�2� − 𝑚𝑔𝑟 sin𝜃

Hence the Euler-Lagrangian equations are

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝑟

+ 𝜆
𝜕𝑓
𝜕𝑟

= 0 (2)

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

+ 𝜆
𝜕𝑓
𝜕𝜃

= 0 (3)

But
𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝑚�̈�

𝜕𝐿
𝜕�̇�

= 𝑚𝑟2�̇�

𝑑
𝑑𝑡 �

𝜕𝐿
𝜕�̇��

= 𝑚 �2𝑟�̇��̇� + 𝑟2�̈��

𝜕𝐿
𝜕𝑟

= 𝑚𝑟�̇�2 − 𝑚𝑔 sin𝜃

𝜕𝐿
𝜕𝜃

= −𝑚𝑔𝑟 cos𝜃

𝜕𝑓
𝜕𝑟

= 1

𝜕𝑓
𝜕𝜃

= 0

Hence (2) becomes

𝑚�̈� − 𝑚𝑟�̇�2 + 𝑚𝑔 sin𝜃 + 𝜆 = 0 (4)

And (3) becomes

𝑚�2𝑟�̇��̇� + 𝑟2�̈�� + 𝑚𝑔𝑟 cos𝜃 = 0
𝑟�̈� + 2�̇��̇� + 𝑔 cos𝜃 = 0 (5)

We now need to solve (1,4,5) for 𝜆. Now we have to apply the constrain that 𝑟 = 𝑅 in the
above to be able to solve (4,5) equations. Therefore, (4,5) becomes

−𝑚𝑅�̇�2 + 𝑚𝑔 cos𝜃 + 𝜆 = 0 (4A)

𝑅�̈� + 𝑔 cos𝜃 = 0 (5A)

Where (4A,5A) were obtained from (4,5) by replacing 𝑟 = 𝑅 and �̇� = 0 and �̈� = 0 since we
are using that 𝑟 = 𝑅 which is constant (the radius).
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From (5A) we see that this can be integrated giving

𝑅�̇�2 + 2𝑔 sin𝜃 + 𝑐 = 0 (6)

Where 𝑐 is constant. Since if we di�erentiate the above with time, we obtain

2𝑅�̇��̈� + 2𝑔�̇� cos𝜃 = 0
𝑅�̈� + 𝑔 cos𝜃 = 0

Which is the same as (5A). Therefore from (6) we find �̇�2 to use in (4A). Hence from (6)

�̇�2 = −2
𝑔
𝑅

sin𝜃 + 𝑐

To find 𝑐 we use initial conditions. At 𝑡 = 0, 𝜃 = 900 and �̇� (0) = 0 hence

𝑐 = 2
𝑔
𝑅

Therefore

�̇�2 = −2
𝑔
𝑅

sin𝜃 + 2 𝑔
𝑅

= 2
𝑔
𝑅
(1 − sin𝜃)

Plugging the above into (4A) in order to find 𝜆 gives

−𝑚𝑅 �2
𝑔
𝑅
(1 − sin𝜃)� + 𝑚𝑔 sin𝜃 + 𝜆 = 0

𝜆 = 𝑚 �2𝑔 (1 − sin𝜃)� − 𝑚𝑔 sin𝜃
𝜆 = 2𝑚𝑔 − 2𝑚𝑔 sin𝜃 − 𝑚𝑔 sin𝜃
= 𝑚𝑔 (2 − 3 sin𝜃)

Now that we found 𝜆 ,we can find the constraint force in the radial direction

𝑁 = 𝜆
𝜕𝑓
𝜕𝑟

= 𝑚𝑔 (2 − 3 sin𝜃)
The particle will leave when 𝑁 = 0 which will happen when

2 − 3 sin𝜃 = 0

𝜃 = sin−1 �
2
3�

= 41.80

Therefore, the angle from the vertical is

90 − 41.8 = 48.20
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g

θ0 = 41.80
48.20

N = λ∂f
∂r

N

Particle will leave when N = 0

v

constraint force

0.3 Problem 3

Mechanics

Physics 311
Fall 2015

Homework 3 (9/25/15, due 10/2/15)

1. (5 points)
A uniform rope of total mass m and total length l lies on a table, with a length z hanging
over the edge. Find the differential equation of motion.

2. (10 points)
A particle of mass m perched on top of a smooth hemisphere of radius R is disturbed
slightly, so that it begins to slide down the side. Use Lagrange multipliers to find the
normal force of constraint exerted by the hemisphere on the particle and determine the
angle relative to the vertical at which it leaves the hemisphere.

3. (10 points)
Consider the object shown in the figure below, which has a half-sphere of radius a as the
bottom part and a cone on top. The center of mass (P ) is at a distance b from the ground
when the object is standing upright. Let I be the moment of inertia. Find the frequency
of small oscillations if the object is disturbed slightly from its upright position. What
happens if a = b or b > a?

...continued on next page...

SOLUTION
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a c.m.

b
b

h
θ

h = a− (a− b) cos θ

a

U = mgh = mg(a− (a− b) cos θ

From the above, we see that the center of mass has height above the ground level after
rotation of

ℎ = 𝑎 − (𝑎 − 𝑏) cos𝜃
Taking the ground state as the floor, the potential energy in this state is

𝑈 = 𝑚𝑔ℎ
= 𝑚𝑔 (𝑎 − (𝑎 − 𝑏) cos𝜃)

And the kinetic energy

𝑇 =
1
2
𝐼�̇�2

Hence the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
1
2
𝐼�̇�2 − 𝑚𝑔 (𝑎 − (𝑎 − 𝑏) cos𝜃)

Therefore the equation of motion is

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

= 0

𝐼�̈� −
𝜕
𝜕𝜃 �

1
2
𝐼�̇�2 − 𝑚𝑔 (𝑎 − (𝑎 − 𝑏) cos𝜃)� = 0

𝐼�̈� +
𝜕
𝜕𝜃
𝑚𝑔 (𝑎 − (𝑎 − 𝑏) cos𝜃) = 0

𝐼�̈� −
𝜕
𝜕𝜃
𝑚𝑔 (𝑎 − 𝑏) cos𝜃 = 0

𝐼�̈� + 𝑚𝑔 (𝑎 − 𝑏) sin𝜃 = 0
For small 𝜃, sin𝜃 ≃ 𝜃, hence the above becomes

�̈� +
𝑚𝑔 (𝑎 − 𝑏)

𝐼
𝜃 = 0
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Therefore the natural angular frequency is

𝜔𝑛 = �
𝑚𝑔(𝑎−𝑏)

𝐼

When 𝑎 = 𝑏 then 𝜔𝑛 = 0 and the mass do not oscillate but remain at the new positions. When
𝑏 > 𝑎 then 𝜔𝑛 is complex valued. This is not possible, as the natural frequency must be real.
So center of mass can not be in the upper half.

0.4 Problem 4

4. (15 points)
A sphere of radius r, mass m, and moment of inertia I = 2

5
mr

2 is contrained to roll without
slipping on the lower half of the inner surface of a hollow cylinder of inside radius R (which
does not move). Let the z-direction go along the axis of the cylinder.
(1) Determine the Lagrangian, the equations of motion, and the period for small oscilla-
tions. Ignore a possible motion in the z-direction.
(2) Determine the Lagrangian in the more general case where the motion in the z-direction
is included. Describe the motion in the z-direction.

5. (10 points)
Consider a disc of mass m and radius a that has a string wrapped around it with one
end attached to a fixed support and allowed to fall with the string unwinding as it falls.
(This is essentially a yo-yo with the string attached to a finger held motionless as a fixed
support.) Find the equation of motion of the disc.

SOLUTION
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r

R

θ

φ

φ̇
(R− r)θ̇

rφ̇

No slip condition

(R− r)θ = rφ x

y

2 generalized coordinates θ, φ but
constraint reduces this to one coor-
dinate θ

h = R− (R− r) cos θ

Part (1): There are two coordinates are 𝜃, 𝜙, but due to dependency between them (no slip)
then this reduces the degree of freedom by one, and there is one generalized coordinate 𝜃.
The constraints of no slip means

𝑓 �𝜃, 𝜙� = (𝑅 − 𝑟) 𝜃 − 𝑟𝜙 = 0

Which means the center of the small disk move in speed the same as the point of the disk
that moves on the edge of the larger cylinder as shown in the figure above.

𝑇 =
1
2
𝐼�̇�2 +

1
2
𝑚 �(𝑅 − 𝑟) �̇��

2

𝑈 = 𝑚𝑔ℎ = 𝑚𝑔 (𝑅 − (𝑅 − 𝑟) cos𝜃)

Using 𝐼 = 2
5𝑚𝑟

2 and using �̇� = (𝑅−𝑟)
𝑟 �̇� from the constraint conditions, then 𝑇 becomes

𝑇 =
1
2 �
2
5
𝑚𝑟2� �

(𝑅 − 𝑟)
𝑟

�̇��
2

+
1
2
𝑚 �(𝑅 − 𝑟) �̇��

2

=
1
5
𝑚 (𝑅 − 𝑟)2 �̇�2 +

1
2
𝑚 (𝑅 − 𝑟)2 �̇�2

=
7
10
𝑚 (𝑅 − 𝑟)2 �̇�2

Hence

𝐿 = 𝑇 − 𝑈

=
7
10
𝑚 (𝑅 − 𝑟)2 �̇�2 − 𝑚𝑔 (𝑅 − (𝑅 − 𝑟) cos𝜃)

And
𝜕𝐿
𝜕𝜃

= −𝑚𝑔 (𝑅 − 𝑟) sin𝜃

𝜕𝐿
𝜕�̇�

=
7
5
𝑚 (𝑅 − 𝑟)2 �̇�
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Therefore the equation of motion is

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

= 0

7
5
𝑚 (𝑅 − 𝑟)2 �̈� + 𝑚𝑔 (𝑅 − 𝑟) sin𝜃 = 0

�̈� +
𝑔

7
5
(𝑅 − 𝑟)

sin𝜃 = 0

For small angle

�̈� +
5𝑔

7 (𝑅 − 𝑟)
𝜃 = 0

The frequency of oscillation is

𝜔𝑛 =
�

5𝑔
7 (𝑅 − 𝑟)

Using 𝜔𝑛 =
2𝜋
𝑇 then the period of oscillation is

𝑇 =
2𝜋

�
5𝑔

7(𝑅−𝑟)

= 2𝜋
�

7 (𝑅 − 𝑟)
5𝑔

Part (2):

There are now two generalized coordinates, 𝜃 and 𝑧. The sphere now rotates in 2 angular
motions, �̇� which is the same as it did in part 1, and in addition, it rotate with angular
motion, �̇� which is rolling down the 𝑧 axis. The new constraint is that

𝑓1 (𝛼, 𝑧) = 𝑧 − 𝑟𝛼 = 0 (1)

So that no slip occurs in the 𝑧 direction. This is in additional of the original no slip condition
which is

𝑓2 �𝜃, 𝜙� = (𝑅 − 𝑟) 𝜃 − 𝑟𝜙 = 0 (2)

The following diagram illustrates this

z

The sphere is now distance z
away from the origin. There
is new constraint now as
shown

z axis

Rα

z = rα
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Now there are translation kinetic energy in the 𝑧 direction as well as new rotational kinetic
energy due to spin 𝛼. Therefore

𝑇 =

part(1)

�������������������������������1
2
𝐼�̇�2 +

1
2
𝑚 �(𝑅 − 𝑟) �̇��

2
+

due to moving in z

�����������������1
2
𝑚�̇�2 +

1
2
𝐼�̇�2

𝑈 = 𝑚𝑔ℎ = 𝑚𝑔 (𝑅 − (𝑅 − 𝑟) cos𝜃)
Notice that the potential energy do not change, since it depends only on the height above
the ground. Using 𝐼 = 2

5𝑚𝑟
2 and from constraints (1,2) then 𝑇 becomes

𝑇 =
1
2 �
2
5
𝑚𝑟2�

�̇�2

���������������
�
(𝑅 − 𝑟)
𝑟

�̇��
2

+
1
2
𝑚 �(𝑅 − 𝑟) �̇��

2
+
1
2
𝑚�̇�2 +

1
2 �
2
5
𝑚𝑟2�

�̇�2
�
�
�̇�
𝑟
�
2

= �
1
5
𝑚𝑟2�

(𝑅 − 𝑟)
𝑟2

�̇�2 +
1
2
𝑚 (𝑅 − 𝑟)2 �̇�2 +

1
2
𝑚�̇�2 + �

1
5
𝑚𝑟2�

�̇�2

𝑟2

=
7
10
𝑚 (𝑅 − 𝑟) �̇�2 +

7
10
𝑚�̇�2

Hence the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
7
10
𝑚 (𝑅 − 𝑟) �̇�2 +

7
10
𝑚�̇�2 − 𝑚𝑔 (𝑅 − (𝑅 − 𝑟) cos𝜃)

This part only now asks for motion in 𝑧 direction. Hence

𝜕𝐿
𝜕𝑧

= 0

𝜕𝐿
𝜕�̇�

=
7
5
𝑚�̇�

Since 𝜕𝐿
𝜕𝑧 = 0 then

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 0

Hence 𝜕𝐿
𝜕�̇� is the integral of motion. Or

7
5
𝑚�̈� = 0

or

�̈� = 0
�̇� = 𝑐

Where 𝑐 is constant. This means the sphere rolls down the 𝑧 axis at constant speed.
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0.5 Problem 5

4. (15 points)
A sphere of radius r, mass m, and moment of inertia I = 2

5
mr

2 is contrained to roll without
slipping on the lower half of the inner surface of a hollow cylinder of inside radius R (which
does not move). Let the z-direction go along the axis of the cylinder.
(1) Determine the Lagrangian, the equations of motion, and the period for small oscilla-
tions. Ignore a possible motion in the z-direction.
(2) Determine the Lagrangian in the more general case where the motion in the z-direction
is included. Describe the motion in the z-direction.

5. (10 points)
Consider a disc of mass m and radius a that has a string wrapped around it with one
end attached to a fixed support and allowed to fall with the string unwinding as it falls.
(This is essentially a yo-yo with the string attached to a finger held motionless as a fixed
support.) Find the equation of motion of the disc.

SOLUTION

This is first solved using energy method, then solved using Newton method.

T

a
θ̇

g

constraint: ẏa = θ̇

y

Energy method
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Constraint is 𝑓 �𝑦, 𝜃� = 𝑦 − 𝑎𝜃 = 0. Hence �̇� = �̇�
𝑎

𝑈 = −𝑚𝑔𝑦

𝑇 =
1
2
𝐼�̇�2 +

1
2
𝑚�̇�2

=
1
2
𝐼 �
�̇�
𝑎
�
2
+
1
2
𝑚�̇�2

=
1
2 �

1
2
𝑚𝑎2� �

�̇�
𝑎
�
2
+
1
2
𝑚�̇�2

=
1
4
𝑚�̇�2 +

1
2
𝑚�̇�2

=
3
4
𝑚�̇�2

Hence

𝐿 = 𝑇 − 𝑈

=
3
4
𝑚�̇�2 + 𝑚𝑔𝑦

Therefore
𝜕𝐿
𝜕𝑦

= 𝑚𝑔

𝜕𝐿
𝜕�̇�

=
3
2
𝑚�̇�

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

=
3
2
𝑚�̈�

And the equation of motion becomes

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝑦

= 0

3
2
𝑚�̈� − 𝑚𝑔 = 0

�̈� =
2
3
𝑔

Newton method

Using Newton method, this can be solved as follows. The linear equation of motion is
(positive is taken downwards)

𝐹 = 𝑚�̈�
−𝑇 + 𝑚𝑔 = 𝑚�̈� (1)

And the angular equation of motion is given by

𝑇𝑎 = 𝐼�̈� (2)
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Due to constraint 𝑓 �𝑦, 𝜃� = 𝑦 − 𝑎𝜃 = 0, then
�̈�
𝑎
= �̈�

Using the above in (2) gives

𝑇𝑎 = 𝐼
�̈�
𝑎

𝑇 = 𝐼
�̈�
𝑎2

(3)

Replacing 𝑇 in (1) with the 𝑇 found in (3) results in
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But 𝐼 = 1
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2 then the above becomes
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=
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Which is the same (as would be expected) using the energy method
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