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Chapter 1

Introduction

Took this course in Fall 2015.

Instructor: professor B Ross Barmish O�ce Hours: Wednesday 1:00-2:30 PM

1
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1.1. Syllabus CHAPTER 1. INTRODUCTION

1.1 Syllabus

ECE 332 – Handout Organization

• Course Organization
Lectures: B. R. Barmish (3613 Engineering Hall)
E-mail: barmish@engr.wisc.edu
Office Hours: Wednesday 1:00-2:30 PM

• No Official Course Textbook
I will draw on material from the following textbooks on Reserve:

B. C. Kuo and F. Golnaraqhi, Automatic Control Systems, John Wiley
and Sons, Ninth Edition, New York.

R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall,
Eleventh Edition, New York.

J. J. DiStefano, A. R. Stubberud and I. J. Williams, Feedback and Control
Systems, Schaum’s Outline Series, McGraw-Hill, New York.

Given the classical nature of the material, there are also hundreds of
sources on the web providing coverage of the ECE 332 topics with many
illustrative examples demonstrating the theory covered in class.

• Course Grading Components
Test 1: 25%; Tuesday, September 29, 2015
Test 2: 30%; Thursday, November 12, 2015
Test 3: 35%; Thursday, December 10, 2015
Homework: 10% (Total of 7-10 Assignments)
Instructor Discretion: Maximum 10% in any category

• Cancellations and Makeup Classes
No lectures on Thursday October 1, Tuesday November 3 and Tuesday
December 15; no office hours on Wednesday September 30.
Makeup or Review Classes: Scheduled for 6 PM on Wednesday Septem-
ber 23, Wednesday November 18 and Wednesday December 9.

• Additional Points
Course Announcements: via e-mail
Homework: E = excellent; S = satisfactory; U = unsatisfactory
Matlab/Simulink: Both used heavily in course
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1.1. Syllabus CHAPTER 1. INTRODUCTION

ECE 332 – Handout Overview

Catalog Data: Modelling of continuous systems; computer-aided solu-
tion to systems problems; feedback control systems; stability, frequency
response and transient response using root locus; frequency domain and
state variable methods.

Prerequisites: ECE 330 or consent of instructor.

No Required Textbook: I have a number of books on reserve. In
previous offerings of this course, I have used:

B. C. Kuo and F. Golnaraqhi Automatic Control Systems, John Wiley
and Sons.

Instructor: Professor B. Ross Barmish, ECE Department

Goals: This junior/senior level course develops the fundamentals associ-
ated with the analysis, design and simulation of automatic control systems.

Prerequisites by Topic:
1. Linear differential equations with constant coefficients
2. Laplace transforms and transfer functions for linear systems
3. Elementary matrix manipulations (such as determinant and inverse)
4. Adequate familiarity with computers and use of various packages; the
specific package used in this course is Matlab/Simulink

Topics:
1. Modelling of dynamic systems in a control context
2. Block diagrams, signal flow graphs and Mason’s Rule
3. Feedback in a sensitivity, linearization, disturbance context
4. Steady state behavior of feedback systems
5. Time response with emphasis on second order systems
6. Stability analysis: criteria of Routh, Nyquist and Kharitonov
7. The root locus and its variants
8. Frequency response: Bode analysis of feedback systems
9. Compensator design methods: PID, lead/lag and root locus methods
10. Closed loop considerations: frequency response and Nichol’s plot

Computer Usage:
Extensive use of Simulink and Matlab on weekly homework

3



1.1. Syllabus CHAPTER 1. INTRODUCTION
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Chapter 2

Class notes

2.1 Summary table

These are my notes taken during lectures. Any errors in these notes, then all blames to
me and not to the instructor.

date day event Topic

1. Sept 3, 2015 Thursday First class Introduction, Laplace transforms

2. Sept 8, 2015 Tuesday Closed loop and Simulink review

3. Sept 10, 2015 Thursday HW 1 Steady state and transient responses, di�er-
ent feedback loops

4. Sept 15, 2015 Tuesday Performance specs, steady state error

5. Sept 17, 2015 Thursday MIMOmatrix of transfer functions, MIMO
in a feedback loop.

6. Sept 22, 2015 Tuesday HW 2 Armature controlled DC motor with
MIMO Example. signal graph

7. Sept 23, 2015 Wednesday make up Start of signal graph and Mason rule. Ma-
son gain

8. Sept 24, 2015 Thursday HW3 Mason example, benefits of feedback, non-
linear systems

9. Sept 29, 2015 Tuesday Exam 1 First exam

10. Oct. 1, 2015 Thursday No class

11. Oct. 6, 2015 Tuesday Sensitivity Sensitivity of transfer function with change
of parameters

12. Oct. 8, 2015 Thursday Noise rejection Design controls to reject noise and distur-
bances using feedback

13. Oct. 13, 2015 Tuesday HW4. Second order Noise rejection, second order systems, dom-
inant pole method

14. Oct. 15, 2015 Thursday Second order More second order, Overshoot and reso-
nance calculations.

15. Oct 20, 2015 Tuesday Design for k Feedback using user specified time specs
for response

16. Oct 22, 2015 Thursday Stability/Ruth Routh stability table examples, stability, ex-
amples

17. Oct 27, 2015 Tuesday Root Locus Starting on root locus, how 𝐾 a�ect poles
locations

18. Oct 29, 2015 Thursday Root Locus More root locus, more lemmas, up to
lemma 4

19. Nov. 3, 2015 Tuesday No lecture

20. Nov 5, 2915 Thursday Root Locus Finished Root Locus, all 9 lemmas. Exam-
ples given

5



2.1. Summary table CHAPTER 2. CLASS NOTES

21. Nov 10, 2015 Tuesday Extension Root Locus Review mid term 2, started extension root
locus (will be on final)

22. Nov 12, 2015 Thursday Exam 2 Hard exam

23. Nov 17, 2015 Tuesday Starting Nyquist Started Nyquist. What it does and how to
make Nyquist path

24. Nov 19, 2015 Thursday More Nyquist More Nyquist. 2 examples. Handout given

25. Nov 24, 2015 Tuesday More Nyquist More Nyquist. Using for stability, gain and
phase margins

26. Nov 26, 2015 Thursday thanks giving No class

27. Dec 1, 2015 Tuesday Starting Bode Start Bode frequency analysis

28. Dec 4, 2015 Thursday More Bode More Bode analysis and examples

29. Dec 8,2015 Tuesday Bode gain and phase E�ects of delay on Bode, gain and phase
margins.

30. Dec 10,2015 Thursday Final exam Finals

6



2.2. Lecture 1, Thursday Sept. 3, 2015 CHAPTER 2. CLASS NOTES

2.2 Lecture 1, Thursday Sept. 3, 2015

Introduction to Laplace transform, handouts, syllabus overview

7



2.3. Lecture 2, Tuesday Sept. 8, 2015, . . . CHAPTER 2. CLASS NOTES

2.3 Lecture 2, Tuesday Sept. 8, 2015, Closed loop and
Simulink review

Discussion on Laplace transform. We want to be able to switch from 𝑡 to 𝑠 domain and
back. For tough ones, use tables. In Matlab use syms. Examples shown how to use syms
in Matlab and obtain the Laplace and inverse Laplace transforms. Use of expand and
simplify commands.

Closed loop can be used to improve performance. An example given of a mass spring
damper. Steps of solution

1. Model the system

2. Convert to Laplace domain

3. analyze in Laplace domain

4. Convert result to time domain

Control engineers need a model to analyze. Example is 𝑚𝑥′′+𝑐𝑥′+𝑘𝑥 = 𝑢 (𝑡). We can always
find transfer function TF assuming system is at rest initially. Need to know basic relation

ℒ𝑑𝑘𝑦
𝑑𝑡𝑘

= 𝑠𝑘𝑌 (𝑠) assuming all initial conditions are zero. Back to the above equation. Take
Laplace transform we obtain

𝐺 (𝑠) =
𝑌 (𝑠)
𝑈 (𝑠)

=
1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
(1)

We see if the open loop does what we want. If it does, no need for feedback. If open loop
response is not good, then we use feedback to improve the response.

Behavior of open loop: Let 𝑢 (𝑡) = 1 (unit step). What is 𝑦 (𝑡)? From (1)

𝑌 (𝑠) = 𝐺 (𝑠)𝑈 (𝑠)

But ℒ{1} = 1
𝑠 then the above becomes

𝑌 (𝑠) =
1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
1
𝑠

To get 𝑦 (𝑡) we need to inverse Laplace the above. Let 𝑚 = 1, 𝑐 = 10, 𝑘 = 1 then

𝑦 (𝑡) = ℒ −1 �
1

𝑠2 + 10𝑠 + 1
1
𝑠�

There are 3 possibility of behavior of this system depending on roots of the denominator.
Real roots implies 𝑦 (𝑡) involves only exponential. If the roots are complex, the result
contain harmonics. The over solution will look like 𝑒−2𝑡 cos (⋯).

Reader: For the above example, find 𝑦 (𝑡) for 𝑐 = 1, 𝑐 = 10. Use partial fractions to find the
inverse Laplace transform, then sketch 𝑦 (𝑡) for each.

Now overview was given on using Simulink. Examples of using basic blocks explained.

Classical responses of system shown.

8



2.4. Lecture 3, Thursday Sept. 10, 2015, . . . CHAPTER 2. CLASS NOTES

2.4 Lecture 3, Thursday Sept. 10, 2015, Steady state
and transient responses

Open loop vs. closed loop. In closed loop we add a controller to obtain desired response.

H(s) G(s)
R(s)

Y (s)
U(s)E(s)

feed forward path

plantcontroller

error signal

+
−

Another possibility is to put the controller in the feedback path

H(s)

G(s)
R(s)

Y (s)
E(s)

feed back path

plant

controller

error signal

+

−

Now we will find the closed loop TF for the feed forward path configuration.

𝑌 (𝑠) = 𝐸 (𝑠)𝐻 (𝑠) 𝐺 (𝑠)
𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠)

Substituting the second equation in the first gives

𝑌 (𝑠) = (𝑅 (𝑠) − 𝑌 (𝑠))𝐻 (𝑠) 𝐺 (𝑠)
= 𝑅 (𝑠)𝐻 (𝑠) 𝐺 (𝑠) − 𝑌 (𝑠)𝐻 (𝑠) 𝐺 (𝑠)

Hence

𝑌 (𝑠) (1 + 𝐻 (𝑠) 𝐺 (𝑠)) = 𝑅 (𝑠)𝐻 (𝑠) 𝐺 (𝑠)
𝑌 (𝑠)
𝑅 (𝑠)

=
𝐻 (𝑠) 𝐺 (𝑠)

1 + 𝐻 (𝑠) 𝐺 (𝑠)

Reader: Do the above for the feedback path configuration. We should get 𝑌(𝑠)
𝑅(𝑠) =

𝐺(𝑠)
1+𝐻(𝑠)𝐺(𝑠)

Reader: For the feedforward case, find the error transfer function 𝐸(𝑠)
𝑅(𝑠)

Working with the feedforward case. 𝐸 = 𝑅 − 𝑌. We want 𝐸 = 0 for tracking. Most common
choices of 𝐻 (𝑠) are

1. 𝐻 = 𝑘 a constant. Called proportional or pure gain.

2. 𝐻 = 𝑘1 +
𝑘2
𝑠 The second term is an integrator. This is called PI controller.

3. 𝐻 = 𝑘1 +
𝑘2
𝑠 + 𝑠𝑘3. This is called PID. Note that 𝑠 is derivative. So if there is lots of

noise in the 𝐸 signal, this will cause problems since derivative of noise generated
large signal (large actuating signal). So it is safe to use an integrator, but not always
save to use derivative, unless we know that the error signal will always be smooth.

For example, let 𝐺 (𝑠) = 1
𝑠+2 with a unit step �1𝑠 � input. Then in the openloop, 𝑌 (𝑠) = 1

𝑠+2
1
𝑠

or 𝑦 (𝑡) = 1
2 −

1
2𝑒

−2𝑡. Now we close the loop, using the feedforward configuration and add a

9



2.4. Lecture 3, Thursday Sept. 10, 2015, . . . CHAPTER 2. CLASS NOTES

pure gain controller 𝑘. Hence
𝑌
𝑅
=

𝐻𝐺
1 + 𝐻𝐺

=
𝑘 1
𝑠+2

1 + 𝑘 1
𝑠+2

=
𝑘

𝑠 + (2 + 𝑘)

Now 𝑅 (𝑠) = 1
𝑠 , hence

𝑌 (𝑠) =
1
𝑠

𝑘
𝑠 + (2 + 𝑘)

And

𝑦 (𝑡) =

steady state response

�𝑘
𝑘+ 2

−

transient response

���������������𝑘
𝑘 + 2

𝑒−𝑡(𝑘+2)

By design, we want 𝑦 (𝑡) to track 𝑟 (𝑡) which is unit step in this case. Also we want the
transient response to go away quickly. In this example, only when 𝑘 very large do we
approach a steady state close to one. But in practice having very large gain is not good
due to sensitivity problems. (will talk about sensitivity later in the course). Also large 𝑘
might lead to actuating signal that can not be satisfied. Note also, no matter how large 𝑘
is, we can’t obtain perfect tracking. Some application might require perfect tracking.

Reader: Redo the analysis above using integrator only controller. i.e. 𝐻 (𝑠) = 𝑘
𝑠 and see if

𝑦 (𝑡) will now track the input at steady state.

Final value theorem: Suppose 𝐹 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) is stable, then

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹 (𝑠)

10



2.5. Lecture 4, Tuesday Sept. 15, 2015, . . . CHAPTER 2. CLASS NOTES

2.5 Lecture 4, Tuesday Sept. 15, 2015, Performance
specs, steady state error

Watch today for email on HW1 solution and HW2. See this you tube on steady state error
??

Today we will spend more time on final value theorem. Then talk about typical specs for
control system.

F.V.T. is important for tracking. Given 𝐹 (𝑠), does 𝑓 (𝑡) have a final value? ie. does lim𝑡→∞ 𝑓 (𝑡)
exist? Sometimes infinity is allowed as final value. But many times we do not have a final
value, such as for period signals such as cos (𝑡).

When can we apply F.V.T. ? In practice, 𝐹 (𝑠) should be stable. This means the poles should
be in the left half plane. But we allow one pole to be at the origin. Example 1

𝑠+1 ⟺ 𝑒−𝑡.
How about 1

𝑠+1
1
𝑠 ? Final value still exist.

Reader Consider 𝐹 (𝑠) = 1
𝑠2

1
𝑠+1

When 𝐹 (𝑠) is stable, then lim𝑡→∞ 𝑓 (𝑡) = lim𝑠→0 𝑠𝐹 (𝑠) .

Specification of control system: Consider classical response

time

y(t)

1

maximum overshoot

rise time settling time

Some specifications are settling time, and rise time (time to go from 10% to 90% of the step
input) and amount of overshoot. Other specifications are given in terms of damping and
sensitivity and steady state error. Steady state error is important and we will talk more
about it today.

How to measure quality of tracking? Study 𝐸 (𝑠). What steady state error we accept depends
on the application. The error transfer function is 𝐸(𝑠)

𝑅(𝑠) =
1

1+𝐻(𝑠)𝐺(𝑠) . Now consider a step input,

hence 𝑅 (𝑠) = 1
𝑠 and the error becomes

𝐸 (𝑠) =
1
𝑠

1
1 + 𝐻 (𝑠) 𝐺 (𝑠)

Assuming F.V.T. applies (i.e. 𝐸 (𝑠) is stable) then

lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

1
1 + 𝐻 (𝑠) 𝐺 (𝑠)

=
1

1 + 𝐻 (0)𝐺 (0)

Example, if 𝐺 (𝑠) = 1
𝑠2+2𝑠+4 then lim𝑡→∞ 𝑒 (𝑡) =

4
5 which is not good. We want this to be zero.

So for 1
1+𝐻(0)𝐺(0) to be zero, we want 𝐻 (0)𝐺 (0) to be very large. This means 𝐻 (𝑠) should

have 1
𝑠 in it as a factor. This means an integrator. Hence an integrator in 𝐻 (𝑠) guarantees

that error goes to zero when the input is step.

Reader For the mass spring damper, 𝐺 = 1
𝑚𝑠2+𝑐𝑠+𝑘 design 𝐻 (𝑠) leading to zero steady state

error for step command. Use 𝑘
𝑠 in 𝐻 (𝑠).

11



2.5. Lecture 4, Tuesday Sept. 15, 2015, . . . CHAPTER 2. CLASS NOTES

What if the input is ramp? which is 1
𝑠2 ? Then

𝐸 (𝑠) =
1
𝑠2

1
1 + 𝐻 (𝑠) 𝐺 (𝑠)

lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

1
𝑠

1
1 + 𝐻 (𝑠) 𝐺 (𝑠)

= lim
𝑠→0

1
𝑠𝐻 (𝑠) 𝐺 (𝑠)

So now we need 𝐻 (𝑠) to have 1
𝑠2 factor in it, so that it becomes very large at 𝑠 = 0 and cause

the error to go to zero. This means 2 integrator in series. This means to track 𝑟 (𝑡) = 𝑡𝑘 we
need 𝑘 + 1 integrators in 𝐻 (𝑠) to get zero error at steady state.

Finally for any signal 𝑟 (𝑡) = ∑𝑘
𝑖=0 𝑎𝑖𝑡

𝑖, we need 𝑘 + 1 integrators, since the largest term is the
only term that needs to be satisfied, due to linearity of the system. So given a complicated
polynomial, we look at the largest power and this tells us how many integrators we need
for zero steady state error.

12



2.6. Lecture 5, Thursday Sept. 17, 2015, . . . CHAPTER 2. CLASS NOTES

2.6 Lecture 5, Thursday Sept. 17, 2015, MIMO matrix
of transfer functions

Today lecture on more complicated systems. So far we talked about SISO in the most
common configuration

H(s) G(s)
R(s)

Y (s)
U(s)E(s)

feed forward path

plantcontroller

error signal

+
−

But systems come in more complicated forms. We need to reformulate complicated systems
this the above common configuration form to be able to analyze them. There can be
multiple inputs and multiple outputs as well, more blocks, loops, etc.. To illustrate, given
this system

R(s)
Y (s)H1(s)

H2(s)

G(s)

H3(s)

R(s)−H3(s)Y (s)

H2(s)(R(s)−H3(s)Y (s))

H1(s)G(s)(R(s)−H3(s)Y (s))

+ ++

-

How to find 𝑌(𝑠)
𝑅(𝑠)? We can go to first principles. Use signal analysis. The goal is to find 𝑌(𝑠)

𝑅(𝑠)

without all the intermediate variables. i.e we want 𝑌(𝑠)
𝑅(𝑠) to be a function of only the shown

blocks transfer functions 𝐻1, 𝐻2, 𝐻3, 𝐺. Hence

𝑌 = 𝐻2 (𝑅 − 𝐻3𝑌) + 𝐻1𝐺 (𝑅 − 𝐻3𝑌)

Solve for 𝑌 in terms of 𝑅 from the above

𝑌 = 𝐻2𝑅 − 𝐻2𝐻3𝑌 + 𝐻1𝐺𝑅 − 𝐻1𝐺𝐻3𝑌
𝑌 (1 + 𝐻2𝐻3 + 𝐻1𝐻3𝐺) = 𝑅 (𝐻2 + 𝐻1𝐺)

Hence
𝑌
𝑅
=

𝐻2 + 𝐻1𝐺
1 + 𝐻2𝐻3 + 𝐻1𝐻3𝐺

=
𝐻2 + 𝐻1𝐺

1 + 𝐻3 (𝐻2 + 𝐻1𝐺)
But for more complicated systems, with more loops and inner blocks, this process can
become more complicated and one can make mistakes. We need a more systematic way.
Next lecture we will look at Mason formula to do the above.

For the rest of the lecture we will look at multiple input, multiple output (MIMO). Moti-
vation example, is an electric circuit with say 2 input ports (voltages 𝑉1, 𝑉2) and 2 output
ports, way 𝑉3, 𝑉4. In block diagram we draw

G(s)

U1(s)

U2(s)

Y1(s)

Y2(s)

In the above 𝐺 (𝑠) will now be a matrix of 𝐺𝑖𝑗 (𝑠) transfer functions. The above is the open
loop block diagram of a 2 input/2 outputs system. Internally, there can be cross coupling.
Meaning, one input can a�ect all of some of the other outputs. Like this

13
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G(s)

U1(s)

U2(s)

Y1(s)

Y2(s)

So we need a transfer function 𝐺𝑖𝑗 (𝑠) from each input 𝑈𝑗 to each output 𝑉𝑖. So need a total
of 4 transfer functions in this case.⎛

⎜⎜⎜⎜⎝
𝑌1 (𝑠)
𝑌2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝐺11 (𝑠) 𝐺12 (𝑠)
𝐺21 (𝑠) 𝐺22 (𝑠)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑈1 (𝑠)
𝑈2 (𝑠)

⎞
⎟⎟⎟⎟⎠

Expanding

𝑌1 (𝑠) = 𝐺11 (𝑠)𝑈1 (𝑠) + 𝐺12 (𝑠)𝑈2 (𝑠)
𝑌2 (𝑠) = 𝐺21 (𝑠)𝑈1 (𝑠) + 𝐺22 (𝑠)𝑈2 (𝑠)

Suppose we want to find 𝐺11 (𝑠) only. How to do this?

𝐺11 (𝑠) =
𝑌1 (𝑠)
𝑈1 (𝑠) 𝑈2=0

In practice, this is done by shorting the input 𝑈2 (i.e making the input 𝑈2 zero) and then
supplying the input 𝑈1 only and then measuring the output at port 𝑌2.

Reader Create transfer function model for this circuit

+

+
L

R2 Y2

C Y1

U2

U1

R1

In the above, there are 2 input voltages 𝑈1, 𝑈2 and 2 outputs 𝑌1, 𝑌2. Notice in the above we
can not use the impedance method and use the voltage divider as in the first problem in
HW1. We need to setup 2 loop equations and solve. Another possibility is to short 𝑈1 and
then solve the circuit without 𝑈1 and then short 𝑈2 input and then solve the circuit again.

Reader solution

We first set up the 2 loops, and obtain these 2 equations

𝑢1 − 𝑢2 = 𝐼1 �𝑅1 +
1
𝐶𝑠�

− 𝐼2
1
𝐶𝑠

(1)

0 = 𝐼2 �
1
𝐶𝑠

+ 𝐿𝑠 + 𝑅2� − 𝐼1
1
𝐶𝑠

(2)

And the output equations are

𝑌1 = (𝐼1 − 𝐼2)
1
𝐶𝑠

𝑌2 = 𝐼2𝑅2

Solving (1,2) for 𝐼1, 𝐼2 gives

𝐼1 =
1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠) (𝑢1 − 𝑢2)

𝑅2 + 𝐿𝑠 + 𝑅1 (1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠))

𝐼2 =
𝑢1 − 𝑢2

𝑅2 + 𝐿𝑠 + 𝑅1 (1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠))
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Using these in the output equations gives

𝑌1 = �
1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠) (𝑢1 − 𝑢2)

𝑅2 + 𝐿𝑠 + 𝑅1 (1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠))
−

𝑢1 − 𝑢2
𝑅2 + 𝐿𝑠 + 𝑅1 (1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠))

�
1
𝐶𝑠

𝑌2 =
𝑢1 − 𝑢2

𝑅2 + 𝐿𝑠 + 𝑅1 (1 + 𝐶𝑠 (𝑅2 + 𝐿𝑠))
𝑅2

These can be written in matrix form as

⎛
⎜⎜⎜⎜⎝
𝑌1

𝑌2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝑅2+𝐿𝑠
𝑅2+𝐿𝑠+𝑅1(1+𝐶𝑠(𝑅2+𝐿𝑠))

𝑅2+𝐿𝑠
𝑅2+𝐿𝑠+𝑅1(1+𝐶𝑠(𝑅2+𝐿𝑠))

𝑅2
𝑅2+𝐿𝑠+𝑅1(1+𝐶𝑠(𝑅2+𝐿𝑠))

𝑅2
𝑅2+𝐿𝑠+𝑅1(1+𝐶𝑠(𝑅2+𝐿𝑠))

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑢1
𝑢2

⎞
⎟⎟⎟⎟⎠

More generally, given 𝑚 inputs and 𝑟 outputs then
𝑟×1
⏞𝑌 =

𝑟×𝑚
⏞𝐺

𝑚×1
⏞𝑈

So 𝐺 is an 𝑟 × 𝑚 matrix.

𝐺𝑖𝑗 (𝑠) =
𝑌𝑗 (𝑠)
𝑈𝑖 (𝑠) 𝑈𝑘=0 for 𝑘≠𝑗

Now we are ready to take a MIMO open loop block and imbed it in a feedback loop as we
did with SISO. The process is the same, but now we have to be careful with order since
these are now matrices and not scalars. Given the system

G(s)

r ×m
U(s)
m× 1

Y (s)
r × 1

This is multi-line input This is multi-line output

Now we want to add a controller as before. Hence we obtain

G(s)r×m

U(s)m×1

H(s)m×r

controller plant

E(s)r×1R(s)r×1

Input signals

Y (s)r×1

feedback with MIMO system

Say we want 𝑌𝑖 to track input 𝑅𝑖. So now we want the closed loop transfer function as we
did with SISO, but now we have to do it using vectors and matrices. So order is important.
As before we write

𝑌 (𝑠) =

closed loop T.F. matrix

�������������������������������������(𝐼 + 𝐺 (𝑠)𝐻 (𝑠))−1𝐺 (𝑠)𝐻 (𝑠) 𝑅 (𝑠)

In the above, the closed loop transfer function is (𝐼 + 𝐺 (𝑠)𝐻 (𝑠))−1 where 𝐼 is the identity
matrix or size 𝑟 × 𝑟

𝑟×1
�𝑌(𝑠) = �𝐼 +

𝑟×𝑚
�𝐺(𝑠)

𝑚×𝑟
�𝐻(𝑠)�

−1 𝑟×𝑚
�𝐺(𝑠)

𝑚×𝑟
�𝐻(𝑠)

𝑟×1
�𝑅(𝑠)

Example, given𝐺 (𝑠) =
⎛
⎜⎜⎜⎜⎝
1 1

𝑠
2

𝑠+1 1

⎞
⎟⎟⎟⎟⎠ ,𝐻 (𝑠) =

⎛
⎜⎜⎜⎜⎝
−2 −1
−3 1

𝑠

⎞
⎟⎟⎟⎟⎠ find closed loop transfer function (𝐼 + 𝐺𝐻)

−1𝐺𝐻
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First,

𝐺𝐻 =
⎛
⎜⎜⎜⎜⎝
1 1

𝑠
2

𝑠+1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 −1
−3 1

𝑠

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−3
𝑠 − 2

1
𝑠2 − 1

− 4
𝑠+1 − 3

1
𝑠 −

2
𝑠+1

⎞
⎟⎟⎟⎟⎠

Then

(𝐼 + 𝐺𝐻)−1𝐺𝐻 =
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−3
𝑠 − 2

1
𝑠2 − 1

− 4
𝑠+1 − 3

1
𝑠 −

2
𝑠+1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝
−3
𝑠 − 2

1
𝑠2 − 1

− 4
𝑠+1 − 3

1
𝑠 −

2
𝑠+1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
− 𝑠3+𝑠
4𝑠3+10𝑠2−2𝑠−4

1
4𝑠3+10𝑠2−2𝑠−4

�−𝑠3 − 𝑠2 + 𝑠 + 1�

− 3𝑠3+7𝑠2

4𝑠3+10𝑠2−2𝑠−4
1

3𝑠2+7𝑠
�3𝑠3 + 7𝑠2� 𝑠2+4𝑠+3

4𝑠3+10𝑠2−2𝑠−4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−3
𝑠 − 2

1
𝑠2 − 1

− 4
𝑠+1 − 3

1
𝑠 −

2
𝑠+1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2�−2𝑠3−5𝑠2+𝑠+2�

�−5𝑠3 − 10𝑠2 + 𝑠 + 4� −1
2
(𝑠 − 1) (𝑠+1)2

−2𝑠3−5𝑠2+𝑠+2

−1
2𝑠

2 3𝑠+7
−2𝑠3−5𝑠2+𝑠+2 −1

2
3𝑠3+6𝑠2−5𝑠−4
−2𝑠3−5𝑠2+𝑠+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1

−2𝑠3 − 5𝑠2 + 𝑠 + 2

⎛
⎜⎜⎜⎜⎝
1
2
�−5𝑠3 − 10𝑠2 + 𝑠 + 4� −1

2
(𝑠 − 1) (𝑠 + 1)2

−1
2𝑠

2 (3𝑠 + 7) −1
2
�3𝑠3 + 6𝑠2 − 5𝑠 − 4�

⎞
⎟⎟⎟⎟⎠

Verify using Matlab syms.
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2.7 Lecture 6, Tuesday Sept. 22, 2015, Armature
controlled DC motor with MIMO

Reminder, class tomorrow at 6 pm. No class Oct. 1, 2015. Test on sept 29. Exam everything
up to and including MIMO.

Consolidating example We will cover main points in class so far, from modeling, to
finding T.F. to building block diagrams and MIMO. The example is to model Armature
controlled DC motor. From physical system to di�erential equations.

iF

Va

+

-

Ra

La

back emf

ia
independently applied field current

θ

motor arm

TL(s)

applied torquecommand

to rotate motor arm

Applying kircho� voltage rule on the circuit gives

𝑉𝑎 (𝑡) = 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎
𝑑𝑡
+ 𝑘1𝜔 (1)

Where 𝑘1𝜔 is the backemf voltage induced by the rotating arm and 𝜔 is the angular velocity
𝑑𝜃
𝑑𝑡 of the motor arm. In addition, we have a mechanical relation between the applied torque
𝑡𝐿 and 𝑖𝑎

𝐽
𝑑𝜔
𝑑𝑡

= 𝑘2𝑖𝑎 − 𝑡𝐿 (2)

Finally

𝑡𝐿 = 𝑘𝐿𝑖𝑎 (3)

The above are the three equations needed. Let 𝑘1 = 𝑘2 = 𝑘𝑚. Taking Laplace transform of
each gives

𝑉𝑎 (𝑠) = 𝑅𝑎𝐼𝑎 (𝑠) + 𝑠𝐿𝑎𝐼𝑎 (𝑠) + 𝑠𝑘𝑚𝜃 (𝑠) (1A)

𝑠𝐽𝑊 (𝑠) = 𝑘2𝐼𝑎 (𝑠) − 𝑇𝐿 (𝑠) (2A)

𝑇𝐿 (𝑠) = 𝑘𝐿𝐼𝑎 (𝑠) (3A)

Notice that 𝑊(𝑠) is the Laplace transform of 𝜔 and that 𝜔 = 𝑑𝜃
𝑑𝑡 or 𝑊(𝑠) = 𝑠𝜃 (𝑠), hence

𝑊(𝑠)
𝑠 = 𝜃 (𝑠). Now we build the block diagram from the above three equations. The input is

𝑉𝑎 (𝑠) and the output is 𝜃 (𝑠). From the above we find

𝐼𝑎 (𝑠) =
𝑉𝑎 (𝑠) − 𝑘𝑚𝑊(𝑠)

𝑅𝑎 + 𝑠𝐿

𝑊 (𝑠) =
𝑘𝑚𝐼𝑎 (𝑠) − 𝑇𝐿 (𝑠)

𝐽𝑠
And the block diagram is
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Va(s)
1

Ls+Ra

Ia(s)
KL

+

Km

TL(s)

+

-
1
Js

W (s)

Km

-
1
s θ(s)

Reader: Find the transfer function 𝜃(𝑠)
𝑉𝑎(𝑠)

. Consider step input. Find steady state 𝜃 (∞) for
step input. Does it go to one? Note, every RLC circuit is stable circuit. Called passive
circuit.

Reader answer

I get this

𝐸 = 𝑅 (𝑠) − 𝑠𝜃𝑘𝑚

𝜃 = 𝐸 (𝑠) �
𝑘𝑚 − 𝑘𝐿

(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽
�

Hence

𝜃 = (𝑅 (𝑠) − 𝑠𝜃𝑘𝑚) �
𝑘𝑚 − 𝑘𝐿

(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽
�

𝜃 = 𝑅 (𝑠) �
𝑘𝑚 − 𝑘𝐿

(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽
� − 𝑠𝜃𝑘𝑚 �

𝑘𝑚 − 𝑘𝐿
(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽

�

𝜃 �1 + 𝑠𝑘𝑚 �
𝑘𝑚 − 𝑘𝐿

(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽
�� = 𝑅 (𝑠) �

𝑘𝑚 − 𝑘𝐿
(𝑅𝑎 + 𝑠𝐿) 𝑠2𝐽

�

𝜃 (𝑠)
𝑅 (𝑠)

=
� 𝑘𝑚−𝑘𝐿
(𝑅𝑎+𝑠𝐿)𝑠2𝐽

�

1 + 𝑠𝑘𝑚 �
𝑘𝑚−𝑘𝐿

(𝑅𝑎+𝑠𝐿)𝑠2𝐽
�

=
𝑘𝑚 − 𝑘𝐿

𝑠2𝐽 (𝑅𝑎 + 𝑠𝐿) + 𝑠𝑘𝑚 (𝑘𝑚 − 𝑘𝐿)

=
𝑘𝑚 − 𝑘𝐿

𝑠3𝐽𝐿 + 𝑠2𝐽𝑅𝑎 + 𝑠𝑘2𝑚 − 𝑠𝑘𝑚𝑘𝐿

=
(𝑘𝑚 − 𝑘𝐿)

𝐽𝐿
1

𝑠3 + 𝑠2 𝑅𝑎𝐿2 + 𝑠 �
𝑘2𝑚−𝑘𝑚𝑘𝐿

𝐽𝐿
�

What if we have another output of interest? say 𝐼𝑎 (𝑠) as output? And what if we have another
input, a disturbance 𝑑 (𝑡) as shown

Va(s)
1

Ls+Ra

Ia(s)
KL

+

Km

TL(s)

+

-
1
Js

W (s)

Km

-
1
s

Y2(s)
second output

θ(s) = Y1(s)

First output

D(s) Disturbance (second input)

First input

Reader Find the MIMO transfer function⎛
⎜⎜⎜⎜⎝
𝜃 (𝑠)
𝐼𝑎 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑇11 𝑇12
𝑇21 𝑇22

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑉𝑎 (𝑠)
𝐷 (𝑠)

⎞
⎟⎟⎟⎟⎠

Where 𝑇11 is the transfer function from 𝑉𝑎 (𝑠) to 𝜃 (𝑠), and 𝑇12 is the transfer function from
𝜃 (𝑠) to 𝐷 (𝑠) and 𝑇21 is the transfer function from 𝑉𝑎 (𝑠) to 𝐼𝑎 (𝑠) and 𝑇22 is the transfer
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function from 𝐷 (𝑠) to 𝐼𝑎 (𝑠).

𝜃 (𝑠) = 𝑇11𝑉𝑎 (𝑠) + 𝑇12𝐷 (𝑠)
𝐼𝑎 (𝑠) = 𝑇21𝑉𝑎 (𝑠) + 𝑇22𝐷 (𝑠)

Hence

𝑇11 =
𝜃 (𝑠)
𝑉𝑎 (𝑠)

𝑇12 =
𝜃 (𝑠)
𝐷 (𝑠)

𝑇21 =
𝐼𝑎 (𝑠)
𝑉𝑎 (𝑠)

𝑇22 =
𝐼𝑎 (𝑠)
𝐷 (𝑠)

We now start on signal graph. First we convert block diagram to signal graph. The block
become a branch, and the variable become a node.

Then we will start on Mason rule, which uses the signal graph to obtain the transfer
function.
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2.8 Lecture 7, Wednesday Sept. 23, 2015, Start of signal
graph and Mason rule

6PM lecture. Makeup lecture.

On Monday there will be extra o�ce hrs. Exam on Tuesday.

Example. Lets say we have 𝑋1, 𝑋2 as variables, and 𝑈 as input and 𝑌 as output. Then given

𝑋1 + 𝛼𝑋2 = 𝑈
𝛽𝑋1 − 3𝑋2 = 3𝑈

𝑌 = 𝑋1 + 2𝑋2

The goal is to solve for 𝑌 in terms of 𝑈 without all the variables 𝑋1, 𝑋2 involved. This can
be solved of course using algebra:

>> clear all
>> syms X1 X2 U Y alpha beta
>> eq1=X1+alpha*X2==U;
>> eq2=beta*X1-3*X2==3*U;
>> eq3=Y==X1+2*X2;
>> [X1,X2]=solve(eq1,eq2,X1,X2)

X1 =
(3*(U + U*alpha))/(alpha*beta + 3)
X2 =
-(3*U - U*beta)/(alpha*beta + 3)

>> subs(Y)
>> pretty(ans)

3 (U + U alpha) (3 U - U beta) 2
--------------- - ----------------

alpha beta + 3 alpha beta + 3

Using Mason method, we first rewrite the equations so that the variables are on the LHS.
In the above, this becomes

𝑋1 = 𝑈 − 𝛼𝑋2

𝑋2 = 𝛽𝑋1 − 2𝑋2 − 3𝑈

Next, we first set up a signal graph. Each variable becomes a node, like this

U

-3

-2

−α1

1

2X1 X2 Y

self loop

β

Note: At each node, all incoming branch gains are added. We now setup the loop gains. A
loop must not visit a node more than once. There are two loops here. The gains on them
are �−𝛼𝛽, −2�. Next, we find all the forward paths from 𝑈 to 𝑌. A forward path must not
visit same node more than once. There are 4 forward paths. The gains on each are

𝑀1 = (−3) (2) = −6

𝑀2 = (1) �𝛽� (2) = 2𝛽
𝑀3 = (1) (1) = 1
𝑀4 = (−3) (−𝛼) (1) = 3𝛼
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Now we defined Mason delta Δ

Δ = 1 −� loop gains +� loop gains 2 at times −� loop gains 3 at times⋯

In the above, when looking for loop gains 2 at times, the loops must not be sharing a node.
Same for loop gains 3 at times and higher sums. In our example, this gives

Δ = 1 −� loop gains

= 1 − �−𝛼𝛽 − 2�

= 3 + 𝛼𝛽

Finally, we define Δ𝑖, which is Mason Δ but with the forward path 𝑀𝑖 removed from the
graph. There are 4 forward paths in this problem, so there are Δ1, Δ2, Δ3, Δ4. Each time
we remove a forward path, we find Δ again using the above Mason rule method. In this
problem we see that

Δ1 = 1
Δ2 = 1
Δ3 = 1 − (−2) = 3
Δ4 = 1

Finally, we apply the Mason gain formula

𝑌
𝑈
=
∑4

𝑖=1𝑀𝑖Δ1

Δ

=
(−6) (1) + �2𝛽� (1) + (1) (3) + (3𝛼) (1)

3 + 𝛼𝛽

=
𝛼 + 2𝛽 − 3
3 + 𝛼𝛽

Reader Find 𝑌
𝑈 for this graph

U

-3

-2

−α1

1

2X1 X2 Y

γ

ε

β

δ

Second example. Here we take a circuit and obtain the equations, then use signal graph
in order to use Mason rule to obtain the transfer function

Vin

+

-

R1

L

I1

R2

C

I2
Vout

Solving the circuit loops gives (all in Laplace domain)

(𝑅1 + 𝑠𝐿) 𝐼1 − 𝐼2𝐿𝑠 − 𝑉𝑖𝑛 (𝑠) = 0

�𝑅2 +
1
𝐶𝑠�

𝐼2 + 𝐿𝑠𝐼2 − 𝐼1𝐿𝑠 = 0

𝑉𝑜𝑢𝑡 (𝑠) = 𝑅2𝐼2
Now the variables are 𝐼1, 𝐼2, so we need to have these on the LHS. To do this, do this trick:
Add 𝐼1 to each side of the first equation, and add 𝐼2 to each side of the second equation,
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this gives

𝐼1 = (𝑅1 + 𝑠𝐿) 𝐼1 − 𝐼2𝐿𝑠 − 𝑉𝑖𝑛 (𝑠) + 𝐼1

𝐼2 = 𝐼2 + �𝑅2 +
1
𝐶𝑠�

𝐼2 + 𝐿𝑠𝐼2 − 𝐼1𝐿𝑠

Now set up the signal graph

Vin I1

I2

Vout

1 +R1 + Ls

1
Cs +R2 + Ls+ 1

-1
−Ls

−Ls R2

Reader: Find 𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

for the above.

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
∑1

𝑖=1𝑀𝑖Δ𝑖

1 − ∑one at time +∑ 2 at times

=
(−1) (−𝐿𝑠) (𝑅2)

1 − ∑ (𝑅1 + 𝐿𝑠 + 1) + �
1
𝐶𝑠 + 𝑅2 + 𝐿𝑠 + 1� + ∑ (𝑅1 + 𝐿𝑠 + 1) �

1
𝐶𝑠 + 𝑅2 + 𝐿𝑠 + 1�

=
𝐿𝑠𝑅2

1 − �𝑅1 + 𝑅2 +
1
𝐶𝑠 + 2𝐿𝑠 + 2� + (𝑅1 + 𝐿𝑠 + 1) �𝑅2 +

1
𝐶𝑠 + 𝐿𝑠 + 1�

=
𝐿𝑠𝑅2

1
𝐶𝑠
(𝑅1 + 𝐿𝑠) �𝐶𝐿𝑠2 + 𝐶𝑅2𝑠 + 1�

Now we take a block diagram and convert to signal graph. Given

H(s) G(s)
R(s)

Y (s)
U(s)E(s)

feed forward path

plantcontroller

error signal

+
−

We know that 𝑌(𝑠)
𝑅(𝑠) =

𝐻(𝑠)𝐺(𝑠)
1+𝐻(𝑠)𝐺(𝑠) and that 𝐸(𝑠)

𝑅(𝑠) =
1

1+𝐻(𝑠)𝐺(𝑠) . Use Mason to show the above.

Reader Find 𝑌
𝑈 for this

U
a

b

e

k

d

f

i

jc

2
h

f
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2.8.1 MIMO Practice problems

ECE 332 – Handout MIMO Practice Problems

Problem 1: A system with inputs u1,u2 outputs y1,y2 and intermediate
states x1, x2 and x3 is described by the differential equations

ẋ1 = x2 − x3 + u1 + 3u2;

ẋ2 = −3x1 + x3 − 4u2;

ẋ3 = −2x2 + u1;

y1 = 2x1 − x3 + u1;

y2 = x1 + x2 − u2.

For this MIMO system, find the associated open loop transfer function
matrix G(s). Express each entry of G(s) as a quotient of polynomials
with numerator and denominator factored, if possible.

Problem 2: (a) Consider a MIMO 2 × 2 controller H(s) connected in
a classical unity feedback configuration to the system G(s) in Problem 1.
With

H(s) =

 0 1
1/s 0

 ,
use syms in Matlab to find the closed loop transfer function matrix T (s).
You may wish to check your solution by calculating by hand.

(b) Is the closed loop stable? Explain.
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WmSoo): Ml M O Problerq Solutions 

TCn^e ^ LOLfcb 2erO l O i l i J COOdctioOJ 

SX . ( 3 ) \b)'X2b)^ U.(5).30a(5) 

S X, (5) - - 3x, (5) * (6) - H (5) 

5X3(5) -iXib)'\},b) 

So We (algebra) QOd ob-tG.o ooitt 4>C5)=s\5Sf6 

X,6) S-f 3) U. 65) + 05'- 45 - 2) 65)] 

Lb) = x r(3-2i)U,(5) -(H5'-*45)U,65) 

(5^3)0,65) +(g5+lg)Ui65)j 

(b(5) 

KoU Y.C5) . +2X,(5) -X3(5)> DiO) 

Ya(5) X,(5) + Xi65)- Ui6s) 

W< qooo Stbsbibote Xlii) lofco Y.'i'> Ya65) 
and after 60 me algcbo- obtain 

S '5^6 
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SW55+G 

Hence 
G(s) 

1 
5^ 3 
S ' - 5 H 

2(35-11) • 
5.-5* 

Tbe CLTF roatr/x 15 

-- [ i r G 6 5 ; H(53" 'G (S ; 1-1(5) 

Sobst. G(s)^ l-l(5)y uje f00 Mailab <-«'de(54rfi3) 

T(5) 

#4S'lS5t8) is'-sYl'̂ S 

(b) Notice denominator poly above s^4 + 2s^3 + 10s^2 + 19s - 40 
Find i n g roots of t h i s poly, use r o o t s ( [ 1 2 10 19 -40]) i n Matlab, 
and observe one root i s 1.15 and the r e s t have r e a l p a r t < 0 
Hence system i s un s t a b l e . 
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2.9 Lecture 8, Thursday Sept. 24, 2015, Mason, bene�ts
of feedback, non-linear systems

Exam 1 on Tuesday Sept. 29, 2015. Closed book, closed notes. There will be o�ce hours
Monday 1-3 pm.

Keywords for exam:

1. Modeling, basic circuit or spring mass damper.

2. Block diagrams. Go frommodel to block diagram. Laplace and transfer function.
For example, given a mass/spring, find the ODE and use Laplace to find the
transfer function

3. Block diagram, open loop vs. closed loop. Classic unity feedback

4. Know basic Laplace and inverse Laplace

5. Given TF, and 𝑅 (𝑠) find 𝑌 (𝑠)

6. Steady state error. Know when to use F.V.T. This is related to tracking. The
more complicated the signal, the more integrated we need. This is called the
integrator principle.

7. MIMO basics. Matrix transfer function. Watch out for order here.

8. 4 or 5 questions.

Now for one more Mason problem. We use Mason any time we want to find a transfer
function. Find 𝑌(𝑠)

𝑈(𝑠) for this signal graph

U a

f

g

b

k
h

c

i

d

l

e Y

j

There are 4 forward paths from 𝑈 to 𝑌, here they are, with the associated Mason Δ

𝑀1 = 𝑎𝑏𝑐𝑑𝑒, Δ1 = 1
𝑀2 = 𝑎𝑓ℎ𝑒, Δ2 = 1 − 𝑖
𝑀3 = 𝑎𝑓𝑐𝑑𝑒, Δ3 = 1
𝑀4 = 𝑎𝑏ℎ𝑒, Δ4 = 1 − 𝑖

We need 𝑌
𝑈 =

∑4
𝑖=1𝑀𝑖Δ𝑖

Δ . The loops are �𝑘, 𝑗, 𝑖, 𝑏𝑐𝑔, 𝑑𝑙, 𝑓ℎ𝑙 𝑔, 𝑏ℎ𝑙 𝑔, 𝑓𝑐𝑔�, hence

Δ = 1 − �𝑘 + 𝑖 + 𝑗 + 𝑑𝑘 + 𝑓ℎ𝑙 𝑔 + 𝑏ℎ𝑙 𝑔 + 𝑓𝑐𝑔� + �𝑘𝑖 + 𝑘𝑗 + 𝑖𝑗 + 𝑘𝑑𝑙 + 𝑗𝑏𝑐𝑔 + 𝑗𝑓𝑐𝑔� − �𝑘𝑖𝑗�

Hence

𝑌
𝑈
=
∑4

𝑖=1𝑀𝑖Δ𝑖

Δ

=
𝑎𝑏𝑐𝑑𝑒 (1) + 𝑎𝑓ℎ𝑒 (1 − 𝑖) + 𝑎𝑓𝑐𝑑𝑒 (1) + 𝑎𝑏ℎ𝑒 (1 − 𝑖)

1 − �𝑘 + 𝑖 + 𝑗 + 𝑑𝑘 + 𝑓ℎ𝑙 𝑔 + 𝑏ℎ𝑙 𝑔 + 𝑓𝑐𝑔� + �𝑘𝑖 + 𝑘𝑗 + 𝑖𝑗 + 𝑘𝑑𝑙 + 𝑗𝑏𝑐𝑔 + 𝑗𝑓𝑐𝑔� − �𝑘𝑖𝑗�

Next topic we will start on is the benefits of feedback. So far we talked about tracking only.
Other benefits are

1. Linearization

2. Sensitivity

3. Disturbances

26



2.9. Lecture 8, Thursday Sept. 24, 2015, . . . CHAPTER 2. CLASS NOTES

We can use feedback to pre compensate a nonlinear system to make it approximately linear.
Given a non-linear device, say diode, with input 𝑈 = 𝑋 which represent voltage and output
𝑌 which is nonlinear function of the input such as 𝑌 = 𝑁𝑋 can we use feedback to make
the output closed to linear?

U = X Y = NX

”static” nonlinear device

Warning: When the system is non-linear, we can not use transfer functions and can not
use Laplace. These are only for linear systems. Transfer functions and Laplace transforms
are used only when the system is linear. So how do we analyze non-linear system? We use
time domain. For example, if 𝑌 = 𝑋2

+

-
H(s) nonlinear Y (s)x N(x)

These are not transfer functions

R(s)

Closed loop is nonlinear. We need relation between 𝑅 (𝑠) and 𝑌 (𝑠)

There are two type of nonlinearity, saturations and dead-zone. Dead zone is an area where
the input is not yet su�cient to cause any output to be generated, it might be a threshold
for the device to start operating. Here is a typical output from a non linear device

− 1
2

1
2

Y = N(x)

x
1

-1

Reader For this open loop, if 𝑥 = 2 sin 𝑡, sketch 𝑦 (𝑡). Another example

+

-
K nonlinear Y (s)x = 2(R−N(x)) N(x)R(s)

R−N(x)

We know

𝑌 = 𝑁 (𝑥) (1)

and

𝑥 = 2 (𝑅 − 𝑌)

hence 2𝑌 = 2𝑅 − 𝑥 and

𝑌 = 𝑅 −
𝑥
2

(2)

(1) and (2) must both hold. For each 𝑅 input, we solve (1,2) for 𝑌, 𝑥 and plot them. For
example, for 𝑅 = {0, 0.1, 0.2,⋯} for each 𝑅 (𝑖) we solve for 𝑌 (𝑖)
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𝑅 𝑌 = 𝑅 − 𝑥
2

0 0 − 𝑥
2

0.1 0.1 − 𝑥
2

0.2 0.2 − 𝑥
2

⋮ ⋮

For each line in the above, such as −𝑥
2 , 0.1 −

𝑥
2 ,⋯, we now draw this line on top of the

original 𝑌 (𝑥) plot, and see where this line intersect with the original 𝑌 (𝑥). The point of
intersection is the new value of 𝑌. This is done for each entry of 𝑅, so we obtain

− 1
2

1
2

Y = N(x)

x
1

-1

−x
2 0.1− x

2

So we obtain this table

𝑅 𝑌 = 𝑅 − 𝑥
2

0 0
0.1 0
0.2 0
⋮ ⋮

big .3
⋮ 1

Reader: calculate and obtain closed loop. We might obtain this

− 1
4 1

4

Y = N(x)

x
1.5

-1.5

dead zone shrunk and linear zone extended

We see that dead zone has shrunk (good) and linear region increased (good).

Reader: Redo with 𝑘 = 10. For large 𝐾 we should obtain

Y = N(x)

x

dead zone shrunk and linear zone extended
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2.10 Lecture 9, Tuesday Sept. 29, 2015, First exam

First exam
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2.11 Lecture 10, Thursday Oct. 1, 2015, No lecture

No lecture today
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2.12 Lecture 11, Tuesday Oct. 6, 2015, Sensitivity of
transfer function

Today lecture on sensitivity. Definition of sensitivity: percentage change in magnitude of
transfer function 𝑇 (𝑠) per one percent change of parameter 𝛼 in the transfer function. We
normally make this parameter be 𝛼. This could be 𝑅 (resistance) or 𝐶 (capacitance) and
so on. We call this 𝑆𝑇𝛼 which is read as the sensitivity of the 𝑇 (𝑠) with respect to changes in
𝛼.

Therefore

𝑆𝑇𝛼 =
Δ𝑇
𝑇
Δ𝛼
𝛼

=
Δ𝑇
Δ𝛼

𝛼
𝑇

=
𝑑𝑇
𝑑𝛼
𝛼
𝑇

We then have to evaluate 𝑆𝑇𝛼 at the nominal value of the parameter 𝛼 = 𝛼0. Therefore

𝑆𝑇𝛼 𝛼=𝛼0
=
𝑑𝑇
𝑑𝛼
𝛼
𝑇 𝛼=𝛼0

𝛼0 is given numerical value. It is meant to be the value that the parameter 𝛼 fluctuate
around and will be given in the problem to use.

For example, given this circuit

R

C

Vin

+
Vout

−

Let 𝑅 be the parameter that will change and let amount of change be Δ𝑅 and we want to
find the sensitivity of change in the transfer function 𝑇 (𝑠) = 𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
to changes in 𝑅.

We know that

𝑇 (𝑠) =
𝑅𝐶𝑠

1 + 𝑅𝐶𝑠
Say that 𝑅 = 𝑅0 + Δ𝑅 where 𝑅0 is the nominal value of resistance 𝑅 and Δ𝑅 is the amount
of variation it has. Hence (1) becomes

𝑇 (𝑠) =
(𝑅0 + Δ𝑅)𝐶𝑠

1 + (𝑅0 + Δ𝑅)𝐶𝑠

To find 𝑆𝑇𝑅 we let 𝑅 = 𝛼 and apply the definition 𝑆𝑇𝛼 =
𝑑𝑇
𝑑𝛼

𝛼
𝑇 𝛼=𝛼0

Hence

𝑆𝑇𝛼 =
𝑑𝑇
𝑑𝛼
𝛼
𝑇

=
𝑑
𝑑𝛼 �

𝛼𝐶𝑠
1 + 𝛼𝐶𝑠�

𝛼
𝛼𝐶𝑠

1+𝛼𝐶𝑠

Assume 𝐶 = 1 and assume nominal value of 𝑅 is 1 also. This means 𝛼0 = 1. The above
becomes

𝑆𝑇𝛼 =
𝑑
𝑑𝛼

�
𝛼𝑠

1 + 𝛼𝑠
�
𝛼
𝛼𝑠

1+𝛼𝑠

=
𝑠

(𝑠𝛼 + 1)2
1 + 𝛼𝑠
𝑠

=
1

𝑠𝛼 + 1
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Evaluate at 𝛼 = 𝛼0 = 1 then

𝑆𝑇𝛼 𝛼=𝛼0
=

1
𝑠 + 1

Next step is to replace 𝑠 = 𝑗𝜔 and plot the magnitude in frequency domain

𝑆𝑇𝛼 =
1

𝑗𝜔 + 1

�𝑆𝑇𝛼� =
1

√1 + 𝜔2

A plot is

Out[6]=
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Example 1

Examples below shows to calculate 𝑆𝑇𝛼 for di�erence parameters.

2.12.0.1 Example 1

Given the signal graph

R(s)

s
1+s

α

Y (s)
1 1

𝑇 (𝑠) =
𝑠

1+𝑠

1 − 𝛼 � 𝑠
𝑠+1
�

=
𝑠

1 + 𝑠 (1 − 𝛼)
hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
𝛼
𝑠

1+(𝑠−𝛼)
�

− (−𝑠) 𝑠
((1 − 𝛼) 𝑠 + 1)2

�

=
𝛼𝑠

((1 − 𝛼) 𝑠 + 1)
Let 𝑠 = 𝑗𝜔 and let 𝛼 = 𝛼0 = 3 then above becomes

𝑆𝑇𝛼 =
3𝑗𝜔

1 − 2𝑗𝜔

�𝑆𝑇𝛼� =
3𝜔

√1 + 4𝜔2

The plot is
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Out[13]=
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Example from lecture

The above curve give the percentage of change in 𝑇 when 𝛼 changes by one percentage.
We just need to determine the magnitude plot, we normally do not worry above phase
when doing sensitivity analysis. The above plots says that 𝑇 (𝑠) is not sensitive to changes
in 𝛼 when the frequency is near 𝐷𝐶, and as 𝜔 increases, the sensitivity increases. For 1%
change in 𝛼, at high 𝜔, the magnitude of 𝑇 (𝑠) changes by 1.5%

2.12.1 Example 2

Given the circuit

C

L

Vin

Vout

Let us see how 𝑇 (𝑠) = 𝑉𝑜𝑢𝑡(𝑠)
𝑉𝑖𝑛(𝑠)

changes when 𝐿 changes. So we make 𝐿 as our 𝛼 here. The
nominal 𝛼0 = 1 and we also take 𝐶 = 1.

𝑇 (𝑠) =
𝐿𝑠

𝐿𝑠 + 1
𝐶𝑠

=
𝛼𝑠

𝛼𝑠 + 1
𝑠

=
𝛼𝑠2

𝛼𝑠2 + 1

Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
1

𝛼𝑠2 + 1
Let 𝑠 = 𝑗𝜔 𝛼 = 𝛼0 = 1 and the above becomes

𝑆𝑇𝛼 =
1

1 − 𝜔2

Hence

�𝑆𝑇𝛼� =
1

�1 − 𝜔2�
Notice that at 𝜔 = 1 there is resonance. Here is the plot

Out[15]=
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Example from lecture

The above says that when 𝜔 near 1, then the transfer function is very sensitive to changes
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in 𝐿. For 1% change in 𝐿, the magnitude of the transfer function become very large at that
frequency. This can cause problems, so we need to avoid getting close to 𝜔 = 1 and must
stay above it for safe operations.

2.12.2 Example 3

Given this circuit

CL

Vin

Vout
R

Now we will find the 𝑆𝑇𝛼 for each parameter in the circuit. These are 𝑅, 𝐿, 𝐶, each time we
fix all the parameters, except the one in interest, and call that one 𝛼 and repeat the steps
we did in the earlier examples.

𝑇 (𝑠) =
𝑉𝑜𝑢𝑡 (𝑠)
𝑉𝑖𝑛 (𝑠)

=
𝑅

𝑅 + 1
𝐶𝑠 + 𝐿𝑠

=
𝑅𝐶𝑠

𝑅𝐶𝑠 + 𝐿𝐶𝑠2 + 1

Let 𝛼 = 𝑅, and let 𝐶 = 1, 𝐿 = 1 and let 𝛼0 = 1 as well. Hence

𝑇 (𝑠) =
𝛼𝑠

𝑠2 + 𝛼𝑠 + 1
Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
1 + 𝑠2

𝑠2 + 𝛼𝑠 + 1
We now switch to 𝜔 domain

𝑆𝑇𝛼 =
1 − 𝜔2

1 − 𝜔2 + 𝛼𝑗𝜔 𝛼=1

=
1 − 𝜔2

1 − 𝜔2 + 𝑗𝜔
Hence

�𝑆𝑇𝛼� =
�1 − 𝜔2�

��1 − 𝜔
2�

2
+ 𝜔2

Be careful to use �1 − 𝜔2� above and not just 1−𝜔2 since these are norms. Plotting the above
gives
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Example from lecture, for R sensitivity

We see from above that 𝑇 (𝑠) is least sensitive to changes in 𝑅 when 𝜔 = 1 and that the
maximum change is 1%
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We now repeat the above, but for 𝐶. Hence now 𝛼 = 𝐶, and 𝐿 = 1, 𝑅 = 1. Therefore

𝑇 (𝑠) =
𝑅𝐶𝑠

𝑅𝐶𝑠 + 𝐿𝐶𝑠2 + 1
=

𝛼𝑠
𝛼𝑠 + 𝑠2 + 1

Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
1

𝛼𝑠2 + 𝛼𝑠 + 1
We now switch to 𝜔 domain and set 𝛼 = 1 which gives

𝑆𝑇𝛼 =
1

1 − 𝜔2 + 𝑗𝜔
Hence

�𝑆𝑇𝛼� =
1

��1 − 𝜔
2�

2
+ 𝜔2

Plotting the above gives
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Example from lecture, for C sensitivity

The maximum occurs near 𝜔 = 0.7. Finally, we now look at sensitivity against changes in
𝐿. Hence now 𝛼 = 𝐿, and 𝐶 = 1, 𝑅 = 1. Therefore

𝑇 (𝑠) =
𝑅𝐶𝑠

𝑅𝐶𝑠 + 𝐿𝐶𝑠2 + 1
=

𝑠
𝛼𝑠 + 𝑠2 + 1

Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
−𝛼𝑠2

𝛼𝑠2 + 𝛼𝑠 + 1
We now switch to 𝜔 domain and set 𝛼 = 1 which gives

𝑆𝑇𝛼 =
− �−𝜔2�

1 − 𝜔2 + 𝑗𝜔
Hence

�𝑆𝑇𝛼� =
𝜔2

��1 − 𝜔
2�

2
+ 𝜔2

Plotting the above gives
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Example from lecture, for L sensitivity

The maximum occurs near 𝜔 = 1.14.

2.12.3 Example 4

Given this circuit

CL1

Vin

Vout
L2

Let the nominal values be 𝐶 = 1, 𝐿1 = 1 and 𝐿2 = 1. We will find 𝑆𝑇𝛼 for each of these
parameters now one at a time as in the above example.

𝑇 (𝑠) =
𝐿2𝑠

(𝐿1 + 𝐿2) 𝑠 +
1
𝐶𝑠

=
𝐿2𝐶𝑠2

(𝐿1 + 𝐿2) 𝐶𝑠2 + 1

When 𝛼 = 𝐿1 then (after putting 𝐶 = 1, 𝐿2 = 1) the above becomes

𝑇 (𝑠) =
𝑠2

(𝛼 + 1) 𝑠2 + 1
Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
−𝛼𝑠2

(𝛼 + 1) 𝑠2 + 1
We now switch to 𝜔 domain and set 𝛼 = 1 which gives

𝑆𝑇𝛼 =
𝜔2

1 − 2𝜔2

Hence

�𝑆𝑇𝛼� =
𝜔2

�1 − 2𝜔2�
The plot is
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Example from lecture, for L1 sensitivity

We see that �𝑆𝑇𝛼� blows up at 𝜔 = 1

√2
and at 𝜔 = 1, �𝑆𝑇𝛼� = 1. We now consider 𝛼 = 𝐿2 then

(after putting 𝐶 = 1, 𝐿1 = 1) the transfer function becomes

𝑇 (𝑠) =
𝛼𝑠2

(1 + 𝛼) 𝑠2 + 1
Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
𝑠2 + 1

(𝛼 + 1) 𝑠2 + 1
We now switch to 𝜔 domain and set 𝛼 = 1 which gives

𝑆𝑇𝛼 =
1 − 𝜔2

1 − 2𝜔2

Hence

�𝑆𝑇𝛼� =
�1 − 𝜔2�
�1 − 2𝜔2�

The plot is
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Example from lecture, for L2 sensitivity

We see that now at low frequency 𝑇 (𝑠) is sensitive to 𝐿2 while it is not sensitive to changes
in 𝐿1. Finally, looking at 𝛼 = 𝐶 then (after putting 𝐿2 = 1, 𝐿1 = 1) the transfer function
becomes

𝑇 (𝑠) =
𝛼𝑠2

2𝛼𝑠2 + 1
Hence

𝑆𝑇𝛼 =
𝛼
𝑇
𝑑𝑇
𝑑𝛼

=
1

2𝛼𝑠2 + 1
We now switch to 𝜔 domain and set 𝛼 = 1 which gives

𝑆𝑇𝛼 =
1

1 − 2𝜔2

Hence

�𝑆𝑇𝛼� =
1

�1 − 2𝜔2�
The plot is
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Example from lecture, for C sensitivity

We see that �𝑆𝑇𝛼� blows up at 𝜔 = 1

√2
.

In conclusion, we can use these plots to determine how each component a�ect the transfer
function. We do not want the transfer function to be sensitive to changes in components.
If we know the range of operating frequencies, we can now know which components can
cause most problems and may be spend more money to buy better quality component for
that specific one.
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2.13 Lecture 12. Thursday Oct 8, 2015, control to reject
noise and disturbances

First midterm and second HW returned. Review of midterm results given.

In this lecture we will continue to talk about benefits of feedback (see Lecture 8, Thursday
Sept. 24, 2015). We talked about sensitivity and reducing nonlinearity in the plant, now
we will talk about the third benefit which is noise or disturbance rejection.

Classical setup is the following

G1(s)

N(s)

G2(s)
+

+

U(s)
Y (s)

external noise

There are many physical examples that can be represented using the above. For example,
the above can be a communication channel with noise a�ecting the data transmission in
the channel. The above is written as

𝑌 (𝑠) =
𝑌 (𝑠)
𝑈 (𝑠)

�
𝑁=0

𝑈 (𝑠) +
𝑌 (𝑠)
𝑁 (𝑠)

�
𝑈=0

𝑁 (𝑠)

= 𝐺1𝐺2𝑈 + 𝐺2𝑁

Classical approach to reducing the disturbance e�ect is to setup the feedback as follows

G1(s) G2(s)

H2(s)

H1(s)R(s)
+

−

N(s)

+

The design problem is now to pick the appropriate 𝐻1 (𝑠) and 𝐻2 (𝑠) to reduce 𝑁 (𝑠) e�ect
on the system. Let us study the closed loop transfer function

𝑌 (𝑠) =
𝑌 (𝑠)
𝑅 (𝑠)

�
𝑁=0

𝑅 (𝑠) +
𝑌 (𝑠)
𝑁 (𝑠)

�
𝑅=0

𝑁 (𝑠)

=
𝐺1𝐺2𝐻1

1 + 𝐺1𝐺2𝐻1𝐻2
𝑅 (𝑠) +

𝐺2
1 + 𝐺1𝐺2𝐻1𝐻2

𝑁 (𝑠)

Pick 𝐻2 first. Let 𝐻2 =
1

𝐺1𝐺2
then the above becomes

𝑌 (𝑠) =
𝐺1𝐺2𝐻1
1 + 𝐻1

𝑅 (𝑠) +
𝐺2

1 + 𝐻1
𝑁 (𝑠)

And let 𝐻1 = 𝛼 where 𝛼 is a very large gain value. Then above reduces to

𝑌 (𝑠) =
𝐺1𝐺2𝛼
1 + 𝛼

𝑅 (𝑠) +
𝐺2
1 + 𝛼

𝑁 (𝑠)

lim
𝛼→∞

𝑌 (𝑠) = 𝐺1𝐺2𝑅 (𝑠)

Which is good. This is what we wanted. So 𝑁 (𝑠) e�ect has no been eliminated. But this
method has the following disadvantages

1. If 𝐺1𝐺2 =
1

1+𝑠 then 𝐻2 becomes 1
𝐺1𝐺2

= 𝑠 + 1. This is not good. We normally do not
want to have di�erentiators in the loop as they cause problems we talked about early
in the course.

2. Another problem. Lets say 𝐺1𝐺2 =
1+𝑠

𝑠2+2𝑠+1 . Then 𝐻2 =
𝑠2+2𝑠+1
1+𝑠 , and we still have the

same problem as above since after long division, we see this is still 1 + 𝑠. There was
a hidden di�erentiator in there. In general, if the numerator has degree less than
the denominator in 𝐺1𝐺2 then 𝐻2 that results will have a di�erentiator.
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How to fix the above? The fix is to introduce a low pass filter, called 𝐻𝐿𝑃 (𝑠). So that instead
of using 𝐻2 (𝑠) we use 𝐻2 (𝑠)𝐻𝐿𝑃 (𝑠) . Low pass filter attenuate high frequency noise. The
simplest low pass filter is

𝐻𝐿𝑃 (𝑠) =
1

(𝜖𝑠 + 1)𝑘

Where 𝑘 is an integer specified by the designer and 𝜖 > 0. Now we introduce frequency.
This is done by letting 𝑠 = 𝑗𝜔. Imaging we have this system

HLP (s)

s = jω

Harmonics at
frequency ω

𝐻𝐿𝑃 �𝑗𝜔� is called the frequency response. It is complex valued. Has magnitude and phase.

Example: 𝜀 = 1, 𝑘 = 1 then 𝐻𝐿𝑃 �𝑗𝜔� =
1

1+𝑗𝜔 and |𝐻𝐿𝑃| =
1

√1+𝜔2
and phase ∢𝐻𝐿𝑃 = 0 − tan−1𝜔

Plotting the magnitude |𝐻𝐿𝑃| gives

|H(jω)|

ω

1
1√
2

1

So back to using 𝐻𝐿𝑃 in our original problem, which is noise rejection. As we said, we
now will use 𝐻2𝐻𝐿𝑃 in place of 𝐻2. Does 𝐻𝐿𝑃 mess up the cancellation of 𝐺1𝐺2 as we had
before? It depends on the noise type. For low frequency noise, then |𝐻𝐿𝑃| will be close to
1 and hence 𝐻2𝐻𝐿𝑃 will remain very close to 𝐻2. But if the noise is high frequency, then
|𝐻𝐿𝑃| is much smaller than one, and hence 𝐻2𝐻𝐿𝑃 will be much smaller than original 𝐻2.
For example, if 𝜔 = 1, then 𝐻2 is attenuated by about 30%. Next time, we will build more
on this topic.
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2.14 Lecture 13. Tuesday Oct 13, 2015, Noise rejection,
second order systems

Today we will finish noise attenuation, then start on second order systems. The classical
method of noise attenuating is based on this feedback system block diagram

R(s) H1(s) G1(s)

N(s)

G2(s) Y (s)

H2(s)

+

−

noise source

+

+

We often have systems where noise or disturbance comes in between the input and the
output. Without 𝑁 (𝑠) we would have perfect open loop. The classical approach to noise
attenuation is as shown in the above diagram, which is to add 𝐻1 (𝑠) and 𝐻2 (𝑠) with the
idea to reduce the e�ect of 𝑁 (𝑠) while at the same time to preserve 𝑅 (𝑠) input signal and
not a�ect it. For 𝐻1 (𝑠) we use large pure gain 𝛼, this is for attenuation. For 𝐻2 (𝑠), we start
with what is called the inversion method, which is to use 𝐻2 (𝑠) =

1
𝐺1𝐺2

. As discussed in last
lecture, this method looks good in math, but not good in practice, since 𝐻2 (𝑠) becomes
improper transfer function. Now we will explain a more practical method, which is to
introduce a low pass filter 𝐻𝐿𝑃 =

1

(𝜀𝑠+1)𝑘
which will reject noise frequency and also make

𝐻2 (𝑠) become proper. We will use 𝐻2 (𝑠) =
1

𝐺1𝐺2
𝐻𝐿𝑃 (𝑠) instead of just 𝐻2 (𝑠) =

1
𝐺1𝐺2

as before.

We need to pick 𝜀, 𝑘. Both are positive. To design for 𝐻𝐿𝑃 (𝑠) we need to know something
about 𝑁 (𝑠). We need to know the frequency content of 𝑁 (𝑠) so we can design 𝐻𝐿𝑃 (𝑠) to
block most of frequency content of 𝑁 (𝑠) while allowing all the content of 𝑅 (𝑠) to pass
through. We assume 𝑅 (𝑠) frequency is all in the passband of the low pass filter. This is
done in frequency domain.

�𝐻𝐿𝑃 �𝑗𝜔�� =
�
�

1

�𝜀𝑗𝜔 + 1�
𝑘
�
�
=

1

�𝜀𝑗𝜔 + 1�𝑘
=

1

�√𝜀2𝜔2 + 1�
𝑘 =

1

�𝜀2𝜔2 + 1�
𝑘
2

The plot of �𝐻𝐿𝑃 �𝑗𝜔�� might now look like this

|H(jω)|

ω

1
1

2
k
2

1
ε

We can make the filter closed to desired by boosting 𝑘 and decreasing 𝜀.

Second order systems

We will now start on second order systems. We want to study transient response. So far, we
said nothing about transient response. Final value theorem give the steady state response
(when it exists, if the system is stable) but not what happens in between. The system could
have undesired transient response before getting to the steady state. For example, we could
want to send the response to zero very quickly, but this can cause bad transient response.

Why consider only second order systems?

1. Many physical systems are second order system

2. Many systems can be well approximated by second order system, using the method
of dominant poles.

3. Math is much simplified when using second order system than higher order
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When we design, say RLC circuit we get second order system. Same for mass spring
damper. When the system is higher order, we use dominant pole method to approximate
the system to second order. But after approximate to second order and doing the analysis
on the second order, we should go back and simulate the original higher order system
numerically (say using simulink) and compare the second order approximation with the
full order system to make sure the approximation used produces close enough results.

Dominant pole method

Imagine 6th order system. We can ignore poles much further away from the imaginary
axis, since these indicate modes that attenuate very fast

X

X

X

X

XX

Dominant poles

These poles can be ignored

imaginay axis

αβ

In many practical systems, 𝛽 ≫ 𝛼 and the poles further to the left can be ignored since
these are modes which disappear very quickly. So we are left with the two dominant poles
𝑠1,2 = −𝛼 ± 𝑗𝜔. Generic second order system is given by

𝐺 (𝑠) =
𝜔2
𝑛

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛

Where 𝜔𝑛 is the natural frequency and 𝜉 is the damping ratio. Consider a unit step input
𝑅 (𝑠) = 1

𝑠 . For practical system, 0 < 𝜉 < 1.

𝑌 (𝑠) = 𝐺 (𝑠) 𝑅 (𝑠)

=
𝜔2
𝑛

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛

1
𝑠

The inverse Laplace transform of the above is

𝑦 (𝑡) = 1 −
𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
sin �𝜔𝑑𝑡 + 𝜙� (1)

To plot the above in Matlab, here is small code

t=0:.1:45;
z=0.707;
wn=.2;
y=@(t,z,wn) 1- exp(-z*wn*t)/sqrt(1-z^2).*sin(wn*sqrt(1-z^2)*t+acos(z));
plot(t,y(t,z,wn));

To use Matlab step() command, here is small code

z=0.707;
wn=.2;
s=tf('s');
sys= wn^2/(s^2+2*z*wn*s+wn^2);
step(sys);

In (1), 𝜔𝑑 is the damped natural frequency given by 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 and 𝜙 = cos−1 𝜉. (In
our textbook, 𝜙 was defined as 𝜙 = tan−1 �1−𝜉2

−𝜉 , but this seems strange to me. I will use the

more common definition of sin𝜙 = √1 − 𝜉2 and cos𝜙 = 𝜉 as used by Nise text and other,

hence 𝜙 = tan−1 �1−𝜉2

𝜉 from now on).

What if we are not given a standard second order system transfer function such as 𝐺 (𝑠) =
25

𝑠2+5𝑠+10 , we can convert this to standard by doing 𝐺 (𝑠) =
� 2510 �10

𝑠2+5𝑠+10 = 2.5 10
𝑠2+5𝑠+10 and now
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apply the result to 10
𝑠2+5𝑠+10 and then scale the output by 2.5.

For undamped case, 𝜉 = 0, the response is pure harmonics with no damping. The harmonics
have 𝜔𝑛 frequencies. We will now look at poles and zeros of 𝐺 (𝑠) in complex domain. Poles

of 𝐺 (𝑠) = 𝜔2
𝑛

𝑠2+2𝜉𝜔𝑛𝑠+𝜔2𝑛
are

𝑠1,2 = −𝜉𝜔𝑛 ±�𝜔
2
𝑛 �𝜉2 − 1�

= −𝜉𝜔𝑛 ± 𝜔𝑛�𝜉2 − 1

For underdamped, 𝜉 < 1 the above can be written as

𝑠1,2 = −𝜉𝜔𝑛 ± 𝑗𝜔𝑛�1 − 𝜉2

= −𝜉𝜔𝑛 ± 𝑗𝜔𝑑

The following diagram shows the main components on the 𝑠 space plot

X ωd

imaginary axis

−ζωn

|ωn|
φ phase

real axis

𝜙 = tan−1 𝜔𝑑
𝜉𝜔𝑛

𝜙 is called the damped phase.
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2.15 Lecture 14. Thursday Oct 15, 2015, More second
order, Overshoot and resonance

Will now determine the maximum overshoot called 𝑂𝑆max as shown in this diagram

max overshoot secondary overshoot

1

time t

We will use 𝑑𝑦
𝑑𝑡 = 0 to find 𝑦max. Since

𝑑𝑦
𝑑𝑡 = 0 will generate many solutions, we will take the

first one.

𝑦 (𝑡) = 1 −
𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
sin �𝜔𝑑𝑡 + 𝜙�

Then
𝑑𝑦
𝑑𝑡
= 0 = 𝜉𝜔𝑛

𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
sin �𝜔𝑑𝑡 + 𝜙� −

𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
𝜔𝑑 cos �𝜔𝑑𝑡 + 𝜙�

0 = 𝜉 sin �𝜔𝑑 + 𝜙� − �1 − 𝜉2 cos �𝜔𝑑𝑡 + 𝜙� (1)

To solve this, since cos𝜙 = 𝜉 and sin𝜙 = √1 − 𝜉2

then (1) becomes

0 = cos𝜙 sin �𝜔𝑑𝑡 + 𝜙� − sin𝜙 cos �𝜔𝑑𝑡 + 𝜙�

Using sin (𝐴 − 𝐵) = cos𝐴 sin𝐵 − sin𝐴 cos𝐵 the above can be written as (using 𝐴 = 𝜙)

0 = sin �𝜙 − �𝜔𝑑𝑡 + 𝜙��

Hence

sin (𝜔𝑑𝑡) = 0

The solution is 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2𝑡 = 𝑘𝜋 for 𝑘 = 0, 1, 2,⋯. We pick 𝑘 = 1 since this is the first
one after 𝑡 = 0, hence

𝜔𝑛�1 − 𝜉2𝑡max = 𝜋

𝑡max =
𝜋

𝜔𝑛√1 − 𝜉2

=
𝜋
𝜔𝑑

To find 𝑦max (𝑡) = 𝑦 (𝑡max), we plug the above 𝑡max back in the original solution which is

𝑦 (𝑡) = 1 − 𝑒−𝜉𝜔𝑛𝑡

�1−𝜉2
sin �𝜔𝑑𝑡 + 𝜙�. Hence

𝑂𝑆max = 𝑦 (𝑡max) − 1

= �1 −
𝑒−𝜉𝜔𝑛𝑡max

√1 − 𝜉2
sin �𝜔𝑑𝑡max + 𝜙�� − 1 (2)

Reader: Show that the above reduces to

𝑂𝑆max = 𝑒
−𝜋𝜉

�1−𝜉2

Reader solution: substitute 𝑡max =
𝜋

𝜔𝑛�1−𝜉2
in (2) gives

𝑂𝑆max = −
𝑒
−𝜉𝜔𝑛�

𝜋

𝜔𝑛�1−𝜉2
�

√1 − 𝜉2
sin �𝜔𝑑 �

𝜋
𝜔𝑑
� + 𝜙�

= −
𝑒

−𝜋𝜉

�1−𝜉2

√1 − 𝜉2
sin �𝜋 + 𝜙�
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But sin �𝜋 + 𝜙� = − sin𝜙 which is −√1 − 𝜉2, hence the above becomes

𝑂𝑆max = −
𝑒

−𝜋𝜉

�1−𝜉2

√1 − 𝜉2
�−�1 − 𝜉2�

= 𝑒
−𝜋𝜉

�1−𝜉2

Notice the overshoot do not depend on 𝜔𝑛. It only depends on damping. There are two
ways to change damping. Either change the system itself, or add a controller to compensate.

Second main property of second order system is resonance. This arises in the frequency
context. When the frequency the system is operating at is close to the natural frequency of
the system. We are now interested in �𝐺 �𝑗𝜔�� vs. 𝜔. We will call the resonance frequency

𝜔𝑟 and �𝐺 �𝑗𝜔𝑟�� = 𝑀𝑟. From

𝐺 (𝑠) =
𝜔2
𝑛

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛

�𝐺 �𝑗𝜔�� =
𝜔2
𝑛

��𝜔
2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2

To find where this is maximum,
𝑑
𝑑𝜔

�𝐺 �𝑗𝜔�� = 0

To simplify, we will instead use �𝐺 �𝑗𝜔��
2
to get rid of the square root of the denominator

giving

�𝐺 �𝑗𝜔�� =
𝜔4
𝑛

�𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2

Then the maximum is where the denominator is minimum. Hence
𝑑
𝑑𝜔

��𝜔2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2� = 0

2 �𝜔2
𝑛 − 𝜔2� 2𝜔 + 8𝜉2𝜔2

𝑛𝜔 = 0

𝜔𝑟 = 𝜔𝑛�1 − 2𝜉2

So the above 𝜔𝑟 is where 𝐺�𝑗𝜔� is maximum. To find 𝑀𝑟 we plug-in is 𝜔𝑟 in place of 𝜔 in

�𝐺 �𝑗𝜔��.

Reader:

Show that

𝑀𝑟 = �𝐺 �𝑗𝜔𝑟�� =
1

2𝜉√1 − 𝜉2

Reader answer:

From

�𝐺 �𝑗𝜔�� =
𝜔2
𝑛

��𝜔
2
𝑛 − 𝜔2�

2
+ 4𝜉2𝜔2

𝑛𝜔2

Replacing𝜔 in the above by𝜔𝑟 = 𝜔𝑛√1 − 2𝜉2 and working out the algebra gives �𝐺 �𝑗𝜔 = 𝜔𝑟�� =
1

2𝜉�1−𝜉2
. To verify, here is small Matlab code

syms wn w z positive
assume(z>0&z<1)

wr = wn*sqrt(1-2*z^2);
G_mag = wn^2/sqrt( (wn^2-w^2)^2 + 4*z^2*wn^2*w^2)
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G_mag = simplify(subs(G_mag, w , wr))

1/(2*z*(1 - z^2)^(1/2))
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2.16 Lecture 15. Tuesday Oct 20, 2015, Feedback using
user speci�ed time specs

We have the standard second order system

𝐺 (𝑠) =
𝜔2
𝑛

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛

The magnitude of the frequency response, for 0 < 𝜁 < 1 would look something like

1

2ζ
√

1−ζ2

ωn
√

1− 2ζ2
ω

|G(jω)|

ωr

As 𝜁 becomes smaller (system less damped) then at resonance, the amplitude of the steady
state response will increase, since 𝑀𝑟 = �𝐺 �𝑗𝜔𝑟�� =

1

2𝜉�1−𝜉2

Second order system typical concerns are

1. Overshoot

2. Resonance

3. rise time 𝑡𝑟 which is the time for the response to go (first time) from 10% to 90% of
its steady state final value.

4. Settling time 𝑡𝑠, which is the time for the response to reach and stay within certain
band/range around the final value. Typically within 2% of the final value (steady
state).

What to do when these requirements (some or all) do not meet our requirements? We add
a controller and use feedback. Today we will talk about adding a controller (pure gain 𝑘)
and feedback to address the problem of designing to meet the requirement of specification
made on amount of overshoot while keeping the final steady state value within some
acceptable limit.

Lets take the open loop 𝐺 (𝑠) and say we have 𝜁 = 0.01, then the overshoot

𝑦max = 1 + 𝑂𝑆max

= 1 + 𝑒
−𝜋𝜁

�1−𝜁2

= 1 + 𝑒
−𝜋(0.01)

�1−(0.01)2

= 1.969 1

This is almost two times the steady state final value which is one in this example. This
is not good (it depends on the application as well). We will now start on the overshoot
design problem. We add feedback and pure gain controller

K G(s) =
ω2

n

s2+2ζωns+ω2
n

Y (s)
R(s)+

−

We will create the user specs. We want 𝑦𝑛𝑒𝑤max ≤ 𝛾. For example, 𝛾 = 1.2. Remember that
when adding controller 𝑘 and using feedback, the final value will no longer be one. Since
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with 𝑘 present, 𝑦𝑛𝑒𝑤𝑠𝑠 will no longer be one (as mentioned above), so we now need another
specification which says by how much the new steady state response can deviate from the
original steady state response (which is one in this example). So we write

�𝑦𝑛𝑒𝑤𝑠𝑠 − 𝑦𝑠𝑠� ≤ 𝜀

Or, since 𝑦𝑠𝑠 = 1 (for this example only, since the input is step), then the above becomes

�𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀

For example, if 𝜀 = 0.1, then the above says that the new steady state response (final value)
should remain within 10% of the steady state response before adding the feedback and the
controller.

1

ε
new steady state

original state state

So now we have two specifications to meet by using feedback with the controller in place.
We need to see if we can find 𝑘 which meets both the above design requirements. Again,
the design requirements are

1. 𝑦𝑛𝑒𝑤max ≤ 𝛾

2. �𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀

Once we add the feedback and the controller, we obtain a closed loop transfer function

𝑇 (𝑠) =
𝐾𝐺 (𝑠)

1 + 𝐾𝐺 (𝑠)

=
𝐾 𝜔2

𝑛
𝑠2+2𝜉𝜔𝑛𝑠+𝜔2𝑛

1 + 𝐾𝜔2𝑛

𝑠2+2𝜉𝜔𝑛𝑠+𝜔2𝑛

=
𝐾𝜔2

𝑛
𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2

𝑛 (1 + 𝐾)
(1)

So the new 𝑇 (𝑠) has di�erent natural frequency, given by (will call �̄�𝑛, �̄� the new 𝜔𝑛 and
the new 𝜁 ).

�̄�2
𝑛 = 𝜔2

𝑛 (1 + 𝐾)

or

�̄�𝑛 = 𝜔𝑛�(1 + 𝐾) (2)

Re-scalling (1) gives

𝑇 (𝑠) =
𝐾𝜔2

𝑛
�̄�2𝑛
�̄�2
𝑛

𝑠2 + 2𝜉𝜔𝑛
�̄��̄�𝑛

�̄��̄�𝑛𝑠 + �̄�2
𝑛

We want 𝜉𝜔𝑛
�̄��̄�𝑛

= 1 to obtain the same form of the standard second order system. Hence,
using (2)

𝜉𝜔𝑛
�̄��̄�𝑛

= 1

𝜉𝜔𝑛

�̄� �𝜔𝑛√(1 + 𝐾)�
= 1 (2.1)

𝜉
�̄�√(1 + 𝐾)

= 1

�̄� =
𝜉

√(1 + 𝐾)
(3)

And we call 𝐾𝜔2
𝑛

�̄�2𝑛
as Δ which is scaling term. Hence

Δ =
𝐾𝜔2

𝑛
𝜔2
𝑛 (1 + 𝐾)

=
𝐾

1 + 𝐾
(4)
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Therefore, 𝑇 (𝑠) can now be written in standard second order system as

𝑇 (𝑠) = �
𝐾

1 + 𝐾�
�̄�2
𝑛

𝑠2 + 2�̄��̄�𝑛𝑠 + �̄�2
𝑛

Where �̄� is given by (3) and �̄�𝑛 is given by (2). Summary is below before we go to next
stage and design for 𝐾

𝑇 (𝑠) = �
𝐾

1 + 𝐾�
�̄�2
𝑛

𝑠2 + 2�̄��̄�𝑛𝑠 + �̄�2
𝑛

�̄� =
𝜉

√(1 + 𝐾)
�̄�𝑛 = 𝜔𝑛�(1 + 𝐾)

Now we find to find 𝐾 which meets 𝑦𝑛𝑒𝑤max ≤ 𝛾 and �𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀 at the same time. We start
𝑦𝑛𝑒𝑤max ≤ 𝛾. Since we know that

𝑦𝑛𝑒𝑤max = 1 + 𝑒
−𝜋�̄�

�1−�̄�2

Then, since system is linear, then 𝑦𝑛𝑒𝑤max is just just the constant � 𝐾
1+𝐾

� times the above, or

𝑦𝑛𝑒𝑤max = �
𝐾

1 + 𝐾�

⎛
⎜⎜⎜⎜⎝1 + 𝑒

−𝜋�̄�

�1−�̄�2

⎞
⎟⎟⎟⎟⎠

So our requirement becomes

𝐾
1 + 𝐾

⎛
⎜⎜⎜⎜⎝1 + 𝑒

−𝜋�̄�

�1−�̄�2

⎞
⎟⎟⎟⎟⎠ ≤ 𝛾

𝑒
−𝜋�̄�

�1−�̄�2 ≤ 𝛾
1 + 𝐾
𝐾

− 1

≤
𝛾 (1 + 𝐾) − 𝐾

𝐾
Taking natural logs gives

−𝜋�̄�

√1 − �̄�2
≤ ln �

𝛾 (1 + 𝐾) − 𝐾
𝐾 �

By multiplying both sides by −1, this will change the inequality sign from ≤ to ≥ and the
above becomes

𝜋�̄�

√1 − �̄�2
≥ − ln �

𝛾 (1 + 𝐾) − 𝐾
𝐾 �

𝜋�̄�

√1 − �̄�2
≥ ln �

𝐾
𝛾 (1 + 𝐾) − 𝐾�

Moving all terms to one sides gives

1 ≥ ln �
𝐾

𝛾 (1 + 𝐾) − 𝐾�
√1 − �̄�2

𝜋�̄�

Or, same as above

ln �
𝐾

𝛾 (1 + 𝐾) − 𝐾�
√1 − �̄�2

𝜋�̄�
≤ 1 (5)

The above complete the specification for 𝑦𝑛𝑒𝑤max ≤ 𝛾. We now work on the second specification
�𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀. Since the new system is scaled by 𝐾

1+𝐾 , then 𝑦
𝑛𝑒𝑤
𝑠𝑠 = 𝐾

1+𝐾𝑦𝑠𝑠 but 𝑦𝑠𝑠 = 1, then
𝑦𝑛𝑒𝑤𝑠𝑠 = 𝐾

1+𝐾 . Therefore, this requirement says

�
𝐾

1 + 𝐾
− 1� ≤ 𝜀
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Since 𝐾
1+𝐾 < 1 then �

𝐾
1+𝐾 − 1� = 1 −

𝐾
1+𝐾 and the above becomes

1 −
𝐾

1 + 𝐾
≤ 𝜀

(1 + 𝐾) − 𝐾
1 + 𝐾

≤ 𝜀

1
1 + 𝐾

≤ 𝜀

Therefore we now have two specifications ready for design. They are

1. (A) 𝐹 (𝐾) = ln � 𝐾
𝛾(1+𝐾)−𝐾

� �1−�̄�2

𝜋�̄� ≤ 1 which comes from 𝑦𝑛𝑒𝑤max ≤ 𝛾

2. (B) 1
1+𝐾 ≤ 𝜀 which comes from �𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀

We now start the design for finding 𝐾. Suppose that user specification is that 𝜀 = 0.1 and
𝛾 = 1.2. Assume also that 𝜁 = 0.1. We start with (𝐵) above1.

1
1 + 𝐾

≤ 𝜀

1
1 + 𝐾

≤ 0.1

1 + 𝐾 ≥ 10
𝐾 ≥ 9

We now work on (𝐴). Recall that �̄� = 𝜉

√(1+𝐾)
= 0.1

√(1+𝐾)
, hence

ln �
𝐾

𝛾 (1 + 𝐾) − 𝐾�
√1 − �̄�2

𝜋�̄�
≤ 1

ln �
𝐾

1.2 (1 + 𝐾) − 𝐾�
�
1 − (0.1)2

(1+𝐾)

𝜋 0.1

√(1+𝐾)

≤ 1

ln �
𝐾

0.2𝐾 + 1.2�
1

0.1𝜋�
(1 + 𝐾) − (0.1)2 ≤ 1

ln �
𝐾

0.2𝐾 + 1.2�
10
𝜋 √

𝐾 + 0.99 ≤ 1

Reader: Plot 𝐹 (𝐾) = 10
𝜋 √𝐾 + 0.99 ln � 𝐾

0.2𝐾+1.2
�

Here is a plot of 𝐹 (𝐾) above

f[k_] := Log[k/(0.2 k + 1.2)] 10/Pi Sqrt[k + 0.99]
Plot[{1, f[k]}, {k, .3, 3}, Frame -> True, GridLines -> Automatic,
GridLinesStyle -> LightGray,
FrameLabel -> {{"F(k)", None}, {k, "Value of F(k) as k changes"}}]

Out[364]=

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

0

2

k

F
(k
)

Value of F(k) as k changes

We see from the above, that for 𝐹 (𝐾) ≤ 1 the largest 𝐾 is around 𝐾 = 1.9.

Reduce[f[k] <= 1 && k > 0, k, Reals]
0 < k <= 1.90086

But our requirement for �𝑦𝑛𝑒𝑤𝑠𝑠 − 1� ≤ 𝜀 said we needed 𝐾 ≥ 9. This means we are not able to
meet user specifications to find 𝐾 which satisfies both A and B at the same time.

1Note that 𝐾 < −1 is also a solution, but we are looking for positive gain. Also 𝐾 < −1 do not work with
the second constraint below.
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Reader: How much does the 𝛾 specs has to be relaxed so that we can find 𝐾 with 𝜀 = 0.1
kept the same as above?

Reader: How much does the 𝜀 specs has to be relaxed so that we can find 𝐾 with 𝛾 = 1.2
kept the same as above?

Reader: With 𝜁 = 0.1, find the region in the �𝜀, 𝛾� space for which a spec meeting 𝐾 exist.
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2.17 Lecture 16. Thursday Oct 22, 2015, Routh stability

Today lecture is on stability and how to use Routh table to check for stability. We will use
BIBO stability. BIBO stable system is one which has bounded output for all time, when the
input is also bounded for all time. Analytically, a system can be determined if it is stable
from the convolution definition of system response given by

𝑦 (𝑡) = �
𝑡

0
𝑟 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏 (1)

Where 𝑟 (𝑡) is the input, and 𝑔 (𝑡) is the impulse response of the system. For bounded input,
which means |𝑟 (𝑡)| ≤ 𝐵 where 𝐵 is some constant that do not depend on time, the output
𝑦 (𝑡) magnitude can be now found from (1) as follows

�𝑦 (𝑡)� = ��
𝑡

0
𝑟 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏�

≤ �
𝑡

0
�𝑟 (𝑡 − 𝜏) 𝑔 (𝜏)� 𝑑𝜏

= �
𝑡

0
|𝑟 (𝑡 − 𝜏)| �𝑔 (𝜏)� 𝑑𝜏

≤ 𝐵�
𝑡

0
�𝑔 (𝜏)� 𝑑𝜏

Therefore, for �𝑦 (𝑡)� to be bounded, which means �𝑦 (𝑡)� ≤ 𝐶 where 𝐶 is some constant, then

we need ∫
𝑡

0
�𝑔 (𝜏)� 𝑑𝜏 ≤ ∞. This means that a system is BIBO is ∫

∞

0
�𝑔 (𝑡)� 𝑑𝑡 ≤ ∞ where 𝑔 (𝑡)

is the impulse response of the system. The following are examples how to use the above
to determine BIBO stability.

Example: Given 𝐺 (𝑠) = 1
𝑠−1 check if it is BIBO stable. The impulse response is 𝑔 (𝑡) = 𝑒𝑡.

Hence ∫
∞

0
�𝑒𝑡� 𝑑𝑡 = ∫

∞

0
𝑒𝑡𝑑𝑡 = 𝑒𝑡�∞

0
= ∞ so this is not BIBO stable.

We can also see that this is not stable, since it has one pole in the RHS.

Example: Given 𝐺 (𝑠) = 1
𝑠+1 check if it is BIBO stable. The impulse response is 𝑔 (𝑡) = 𝑒−𝑡.

Hence ∫
∞

0
�𝑒−𝑡� 𝑑𝑡 = ∫

∞

0
𝑒=𝑡𝑑𝑡 = −𝑒−𝑡�∞

0
= 1 so this is BIBO stable.

We can also see that this is stable since it has no poles in the RHS.

Therefore, as long as a system has no poles in the RHS, then it is BIBO stable. One way
to check if there are poles in the RHS and how many there are, without actually solving
for the roots or without doing the above integration, is to use Routh-Hurwitz table. We
will look at three cases. When the first column in the table has no zeros (classical case),
and when the first column has a zero, and when a whole row in the table has zeros, and
see how to handle each case. We will do this using three examples of each case.

Example 1: Given 𝐺 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) where 𝐷 (𝑠) = 3𝑠

4 + 10𝑠3 + 5𝑠2 + 5𝑠 + 2. We set up Routh table
as follows

𝑠4 3 5 2
𝑠3 10 5
𝑠2 3.5 2
𝑠1 −5

7 0
𝑠0 2 0

Looking at the first numerical column (i.e. second column in the table above), we see there
are two sign changes. This means there are 2 poles in the RHS. Which also means this
system is not BIBO stable.

Reader: Check the roots using Matlab using roots command and verify the above.

Example 2: Given 𝐺 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) where 𝐷 (𝑠) = 4𝑠4 + 10𝑠3 + 5𝑠2 + 12.5𝑠 + 5. We set up Routh

table as follows
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𝑠4 4 5 5
𝑠3 10 12.5
𝑠2 0 5

Since we have zero at the pivot, then we change it with 𝜀 and continue as follows

𝑠4 4 5 5
𝑠3 10 12.5
𝑠2 𝜀 5
𝑠1 12.5 − 50

𝜀
𝑠0 5

We now take the limit as 𝜀 → 0 from above, and see that a sign change between the third
and fourth row and then another sign change from the fourth to the fifth row. So this is
not sable system.

Example 3: Given 𝐺 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) where 𝐷 (𝑠) = 𝑠

6 + 2𝑠5 + 8𝑠4 + 12𝑠3 + 20𝑠2 + 20𝑠2 + 16𝑠 + 16. We
set up Routh table as follows

𝑠6 1 8 20 16
𝑠5 2 12 16
𝑠4 2 12 16
𝑠3 0 0

Since we have row of zeros. To handle this, we take the polynomial from the row above,
which is 𝐴 (𝑠) = 2𝑠4 + 12𝑠2 + 16 and take its derivative, giving 𝐴′ (𝑠) = 8𝑠3 + 24𝑠, and use this
to replace the row of zeros, so we end up with

𝑠6 1 8 20 16
𝑠5 2 12 16
𝑠4 2 12 16
𝑠3 8 24

And now we continue as before

𝑠6 1 8 20 16
𝑠5 2 12 16
𝑠4 2 12 16
𝑠3 8 24
𝑠2 6 16
𝑠 8

3
𝑠0 16

So there is no sign change, so this is stable.

Another example. Given this system

G

G

R1(s)

R2(s)

+

−

+

+

+
+

Y1(s)

Y2(s)

The above is called master/slave controller design. Where 𝐺 = 𝐾
(𝑠+1)(𝑠+2) and we want to find

if the transfer function from any input to any output is BIBO stable or not. We use Mason
rule to obtain the denominator, which is Mason Δ. The signal graph is
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1 1

1

1

1

1

1

−1

G

G

R1

R2

Y1

Y2

Mason delta is

Δ = 1 − �−𝐺 + 𝐺 + 𝐺2� + (−𝐺𝐺) = 1 − 2𝐺2

Hence for 𝐺 = 𝐾
(𝑠+1)(𝑠+2) then Δ = 𝑠

4 +6𝑠3 + 13𝑠2 + 12𝑠 + 4 − 2𝑘2 and now we setup Routh table

𝑠4 1 13 4 − 2𝑘2

𝑠3 6 12
𝑠2 11 4 − 2𝑘2

𝑠1 108+12𝑘2

11
𝑠0 4 − 2𝑘2

Therefore for no sign change we need 108+12𝑘2

11 > 0 which is always true, and we want also

4 − 2𝑘2 > 0 or |𝑘| < √2 as the condition for stability.

Final example. For 𝐺 (𝑠) = 1
𝑠4+3𝑠3+𝑘2𝑠2+4𝑠+𝑘1

find conditions for stability.

𝑠4 1 𝑘2 𝑘1
𝑠3 3 4
𝑠2 3𝑘2−4

3 𝑘1

𝑠1
4� 3𝑘2−43 �−3𝑘1

3𝑘2−4
3

𝑠0 𝑘1

The condition is 3𝑘2−3
3 > 0 or 𝑘2 >

4
3 and 𝑘1 > 0. We see the region of stability to be the

following

k2

k1

4
3

Region of allowed k1, k2

Reader For 𝐺 (𝑠) = 1
𝑠2(𝑠+1)(𝑠+2) and 𝐻 (𝑠) = 2𝑠 + 𝑘 find 𝑘 for stable system in the following

G(s)

H(s)

U(s) Y (s)
+

−
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2.18 Lecture 17, Tuesday Oct 27, 2015, Starting on root
locus

Suppose we want to know how does the controller a�ect pole locations? Routh table just
tells us if the system is stable or not and how many poles are in the RHS, but it does not tell
us how the poles behave as the gain 𝐾 changes. Suppose our controller 𝐻 (𝑠) is a function
of (𝐾1, 𝐾2,⋯) where we the designer set the values of these 𝐾𝑖 for example, selecting 𝐾1 for
overshoot specification as we did before. Now we will talk about how to select 𝐾 for other
purpose, which is pole locations of the closed loop system. Closed loop pole location gives
us many information about the system, and pole locations are informative about behavior
of closed loop response. For example

××

×

×

−σ

imaginary

real axis

The above diagram tell us about the speed of the response or speed of decay. 𝑒−𝜎𝑡 is
indicator of speed to decay of response. If we have large 𝜎 then the system will go to its
final value (steady state much faster). There is also what is called the damping cone. This
is the cone where the poles lie inside.

××

×

×

imaginary

real axisθ

damping cone

The angle 𝜃 above is informative about damping. Large damping implies small angle 𝜃.
Suppose we have combination of needs: speed of decay of response and low damping,
hence we have region where we want the poles be located.

××

×

×

imaginary

real axisθ
σ

×

×
× ×

region of poles

So many performance specs (but not all) can be found by location of poles. Suppose that
the open loop pole locations are not desired, and we want to move them to desired region.
We use feedback with controller 𝐾 such that these locations are moved to the desired
location in the closed loop poles. Root locus is such method to allow us to do this in
systematic way (computer aided design) rather by trial and error. The classical setup for
root locus design is this

K G(s)H(s)
R(s)

Y (s)

Suppose we designed controller𝐻(𝑠) and are not happy with the pole locations. i.e. 𝐺 (𝑠)𝐻 (𝑠)
are given. We need to select 𝐾 ≥ 0 to move the poles to desired location. We view 𝐺 (𝑠)𝐻 (𝑠)
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above as the open loop system.

Root locus is the locus of the closed loop in the complex plane obtained by changing 𝐾
from 0 to ∞.

A common sense approach to use root locus. Example:

K
1

s(s+2)

R(s)
Y (s)

+

−

The open loop poles are at 𝑠 = 0 and 𝑠 = −2. The closed loop is 𝑇 (𝑠) = 𝐾
𝑠(𝑠+2)+𝑘 =

𝐾
𝑠2+2𝑠+𝐾

and the pole location are 𝑠 = −1 ±√1 − 𝑘. Now we increase 𝐾 from 0 and see how the locus
of the poles change. We get this

−2 0

k =∞

k = 0
k = 0

So for large 𝑘 the poles will move outside the cone of interest.

Reader: How large can 𝐾 be to satisfy damping constraint of 𝛼 = 450?

−2 0

k =∞

k = 0
k = 0

α = 450

Formal root locus. Will develop 9 lemmas. Each lemma gives more information about the
locus. We begin with 𝐺 (𝑠)𝐻 (𝑠) which is the open loop. Write it as 𝑁(𝑠)

𝐷(𝑠) where it is proper

(degree of numerator (𝑚) ≤ degree of denominator (𝑛)). Closed loop is 𝑇 (𝑠) = 𝐾𝐺𝐻
1+𝐾𝐺𝐻 . To

find closed loop poles, we write

1 + 𝐾𝐺𝐻 = 0

1 + 𝐾
𝑁 (𝑠)
𝐷 (𝑠)

= 0

𝐷 (𝑠) + 𝐾𝑁 (𝑠) = 0

Observer that, for 𝐾 ≠ 0, the above have 𝑛 poles.

Lemma 1 root locus has 𝑛 branches for 𝐾 > 0.

Root locus (R.L.) geometry: Central idea. A point 𝑠 is on R.L. if 1 + 𝐾𝐺𝐻 = 0 for some
𝐾 value. 𝐺𝐻 = − 1

𝐾 . Hence the phase of 𝐺𝐻 is 𝜋. And the corresponding magnitude of 𝐾
is � 1

𝐺𝐻 �. So to decide of point 𝑠 is on the R.L. quickly, look at the angle. For example, for
open loop poles 𝑠 = −2 and 𝑠 = 0, and suppose to want to know if some point 𝑠∗ is on the
R.L., then we draw this
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−2 0

s∗

θ1θ2

Then

∢𝐺𝐻 = −𝜃1 − 𝜃2 ≠ 𝜋

Then 𝑠∗ is not on the root locus path.
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2.19 Lecture 18, Thursday Oct 29, 2015, More root
locus

Reminder: No lecture Tuesday Nov 3. Makeup lecture on Wed. Nov 18 at 6 pm.

Will continue root locus. We are using the classical setup

K G(s)H(s)
R(s)

Y (s)

We want to study the behavior of closed loop poles as 𝐾 changes from zero to infinity. There
is a geometric condition which is the driver behind root locus. It is the angle condition.
This condition says that a point 𝑠∗ is on R.L. i� phase of open loop 𝐺 (𝑠)𝐻 (𝑠) evaluated at
𝑠∗ is 𝜋

∢ 𝐺 (𝑠)𝐻 (𝑠)|𝑠=𝑠∗ = 𝜋

When the point 𝑠∗ is on the R.L., then the corresponding gain is (notice, this is valid only
after we decided the point 𝑠∗ is on R.L.)

𝑘 =
1

|𝐺 (𝑠)𝐻 (𝑠)|𝑠=𝑠∗
Let us now look at 𝐺 (𝑠)𝐻 (𝑠) with two zeros and three poles.

𝐺 (𝑠)𝐻 (𝑠) =
(𝑠 − 𝑧1) (𝑠 − 𝑧2)

�𝑠 − 𝑝1� �𝑠 − 𝑝2� �𝑠 − 𝑝3�

We want to know if point 𝑠∗ is on R.L.

×

×

×◦◦
p3

p2

z1

p1

z2

s∗

How to know if 𝑠∗ on R.L.? We check the angle ∢ 𝐺 (𝑠)𝐻 (𝑠)|𝑠=𝑠∗ and see if it 𝜋. We do this
graphically, like this

×

×

×◦◦

s∗

θ1θ2

ψ1

ψ2

ψ3

We look at the angle each pole and zero makes with the point 𝑠∗, then

∢ 𝐺 (𝑠)𝐻 (𝑠)|𝑠=𝑠∗ = (𝜃1 + 𝜃2) − �𝜓1 + 𝜓2 + 𝜓3�

i.e. we add the zero angles, and subtract the poles angles. Angle is always measured counter
clock wise from the horizontal line as shown. If the above adds to 𝜋 then the point 𝑠∗ is
on R.L. The gain 𝐾 in this case is

𝐾 =
1

|𝐺 (𝑠)𝐻 (𝑠)|
=

1
|(𝑠−𝑧1)(𝑠−𝑧2)|

��𝑠−𝑝1��𝑠−𝑝2��𝑠−𝑝3��

=
��𝑠 − 𝑝1� �𝑠 − 𝑝2� �𝑠 − 𝑝3��

|(𝑠 − 𝑧1) (𝑠 − 𝑧2)|
=
𝐷1𝐷2𝐷3
𝑑1𝑑2

Where 𝐷𝑖 is the size of the vector from each pole 𝑝𝑖 to 𝑠∗ and 𝑑 is the length of the vector
from each zero 𝑧𝑖 to 𝑠∗
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×

×

×◦◦

s∗

θ1θ2

ψ1

ψ2

ψ3

|D1|

|D2|
|D3|

|d1||d2|

Back to the 9 lemmas. When used together, enable us to draw R.L. for any system.

Lemma 1: R.L. has 𝑛 branches, where 𝑛 is number of open loop 𝐺𝐻 poles.

Lemma 2: We talk about very small 𝐾 and very large 𝐾. When 𝐾 is very small, R.L. is
at the open loop poles. This means R.L. always starts from the open loop pole locations.
When 𝐾 is very large, R.L. is at open loop zeros. For example 𝐺𝐻 = (𝑠+1)(𝑠−2)

(𝑠+4)5
, the open

loop has poles at 𝑠 = −4, this is where R.L. starts from. Since it has zero at 𝑠 = −1 and zero
at 𝑠 = 2, then this is where 2 of the branches will end up at. This also means for large gain
𝐾 the closed loop is not stable, since it ends up at 𝑠 = 2.

Since 𝑛 = 5 in the above, so we have 5 branches. Two of these end up at 𝑠 = −1 and 𝑠 = 2.
What about the other three? Those will end up infinity. And we need to check if there will
be stable or not.

Lemma 3 (called the number criterion) Which real axis points are on the R.L. ? Since
complex poles lead to angle cancellations when point 𝑠∗ being checked for is on the real
axis, then only poles and zeros of the open loop decide if a point 𝑠∗ is on R.L. or not. A
real axis point 𝑠∗ is on R.L. i� the number of real axis poles and zeros (taking multiplicity
into account) found as we travel towards 𝑠∗ from the right side is odd.

Example: 𝐺𝐻 =
(𝑠+2)(𝑠−5)2�𝑠2+8𝑠+20�

(𝑠+1)2�𝑠3−1��𝑠2+𝑠+1�
. R.L. has 7 branches since 𝑛 = 7 from lemma 1. From

lemma 2, we know R.L. starts from open loop poles and end up at open loop zeros. Now
we find which part of the real axis are on R.L. We use lemma 3. We just need to mark the
open loop pole and zeros that are on the real axis for this. All complex poles and zero
have no e�ect. Hence the diagram is

5

zero, multiplicity 2

×
1

×
−1

pole, multiplicity 2

−2−4
Not on R.L.

Not on R.L. (even)

On R.L. (odd)

Not on R.L. (even)

On R.L. (odd)

This system is unstable at high gain 𝐾 and also unstable to low gain 𝐾. There are 2 branches
that do not end up at zeros since 𝑛 = 7 and 𝑚 = 5. Next we need to check what happens
when 𝑘 → ∞ after counting for the open loop zeros, since we know what happens in this
case. How does phase behave when 𝑘 → ∞? When 𝐾 is very large, we can approximate

𝐺𝐻 = 𝑁(𝑠)
𝐷(𝑠) ≈

𝑅1𝑆𝑚

𝑅2𝑆𝑛
= 𝑅1𝑒𝑗𝑚𝜃

𝑅1𝑒𝑗𝑛𝜃
= 𝐴𝑒𝑗(𝑚−𝑛)𝜃. Therefore we need (𝑚 − 𝑛) 𝜃 = 𝜋 for a point to be on

R.L. Hence

𝜃 =
𝜋

𝑚 − 𝑛
+𝑀(2𝜋)

From some integer 𝑀. Lemma 4 will be discussed more next time.
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2.20 Lecture 19, Nov. 3, 2015. No lecture

2.21 Lecture 20, Nov. 5, 2015. Roots Locus completed

Reminder: Exam 2 on Nov 12 Thursday. Learn relation between damping ratio 𝜁 and
damping cone. Exam will cover up to root locus. Will finish root locus today. Quick
reminder of lemmas covered so far

1. Mark open pole loops (where R.L. starts) and open loop zeros.

2. Tells us that R.L. starts at open loop poles and ends up with open loop zeros. Some
branches left will end up at ±∞

3. Tells us what happens on the real axis. The segments that R.L. will travel over on
the real axis. Called the "odd" lemma

4. Tell us how to generate the asymptotes of R.L. using 𝜃 = 1800±𝑘360
𝑛−𝑚 . Example, for

𝑛 = 6,𝑚 = 3, (where 𝑛,𝑚 are number of open loop poles and zeros respectively) then
𝜃 = 600 ± 𝑘1200 for 𝑘 = 0, 1,⋯

Reader: With 𝑛 − 𝑚 > 2 argue that closed loop is unstable. (answer: with 𝑛 − 𝑚 > 2, an
asymptote will be moving to the RHS. Hence one of the branches will eventually move to
the RHS for large gain, which means unstable).

Lemma 5: This lemma for finding from which point on the real axis the asymptotes will
start. The centroid is given by

𝜎𝑐 =
�𝑝𝑜𝑙𝑒𝑠 −�𝑧𝑒𝑟𝑜𝑠

𝑛 − 𝑚
The above is for poles and zeros of the open loop, not the closed loop!. For example,

for 𝐺𝐻 = (𝑠+2)2

(𝑠+1)(𝑠+6)(𝑠+8)4
then 𝜎𝑐 = −8.75 and the angles at 𝜃 = 1800±𝑘360

4 = 450 ± 900. So the
asymptotes are

450
900

450
900

900

Example: 𝐺𝐻 = 1
𝑠(𝑠+1)(𝑠+2) . Lemma 1: 𝑛 = 3,𝑚 = 0. Lemma 2: Start from open loop poles.

Lemma 3: Real axis, use the odd criteria. Lemma 4: Find the asymptotes and the centroid.
𝜎𝑐 =

0−1−2
3 = −1. 𝜃 = 180±𝑘360

3 = 600 ± 𝑘120. The result is this root locus

600
1200

×××
−2 −1

We still need to find where the break away points are and where root locus intersects the
imaginary axis at.

Reader: Without using root locus, find the gain 𝐾 what makes the closed loop unstable.
(answer: use Routh table).
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Lemma 6: This lemma tells us where the break points are on the real axis. Solve 𝑑𝐾
𝑑𝑠 = 0.

Note not all solution points will be valid. Using the above example 𝐺𝐻 = 1
𝑠(𝑠+1)(𝑠+2) , then

the characteristic polynomial is

𝐾 + 𝐺𝐻 = 0
(𝑠 + 1) (𝑠 + 2) + 𝐾 = 0

𝐾 = −𝑠3 − 3𝑠2 − 2𝑠
𝑑𝐾
𝑑𝑠

= −3𝑠2 − 6𝑠 − 2

Hence we solve −3𝑠2 − 6𝑠 − 2 = 0, and find 𝑠 = −1. 577 and 𝑠 = −0.423. But 𝑠 = −1. 577 is not
on root locus (from above) so only 𝑠 = −0.423 is on root locus, and that is the breakaway
point.

Lemma 7 Departure angle. R.L. depart each pole. We want to find the departure angles.
Use

�∢𝑧𝑖 −�∢𝑝𝑖 = 1800 ± 𝑘3600 𝑘 = 0, 1,⋯

Where �∢𝑧𝑖 is sum of all angles from all zeros to the pole in question (the one we want
to find the departure angle from) and �∢𝑝𝑖 is the sum of all the angles from each pole to
the pole in question. In the above, the left side will contain only one unknown, which is 𝜃,
the angle of departure of that one pole. Do the above for each pole at a time.

Lemma 8 Apply the same method as lemma 7, but now do it for each zero at a time to
find the arrival angles at each zero.

Lemma 9 Find where root locus crosses the imaginary axis. Use Routh table for this.

Example: 𝐺𝐻 = 𝑠2+4𝑠+8
𝑠2(𝑠+4) Reader: reproduce the solution below

-8 -7 -6 -5 -4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Root Locus

Real Axis (seconds-1)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

on
ds

-1
)

Reader: Do this problem sent to us by email also. Find root locus for 𝐺 = 𝐾
𝑠(𝑠+4)�𝑠2+4𝑠+20�

See my HW6 for more detailed root locus steps.
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2.21.1 Summary of root locus

1. Mark on plot all open loop poles and open zero locations.

2. R.L. starts from open loop poles and ends up at open loop zeros. Some will end up
at ±∞ when 𝑛 − 𝑚 > 0 (which is almost always the case)

3. Mark on real line where R.L. exist. Use the odd criteria.

4. Find centroid of asymptotes 𝜎 =
�𝑝𝑖−�𝑧𝑖

𝑛−𝑚 . i.e. sum of all poles minus sum of all
zeros. 𝑛 is number of poles, and 𝑚 is number of zeros (these are for the open loop,
not the closed loop!)

5. Find asymptotes angles. 𝜃 = 1800±3600

𝑛−𝑚

6. Find breakaway points. From 1 + 𝐾𝐺 = 0 find 𝑘 = 𝑓 (𝑠) and solve 𝑑𝐾
𝑑𝑠 = 0 for 𝑠. These

are locations where the breakaway and break-in points on root locus will be.

7. Find departure angles for each pole (the complex ones, the ones on real line will
have 1800) and arrival angles for the zeros (also complex ones). This can be done
using �∢𝑧𝑖 −�∢𝑝𝑖− = 1800 ± 3600𝑘, where in the LHS, we have one unknown angle
each time. This is the angle of either the departure of arrival. Then solve for it. The
above is sum of angles that all other poles and zeros make with the point in question.
See HW 6 for details.

8. Find where root locus crosses the imaginary line. Find 𝐾 which makes the closed
loop unstable. Then solve for the polynomial above that row in Routh table for this 𝐾
and solve for 𝑠. This will be where it crosses the imaginary line. See HW6 for details.
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2.22 Lecture 21, Nov 10 2015, Extension Root Locus

Review of what will be on midterm on Thursday

1. Not cumulative

2. Mason rule

3. Benefits of feedback. Nonlinear block. Can’t use Mason. We solve graphically. Ask
what is the new relation, given the old relation. Dead zone is lessened. Saturation
moved further away. We can make the system closer to linear. Second benefit is
sensitivity. 𝑆𝑇𝛼 =

𝛼
𝑇
𝑑𝑇
𝑑𝑡 . Sensitivity is function of frequency, defined as % change in 𝑇

(transfer function) per unit % change in parameter 𝛼. Evaluate at nominal 𝛼, then
switch to 𝑠 = 𝑗𝜔 and look at magnitude of 𝑆𝑇𝛼.

4. Disturbance rejection. Avoid inversion, use low pass filter.

5. Second order system. 𝜔2
𝑛

𝑠2+2𝜁𝜔𝑛𝑠+𝜔2𝑛
. Benefits of second order system: Well understood.

Can model many systems as second order. We talked about overshoot 𝑒
−𝜋𝜁

�1−𝜁2 . Rise
time, resonance frequency, and location of resonance. Talked about damping cone.

6. Stability: Using Routh table. If polynomial has one sign change in its coe�cient,
then it is unstable right away, no need to even use Routh table. How to handle one
zero in first column. How to handle a row of zeros. We can use Routh table to find
𝐾 which makes the system unstable. Also we talked about shifted polynomial. One
where we want all poles below some 𝑝.

7. Last topic was root locus. Ability to generate simple R.L. If 𝑛 − 𝑚 > 2 then system is
unstable at large gain even if all poles are in the LHS.

Today will start with extended root locus. If the open loop transfer function has a parameter,
say 𝜃 and we are not confident of its value, we want to know what happens as 𝜃 increases.
But we can not use standard root locus, as 𝜃 is inside the 𝐺𝐻 itself and not a multiplier
like 𝐾 before. We need to convert it the transfer function to be in the form 1 + 𝜃�̃� where �̃�
is derived from original open loop 𝐺 and is called the Fictitious system model. Here is an
example. Given this original system

s2+2
s4+(5+θ)s3+2s2+(1+θ)s+4

+

−

Warning, we can not use the original root locus 9 lemma’s on the above as it stand. We
have to convert it to Fictitious system model first as follows. The closed loop poles are
obtained from

𝑇 =
𝐺

1 + 𝐺

Hence set the denominator to zero to find the closed loop poles

1 +
𝑠2 + 2

𝑠4 + (5 + 𝜃) 𝑠3 + 2𝑠2 + (1 + 𝜃) 𝑠 + 4 + �𝑠2 + 2�
= 0

Which means

𝑠4 + (5 + 𝜃) 𝑠3 + 2𝑠2 + (1 + 𝜃) 𝑠 + 4 + �𝑠2 + 2� + 𝑠2 + 2 = 0

Now factor out 𝜃 which becomes

1 + 𝜃
𝑠3 + 𝑠

𝑠4 + 5𝑠3 + 3𝑠2 + 𝑠 + 6
= 0

The above is now in the form of 1 + 𝐾�̃� as before, but now �̃� = 𝑠3+𝑠
𝑠4+5𝑠3+3𝑠2+𝑠+6

. Now we can
apply root locus on the above. Example. Consider the following system with uncertain
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pole at −𝑝

10s+11
(s+p)(s+3)

+

−
1

s2+2

H G

We want root locus with respect to 𝑝. Covert to Fictitious system model as above.

1 + 𝐺𝐻 = 0

1 +
1

𝑠2 + 2
10𝑠 + 11

�𝑠 + 𝑝� (𝑠 + 3)
= 0

1 + 𝑝
𝑠3 + 3𝑠2 + 2𝑠 + 6

𝑠4 + 3𝑠3 + 2𝑠2 + 16𝑠 + 11
= 0

Where �̃� = 𝑠3+3𝑠2+2𝑠+6
𝑠4+3𝑠3+2𝑠2+16𝑠+11

. In this form, we can now apply root locus. Using Matlab we
should get this

>> s=tf('s');
>> sys=(s^3+3*s^2+2*s+6)/(s^4+3*s^3+2*s^2+16*s+11);
>> rlocus(sys)
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2.23 Lecture 22, Nov 12 2015, second exam

Exam 2
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2.24 Lecture 23, Nov 17 2015, Started Nyquist

There are two more HWs for the course. The final Exam will emphasis Nyquist and Bode.
The rest of the course will cover Nyquist and Bode. Nyquist is considered the hardest part
of the course. For motivation, we are moving to frequency domain now. So far we have
not worked much in frequency domain. Now it will be the main emphasis. We will develop
tools in the frequency domain. Some of the tools we did was Routh table for stability and
second order system analysis. We did cover some frequency domain when we did noise
attenuation and using low pass filter.

Nyquist method is a view of stability in the frequency domain. Why we care about this.
We already have stability tools? Such as Routh table and Root locus also does tell us
something about stability. Because Nyquist tells us more. Nyquist gives new information
about stability and shows new ways a system can become unstable.

We have Routh table to check for stability. But Routh table assumes the model is perfect.
But what if the model is not certain? What is there is amplifier that has frequency drift?
This is called model imperfection.

The main measures of stability are gain and phase margins. This tells us how tolerant the
model to imperfections. Nyquist is a graphical description of stability, while Routh table
is algebraic. Engineers use Nyquist since it is considered CAS based method.

2.24.1 What is the Nyquist criteria?

We will generate contour in complex plane, look at the contour and say right away if the
system is stable or not. We will generate Γ𝐺𝐻 contour. Γ𝐺𝐻 is directed and closed curve.
We use 𝐺𝐻 which is the open loop transfer function to generate Γ𝐺𝐻 . Then by looking at
Γ𝐺𝐻 we will say if the closed loop is stable or not.

2.24.2 Preliminary example

Suppose we have generated Γ𝐺𝐻 that looks like the following (we will later learn how to
generate Γ𝐺𝐻).

−1

ΓGH

<

=

Now we apply the Nyquist criteria: The closed loop transfer function (we assume we have
unity feedback), is stable, i� the number of net clockwise encirclements of the critical point
−1 on the real axis is equal to the number of unstable RHP poles of the open loop transfer
function (strictly in the RHP). So we need to learn how to count encirclements. For this,
we draw straight line from the point −1 on the real line, outwards. It does not matter which
direction we draw the line. Any one will end up giving the same result. This is due to how
we will do the counting of the encirclements around −1. To show this, the above graph is
redrawn below with 3 lines on it. (but we only need one, any one will do).
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−1

ΓGH

<

=

ray 1

ray 2

ray 3

In the above we have randomly drawn 3 lines (or rays). Now we count the number of times
the straight line cross the Γ𝐺𝐻 graph. Each time it crosses Γ𝐺𝐻 we count the direction of
Γ𝐺𝐻 at that point, if it is clock wise, or anticlock wise. We add one when it is clock wise,
and subtract one when it is counter clock wise. For example, for ray 1 in the above diagram,
we see that there are 2 counter clock wise crossings, and one clock wise crossing. There
for the final result is one counter clock wise crossing. This is the same as saying the result
is −1 clock wise crossing. So think of counter clock wise as negative numbers, and clock
wise as positive numbers and simply add them. If the final number that results from the
above, is the same as the number open open loop poles in the RHP, then the system is
stable.

Reader: The other rays (lines 2 and 3) will give the same final result of one counter clock
net encirclements. Show this.

Example, suppose we have 𝐺𝐻 which has two unstable poles in the RHP such as one with
denominator (𝑠 − 1) �𝑠2 + 𝑠 + 2� (𝑠 − 6), then when we draw Γ𝐺𝐻 and count the encirclements,
and find that the net number of clock wise encirclements is also 2, then we know the closed
loop is stable.

Now that we know how to interpret Γ𝐺𝐻 and how to use it to find if the closed loop is
stable or not, we need to learn how to generate Γ𝐺𝐻. The plan is to become an expert in
generating Γ𝐺𝐻 and also learn how to use it to obtain other stability information from it.
To generate Γ𝐺𝐻, we first generate Γ, which is called the Nyquist contour. Then we map Γ
to Γ𝐺𝐻. But first we need to generate Γ. The first step is to mark all the open loop poles
on the complex plane (we do not need to mark the open loop zeros, but we can do that
as well if we want). The we draw a counter clock wise curve around that incloses all these
poles in the RHP. If there are any open loop poles on the imaginary axis, we draw small
circle around them to bypass them. Here are two examples

×
×

×

Γ

open loop poles

Example of Γ for open loop that
has no poles on the imaginary axis.
Let R → ∞

R

Now we show an example of Γ for the case when the open loop transfer function 𝐺𝐻 has
poles on the imaginary axis.
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×

×

×

Γ

unstable open loop poles

Example of Γ for open loop that
has additional three poles on the
imaginary axis. Let R→ ∞ and let
ε→ 0

R
ε

ε

ε

×

×

×

open loop poles
on imaginery
axis. By pass.
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2.25 Lecture 24, Nov 19 2015, More Nyquist

The plane for today is more Nyquist, as well as next lecture. Then a HW set on Nyquist.
Nyquist is most di�cult subject in this course. When practising, use Matlab to verify the
result.

Quick summary of Nyquist: We are interested in frequency based stability. This will take
us to frequency analysis and Bode plots next.

Now that we learned how to draw Γ, the next step is to learn how to map Γ to Γ𝐺𝐻 since it
is Γ𝐺𝐻 that we will use to count encirclements to determine if the closed loop is stable or
not.

How to map Γ to Γ𝐺𝐻? We take each point on Γ and map it to new curve, which will be
Γ𝐺𝐻.

×

Γ

R
ε

ε

ε

×

×

×

−1

ΓGHMap Γ to ΓGH

Use this to
determine closed
loop stability

Nyquist says that the closed loop is stable i� Γ𝐺𝐻 net clock wise encirclement of −1 is the
same number as the open loop poles that are strictly in the RHS. In the above example,
there is one open loop in the RHS, but we see that Γ𝐺𝐻 encircles −1 two times in clockwise.
Hence this shows that the closed loop is not stable.

2.25.1 Mechanism of Γ𝐺𝐻 generation

First we start with a simple example. Given this system 𝐺 = 𝑠
1−0.2𝑠 , where the open loop is

unstable, and has one pole in the RHS which is 𝑠 = 5.

s
1−0.2s

+

−

R(s)
Y (s)

The closed loop TF is

𝑌
𝑅
=

𝐺
1 + 𝐺

=
𝑠

(1 − 0.2𝑠) + 𝑠

=
𝑠

1 + 0.8𝑠

So the closed loop is stable, since it has no poles in the RHS. So we expect that Γ𝐺𝐻 to
encircle −1 one time only, in clockwise, since that is the number of open loop poles in RHS.
So we start by drawing Γ. And we start to map Γ to Γ𝐺𝐻.
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5

We start always from 𝑠 = 𝑗∞ And go down on 𝑗𝜔 axis of the Γ path. We call this branch 1.
When 𝑠 = 𝑗∞ then 𝑌

𝑅 ≈
𝑠

−0.2𝑠 ≈ −5, this means that on branch 1 on Γ, the starting point will
map to 𝑠 = −5 on the Γ𝐺𝐻 path. So we have this diagram now

5 −5

Γ
ΓGH

segment 1

segment 2

segment 3

starting point

Now we move down the +𝑗𝜔 axes and map segment 1 to Γ𝐺𝐻. At segment 1, where 𝑠 = 𝑗𝜔,
then 𝐺 = 𝑠

1−0.2𝑠 =
𝑗𝜔

1−0.2�𝑗𝜔�
. Now we need to see the real part and imaginary part to be able

to see the mapping to Γ𝐺𝐻. Hence we write

𝐺 =
𝑗𝜔

1 − 0.2 �𝑗𝜔�

=
𝑗𝜔

1 − 0.2 �𝑗𝜔�

1 + 0.2 �𝑗𝜔�

1 + 0.2 �𝑗𝜔�

=
𝑗𝜔 − 0.2𝜔2

1 + 0.04𝜔

Therefore the real part is −0.2𝜔2

1+0.04𝜔 and the imaginary part is 𝜔
1+0.04𝜔 .So starting from large

positive 𝜔 going down the segment one, we see that the real part is negative and the
imaginary part is negative. This means Γ𝐺𝐻 will be somewhere in the second quadrant.
We do not care about the shape of Γ𝐺𝐻 that results from mapping segment one. We just
know so far is starts from −5 and remains in the second quadrant. What is important in
Nyquist, is where Γ𝐺𝐻 crosses the imaginary and real axis, and now its shape in between.
To get the crossing with the real axis, we set the imaginary part of 𝐺𝐻 to zero. And to get
the imaginary axis crossings, we set the real part of 𝐺𝐻 to zero.

To find where Γ𝐺𝐻 crosses the real axis, then from −0.2𝜔2

1+0.04𝜔 = 0 we find 𝜔 = 0. And to find

where Γ𝐺𝐻 crosses the imaginary axis, then from 𝜔
1+0.04𝜔 = 0 we also get 𝜔 = 0. So there

is only one point where Γ𝐺𝐻 crosses the axes, which is the origin. At 𝜔 = 0, we see that
𝐺 = 0, therefore the full segment one now maps to Γ𝐺𝐻 as in the following diagram

5 −5

Γ
ΓGH

segment 1

segment 2

segment 3

starting point

segment one
maps to this

Now we go to segment 2. Along this segment (we are still moving down the imaginary
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axis), along this, the real part of 𝐺𝐻 is negative, and the imaginary part is also negative.
We the mapping is now in the third quadrant of Γ𝐺𝐻. We also know this will be the case
due to symmetry about the real axis. So now Γ𝐺𝐻 will look as the following

5 −5

Γ
ΓGH

segment 1

segment 2

segment 3

starting point

segment one
maps to this

segment 2
maps to this

Now we just need to do segment three. For this segment 𝑠 = Re𝑗𝜃 with 𝑅 becoming very
large and 𝜃 going from −900 to 00 and then to +900 in the Γ path. But since 𝐺 = 𝑠

1−0.2𝑠 then

𝐺 = Re𝑗𝜃

1−0.2Re𝑗𝜃
≈ Re𝑗𝜃

−0.2Re𝑗𝜃
for large 𝑅. Hence 𝐺 ≈ −5 as well for segment three. This means all

of segment three in Γ, maps to the one point 𝑠 = −5 in Γ𝐺𝐻. So the Γ𝐺𝐻 will not change.
Here is the final result

5 −5

Γ
ΓGH

segment 1

segment 2

segment 3

starting point

segment one
maps to this

segment 2
maps to this

segment 3
maps to −5

Now that we have build Γ𝐺𝐻 , we can find the number of net encirclements around −1.
We see that there is one clock wise encirclement. But this is the same as the number of
unstable open loop poles. Therefore the closed loop is stable (as we knew before). But this
shows how to Nyquist to find out. We now do a second example. Let 𝐺𝐻 = 5(1−0.5𝑠)

𝑠(1+0.1𝑠)(1−0.25𝑠) .

Reader: Is the closed loop stable? Use Routh table to find out. The closed loop denominator
is 𝑃 (𝑠) = 0.025𝑠3+0.15𝑠2+0.15𝑠−5 = 0. This is not stable closed loop. Use Nyquist to confirm.
Here is the result using Matlab

s=tf('s');
sys=5*(1-0.5*s)/(s*(1+0.1*s)*(1-0.25*s));
close all;
nyquist1([2.5 -5],[0.025 0.15 -1 0]) %use http://ctms.engin.umich.edu/CTMS/Content/Introduction/Control/Frequency/nyquist1.m
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2.25.2 Nyquist Handouts

2.25.2.1 Nyquist Handout 1

The following is Handout 1 Nyquist.

y a . 00 Die 

(Froro Class) 

consider 

&(s}.H(5) 5(1-0,55) 
S(i + 0,1s) (1-0.25) 

'0 classical on 1 tM f ec dl ba<: k cwn - f i ^ r t ^ O o n . 

At 5=j°° 
<bV \H - -;.55 ^ 0 

- J O 

rationalize 
{jjm 

-d OJ (1 - 0. Iju;) ( I f 0.25jo} ̂  5 (, - 0.5j a) t l ^ ^ J " ) 

.0)^ (I > . 0( CO'') ( I ^ 0^&25 u;"), 
^ ^̂^̂  , : 

a % W a den cm vo fur 0 

deoom 
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Wence 
fie G(a'^)H(a^) 

deo om 

-lencê  GIDO^©^ Re < O an^ X<Y) < o m-eam 

IS lo Q EI ( b h i r d q u a d r a n t ) 

MoU bh&fc khef<Z a r^ no CtXi6 crossir^^s 

Since fie ^ 0 and t 0 . 

0 - So''. >Jouj G H 

ge^"* 
So IGH arc a t l o f v o i t ^ ^^^^S ^""'^ 

7 9 0 ° t o + 9 0 " 
t I 

MB 
Alorg(i)j Pĝ  »5 -tbe C o n j i ^ a + € of ®. So 
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GH 
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^ d p06li>^^ const. 

Mote: Often, a Coooputer ^enera+ec) 

Wvj(^oiSt plot does not sbou; Soch arrc. 
AI50 arcs Oct lO^tnib^ <pfbeO O^ir 5ln«j/oJA. 

Houaevtr̂  cue 5 b o o ; Such ou-ct sioee theij 
help OS dlrau;^lob. Mcu; combtoin^ resu/b5 
-froro ©- u;e obtavO 

/ 

Ooct cloc)^u;ii,e 
<20c\r6l€roenti oJ^-l^jO-

I cciO eoc. 5ioa ^^^^^ 
15 Doe OU ri9ht bctit 
pictne pde. l̂ eflf̂  005-tftble 

The following is my derivation of the above reader

𝐺 =
5(1 − 0.5𝑠)

𝑠(1 + 0.1𝑠)(1 − 0.25𝑠)

=
5(1 − 0.5𝑗𝜔)

𝑗𝜔(1 + 0.1𝑗𝜔)(1 − 0.25𝑗𝜔)

Multiply by complex conjugate of the denominator

74



2.25. Lecture 24, Nov 19 2015, More Nyquist CHAPTER 2. CLASS NOTES

𝐺 =
5(1 − 0.5𝑗𝜔) �−𝑗𝜔(1 − 0.1𝑗𝜔)(1 + 0.25𝑗𝜔)�

𝑗𝜔(1 + 0.1𝑗𝜔)(1 − 0.25𝑗𝜔) �−𝑗𝜔(1 − 0.1𝑗𝜔)(1 + 0.25𝑗𝜔)�

=
−0.062 5𝜔4 − 0.5𝑗𝜔3 − 1. 75𝜔2 − 5𝑗𝜔

0.000625𝜔6 + 0.0725𝜔4 + 𝜔2

=
−𝑗 �0.5𝑗𝜔3 + 5𝜔� − 𝜔2 (0.062 5 + 1.75)

𝜔2 �1 + 0.01𝜔2� �1 + 0.0625𝜔2�

=
−𝑗𝜔 �𝜔

2

2 + 5� − 𝜔2 �𝜔
2

16 + 1.75�

𝜔2 �1 + 0.01𝜔2� �1 + 0.0625𝜔2�

Hence

Re (𝐺) =
−𝜔2 �𝜔

2

16 + 1.75�

𝜔2 �1 + 0.01𝜔2� �1 + 0.0625𝜔2�

=
− �𝜔

2

16 + 1.75�

�1 + 0.01𝜔2� �1 + 0.0625𝜔2�

=
− �𝜔2 + 28�

�1 + 0.01𝜔2� �16 + 𝜔2�

=
−100 �𝜔2 + 28�

�100 + 𝜔2� �16 + 𝜔2�

Im (𝐺) =
−𝜔 �𝜔

2

2 + 5�

𝜔2 �1 + 0.01𝜔2� �1 + 0.0625𝜔2�

=
−16 �𝜔

2

2 + 5�

𝜔 �1 + 0.01𝜔2� �16 + 𝜔2�

=
−1600 �𝜔

2

2 + 5�

𝜔 �100 + 𝜔2� �16 + 𝜔2�

=
−800 �𝜔2 + 10�

𝜔 �100 + 𝜔2� �16 + 𝜔2�

Therefore

Re (𝐺) =
−100 �𝜔2 + 28�

�100 + 𝜔2� �16 + 𝜔2�
, Im (𝐺) =

−800 �𝜔2 + 10�

𝜔 �100 + 𝜔2� �16 + 𝜔2�

Important note: The net number of encirclements around −1 must match the number
of unstable open loop poles. But what sense depends on the initial Γ being clockwise
or anti-clockwise. If Γ was anti-clockwise (like we use in class), then we want the net
clockwise encirclements around −1 to match the number of unstable open loop poles. If
Γ was clockwise (like other books use), then we want the net anti-clockwise encirclements
around −1 to match the number of unstable open loop poles.

2.25.2.2 Nyquist Handout 2

2.25.2.1.3 Emailed on Monday Nov 23, 2015
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2.25.2.2.1
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2.26 Lecture 25, Tuesday Nov 24 2015, gain and phase
margins

We will spend few minutes going over where we are. Today we will talk about: Discussion
of Nyquist examples. Embellishment of Nyquist theory, Bridge into Bode analysis.

We have solution of last lecture example. We will talk about gain, phase margin and
frequency response. Then we will go to Bode plot. We will take Bode analysis into design.
This means we will design a controller based on Bode plot. Example from class (last
lecture). Open loop is

𝐺𝐻 =
5(1 − 0.5𝑠)

𝑠(1 + 0.1𝑠)(1 − 0.25𝑠)

Review of the method in the handout that was send to class.

1. Mark the open loop poles on Γ plot

2. Make Γ to encircle all RHP open loop poles and small circle around all open loop
poles on the imaginary axis.

3. Map Γ to Γ𝐺𝐻 segment by segment. For the segments on the imaginary axis, we do
not have to do both, due to symmetry. (complex conjugate).

4. The important part is the real axis and the imaginary axis crossings. To do this, we
need to find Re (𝐺𝐻) and Im (𝐺𝐻). There might not be any crossings.

The second example was emailed. Which is 𝐺𝐻 = 50
𝑠(𝑠+2)(𝑠2+4) . See last lecture for solution

and go over it.

2.26.1 Gain and Phase margin

The most classical case is discussed. This is where the open loop is stable, and also the
closed loop is stable. This means 𝐺𝐻 (𝑠) has no poles in RHP. Imagine that we obtain Γ𝐺𝐻
that looks like this

−1

−α

ΓGH

Closed loop is stable (since it has zero net clockwise encirclement around −1). Note that
if closed loop is unstable, then we can not talk about gain and phase margins. This only
applied to closed loop which is already stable. If 𝛼 point in the figure above is very close
to −1 then are close to being unstable. This are dangerous if Γ𝐺𝐻 is close to −1. (this is for
this classical case). For example, say the true system is 𝛾𝐺 (𝑠)𝐻 (𝑠), but our Γ𝐺𝐻 is based on
just 𝐺 (𝑠)𝐻 (𝑠) and 𝛾 is the small variation of the true system. 𝐺 (𝑠)𝐻 (𝑠) is our math model
of the true system approximation. So we need to know the margin of safety because the
system can be unstable if 𝛾 is large enough. Assume 𝛾 is an uncertain gain. Call it now 𝐾.
example, an amplifier gain. The math model used to generate Γ𝐺𝐻 is based on 𝐾 = 1.

Reader: What does 𝐾 do to the Nyquist Γ𝐺𝐻 plot?

𝐾 scales the Γ𝐺𝐻. The scaling is centered at the origin. So large 𝐾 magnifies Γ𝐺𝐻 and small
𝐾 contracts Γ𝐺𝐻. So we need to find the largest 𝐾max and still be stable. We need 𝐾max𝛼 < 1
or

𝐾max =
1
𝛼
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This is called the gain margin. We express this in dB

(𝐾max)𝑑𝐵 = 20 log10
1
𝛼

For example, if 𝛼 = 0.5 then (𝐾max)𝑑𝐵 = 6𝑑𝐵. The gain margin is a measure of safety. We
can get 𝐾max also using Routh table. We can also have two sided gain margin

−1 αβ

Assume the 𝐺𝐻 now has one pole in RHP. So we want to have one net clockwise encir-
clement. So the Γ𝐺𝐻 plot shows that the closed loop is stable. But to maintain stability we
need 𝐾𝛼 < 1 and 𝐾𝛽 > 1. This means for closed loop stability, we need

1
𝛽
< 𝐾 <

1
𝛼

This is two sided gain margin. Now we talk about phase margin. So far we have not talked
about phase of 𝐺𝐻 (𝑠). Suppose the true system is 𝐺 (𝑠)𝐻 (𝑠) 𝑒𝑗𝜃 where 𝜃 is the phase error.
How does small phase error a�ect stability? Could large phase error destabilize the closed
loop? Consider now the classical case (again, this is where open loop is stable, and closed
loop remain stable). Here is an example Γ𝐺𝐻 which we will use to analyze the e�ect of
phase margin

−1

unit circle
ΓGH

−1

unit circleejθΓGH
phase margin

rotated clockwise by θ if θ is negative.

How does multiplying 𝐺 (𝑠)𝐻 (𝑠) by 𝑒𝑗𝜃changes the above Γ𝐺𝐻? Each point 𝑧 on Γ𝐺𝐻 now go
to 𝑧𝑒𝑗𝜃. So Γ𝐺𝐻 rotates counter clock wise around the origin if 𝜃 > 0 and rotates clock wise
if 𝜃 < 0. How large the angle 𝜃 become before the closed loop become unstable? We draw
a unit circle around origin as shown and extend a straight line to where Γ𝐺𝐻 intersects the
unit circle. The angle between this line and negative real axis is the phase margin. If 𝜃 < 0,
then it will rotate anti clockwise, and will become unstable after rotating −𝑝𝑚, where 𝑝𝑚,
is the phase margin.
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2.27 Lecture 26, Thursday Nov. 26 2015, thanks giving,
no class

No class. Thanks giving day
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2.28 Lecture 27, Tuesday December 1 2015, Start Bode
frequency analysis

Reminder: Final exam on December 10. Final topic of course is Bode analysis. We touched
on frequency response before but did not go heavily into frequency based design. When
we look at the open loop transfer function, we would like to quickly find the frequency
response.

The frequency response is defined as the magnitude and phase of the transfer function,
when viewed as complex function, which happens when we replace 𝑠 by 𝑗𝜔 where 𝜔 is the
frequency. i.e �𝐺𝐻 �𝑗𝜔�� and ∢𝐺𝐻 �𝑗𝜔� are the frequency response.

Bode method is better for design in frequency domain than Nyquist as it is easier to deter-
mine the magnitude and phase. Nyquist plot already have frequency response information
in it, but hard to read.

phase

|GH(jω)|

reading magnitude and phase from Nyquist plot

So if we plot the magnitude and phase, as 𝜔 changes we get something like

ω

|GH(jω)|

ω

angle (or phase) of GH(jω)

Simple motivating example: Say 𝐺 (𝑠) = 1
1+𝜏𝑠 . We will now use 𝐺 (𝑠) as the open loop. We

could also use 𝐺 (𝑠)𝐻 (𝑠). We know that the �𝐺 �𝑗𝜔�� = 1

√1+𝜏2𝜔2
and ∢𝐺 �𝑗𝜔� = − tan−1 (𝜔𝜏).

To easily see what happens to phase as 𝜔 changes, we draw line from the pole, which we
know is at 𝑠 = − 1

𝜏 and the angle between this line and the real axis is the phase.

− 1
τ

× θ

jω

81



2.28. Lecture 27, Tuesday December 1 . . . CHAPTER 2. CLASS NOTES

We now drawn the �𝐺𝐻 �𝑗𝜔�� and ∢𝐺𝐻 �𝑗𝜔� on two separate plots

ω

1
1√
2

1
τ

|G(jω)|

ω
1
τ

phase G(jω)

−450

−900

What bode analysis allows us to do, is to quickly make the magnitude and phase plots of
more complicated transfer functions using approximations. We break the frequency into
low region approximation and high frequency approximation and then join these curves
together. The low frequency approximation is when 𝜔 ≪ 1

𝜏 , where then we say �𝐺 �𝑗𝜔�� ≈ 1

and for large frequency approximation is when 𝜔 ≫ 1
𝜏 , where then we say �𝐺 �𝑗𝜔�� ≈ 0. For

plotting �𝐺 �𝑗𝜔��, for the 𝑦 axis, which is �𝐺 �𝑗𝜔��, we use log gain(𝐺), which is dB. i.e. log

gain(𝐺) = 20 log10 �𝐺 �𝑗𝜔��. So for 𝜔 ≪ 1
𝜏 we find 20 log10 0 = 0. The 𝑥 axis, which is the

frequency, is drawn using log10𝜔 scale and not linear 𝜔 scale. So each step on the 𝑥 axis
jumps by 10 times it last value. Each step is called a decade, as follows

1
τ

log10ω
10
τ

100
τ

1000
τ

20log10|G(jω)| (dB)

Now we go back to the first example 𝐺 (𝑠) = 1
1+𝜏𝑠 , then �𝐺 �𝑗𝜔�� =

1

√1+𝜏2𝜔2
hence

20 log10 �𝐺 �𝑗𝜔�� = 20 log10 1 − 20 log10√1 + 𝜏
2𝜔2

= 0 − 10 log10 �1 + 𝜏
2𝜔2�

Now we apply the Bode approximation. When 𝜔 ≫ 1
𝜏 (large frequency approximation),

we get

20 log10 �𝐺 �𝑗𝜔�� = 0 − 10 log10 �𝜏
2𝜔2�

= −20 log10 𝜏𝜔

So for large 𝜔 the �𝐺 �𝑗𝜔�� (in db) has a slope of −20 per decade. So we have the following
approximation of the magnitude
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1
τ

10
τ

100
τ0

−20

−40

log10ω

|G(jω)| (dB)

slope −20 dB per decade

1
τ

10
τ0

−450

−900

log10ω
angle

slope −450 per decade

1
10τ

Notice: the phase plot break point starts the slope from 1
10𝜏value, and goes down −450 per

decade. The magnitude starts from the 1
𝜏 break point and goes down −20 db per decade.

Reader: Do Bode plot for 𝐺 (𝑠) = 1 + 𝜏𝑠. Everything now is flipped from last example of
𝐺 (𝑠) = 1

1+𝜏𝑠 .

1
τ

10
τ

100
τ

0 log10ω

|G(jω)| (dB)
slope +20 dB per decade

1
τ

10
τ

1
10τ

+450 per decade

angle

log10ω

Now we build on this for more complicate transfer functions. Key remark: Using

log10 (𝐴𝐵𝐶) = log10𝐴 + log10 𝐵 = log10 𝐶
Then if 𝐴𝐵𝐶 was complicated transfer function, we break it into simple functions and make
bode plot for each, and then just add them to make the over all bode plot. For phase we
use

∢ (𝐴𝐵𝐶) = ∢𝐴 + ∢𝐵 + ∢𝐶

Here is an example. Let 𝐺 (𝑠) = 1
(1+10𝑠)(1+100𝑠) . For

1
1+100𝑠 , 𝜏 = 100, so the break point is

1
100 = 0.01.

For 1
1+10𝑠 , if we write it as

1
1+𝜏𝑠 then 𝜏 = 10, and the break points for this term are 1

10 = 0.1.
These values will go on the 𝑥𝑎𝑥𝑖𝑠 (𝜔). Looking at the magnitudes, we plot each transfer
function on its own, like this

0.01 0.1 1

|G(jω)| (db)

−20

−40

ω rad/sec

−20 db per
decade, starting
from 0.01. This
plot represent the

1
1+100s

transfer
function

−20 db per
decade, starting
from 0.1. This
plot represent the

1
1+10s

transfer
function

Next, we add them. We see that from 0.01 to 0.1, only one TF is active, so the slope is −20
db per decade. But from 0.1 to 1 and beyond, both transfer functions are active, and so
the slope become −40 db per decade. So the result becomes
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0.01 0.1 1

|G(jω)| (db)

−20

−40

ω rad/sec

−60

−20 dB per decade

−40 dB per decade

Now we will do the phase plot. We show each TF phase plot separately, then add them. For
phase plot, each transfer function e�ect will extend up to 2 decades only. This is di�erent
from the magnitude plot. We go one decade before the break point, and one decade after
the break point. This means each TF will contribute −450 slope per decade, but only for
the two decades around the break point.

0.001 0.01 0.1 1

−450

−900

This plot for
1

1+100s
and starts

one decade before
0.01 and ends up
one decade after.
Then its
contribution
stops.

This plot for
1

1+10s
and starts

one decade before
0.1 and ends up
one decade after.
Then its
contribution
stops.

ω rad/sec
phase

Next, we add them. From 0.001 to 0.1 rad/sec 1
1+100𝑠 is active, so the slope is −450 per

decade. 0.01 to 1 rad/sec, The second transfer function 1
1+10𝑠 is active. After 1 rad/sec, the

contribution stops. So the result becomes

0.001 0.01 0.1 1

−450

−900

ω rad/sec
phase

−1350

−1800

−450 per decade

−900 per decade

−450 per decade

Reader: Sketch 1+0.1𝑠
1+0.01𝑠 . The Denominator has break point at 100. The Numerator has break

point at 10.

84



2.28. Lecture 27, Tuesday December 1 . . . CHAPTER 2. CLASS NOTES

M
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0

30

60

Bode Diagram

Frequency  (rad/s)

Notice that the 1 + 𝜏𝑠 is very important here. We can’t apply any of the approximation
if the transfer function was not in this form. For example 1

𝑠+10 . But we can easily convert
everything to the 1 + 𝜏𝑠 form. For example

𝐺 (𝑠) =
(𝑠 + 30) (𝑠 + 50)
(𝑠 + 20) (𝑠 + 100)

(1)

This is not the standard form. We convert each one at a time. Hence

(𝑠 + 30) = 30 �
𝑠
30
+ 1�

(𝑠 + 50) = 50 �
𝑠
50
+ 1�

(𝑠 + 20) = 20 �
𝑠
20
+ 1�

(𝑠 + 100) = 100 �
𝑠
100

+ 1�

Hence (1) becomes

𝐺 (𝑠) =
(30) (50)
(20) (100)

� 𝑠
30 + 1� �

𝑠
50 + 1�

� 𝑠
20 + 1� �

𝑠
100 + 1�

= 0.75
� 𝑠
30 + 1� �

𝑠
50 + 1�

� 𝑠
20 + 1� �

𝑠
100 + 1�

The e�ect of the constant 0.75 is to just shift the magnitude plot by 20 log10 0.75. This
constant will not a�ect the phase plot. (if it is positive, as in this example). For negative,
it subtracts 1800 from the phase.
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2.29 Lecture 28, Thursday December 4 2015, More
Bode analysis

Today we will finish bode approximation and look at the "sign" issue. Then we will move
to margin analysis and design using Bode. Suppose we have 𝐺 (𝑠) = 1

𝑠𝑘
. There is a pole

of order 𝑘 at zero. For this, we need separate Bode analysis. Since 𝐺�𝑗𝜔� = 1

�𝑗𝜔�
𝑘 , hence

�𝐺 �𝑗𝜔�� = 1
𝜔𝑘 . So 𝑙𝑜𝑔 𝑔𝑎𝑖𝑛(𝐺) = −20𝑘 log10𝜔. This is exact. No straight line approximation

as we did before. It falls o� at −20𝑘 dB/decade at all frequencies, starting from 𝜔 = 0.01
rad/sec. So at 𝜔 = 0.01, we have �𝐺 �𝑗𝜔�� = −20𝑘 log (0.01). So for 𝑘 = 3, we get 120 dB. Then
it will fall by −60 dB/decade (not 20 dB/decade, since we have factor 3). What about the
phase? Since ∢ 1

�𝑗𝜔�
𝑘 = −90𝑘 degree. So it is −90𝑘0 at all frequencies. Not from one decade

before to one decade after as we did for the approximation, as this is exact. Similarly for
zero at 𝑠 = 0 of order 𝑘, as in 𝐺 (𝑠) = 𝑠𝑘. It will all be reverse. The phase will be +90𝑘0 and
the magnitude will have slope of +20𝑘 dB/decade.

Now we consider another special case. Which is second order system

𝐺 (𝑠) =
𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

Where 0 < 𝜁 < 1. If the poles are complex, we can’t use the straight line approximation,

since we can not put it in the form of �1 + 𝑠
𝜏
�. Only if the roots are real can we do this. For

complex poles, we need special handling to make Bode plot. We start by rewriting 𝐺 (𝑠) as

𝐺 (𝑠) =
1

𝑠2

𝜔2𝑛
+ 2 𝜁

𝜔𝑛
𝑠 + 1

𝐺 �𝑗𝜔� =
1

𝜔2

𝜔2𝑛
+ 2 𝜁

𝜔𝑛
𝜔𝑗 + 1

Now consider when 𝜔 ≪ 𝜔𝑛. Then 𝐺�𝑗𝜔� ≈ 1 or 0 dB. When 𝜔 ≫ 𝜔𝑛 then will fall o� by
−40 dB/decade since we have 2 poles.

−20

−40

ωn 10ωn 100ωn

|G(jω)| dB −20 dB/decade

−40 dB/decade

Notice that this has approximation errors when damping 𝜁 is very small. What about the
phase? Since poles are complex, then at 𝜔 = 0 the phase cancel each others. So phase
is zero at 𝜔 = 0. For large 𝜔, one pole phase goes to 900 and another to 900, so phase is
+1800. But the poles are in the denominator, so phase is −1800.
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1
10ωn ωn 10ωn

00

−450

−900

−1350

−1800

phase

ω

Reader: Consider numerator with complex poles

Now will talk about the issue with "signs". Suppose 𝐺 (𝑠) = 1
1−𝜏𝑠 hence 𝐺�𝑗𝜔� =

1
1−𝜏�𝑗𝜔�

there-

fore �𝐺 �𝑗𝜔�� = 1

√1+𝜏2𝜔2
, so log gain is the same as 𝐺 (𝑠) = 1

1+𝜏𝑠 , which is the standard form,

but the phase is not the same. Now the pole is in the RHS. But since in the denominator,
then phase is −1800 and not 00 as before. This means initial phase is at −1800 and not at
00. Now, when 𝜔 is very large, now the phase goes to +900. But since in the denominator,
the phase goes to −900. Hence the phase plot only changes for 1

1−𝜏𝑠 and not the magnitude.
The phase plot will be

−1800

−1350

−900

0.1
τ

1
τ

10
τ

phase plot for G(s) = 1
1−τs

The magnitude plot is the same as for 𝐺 (𝑠) = 1
1+𝜏𝑠 . Remember to change this to standard

form 𝐺 (𝑠) = 1
⎛
⎜⎜⎜⎜⎜⎝1+

𝑠

� 1𝜏 �

⎞
⎟⎟⎟⎟⎟⎠

so that the corner frequency is more clear now that it is � 1𝜏�.

We now go to design and margins. Example. Given open loop 𝐺 (𝑠) = 2500
𝑠(𝑠+5)(𝑠+50) . We use

bode plot to find gain and phase margins. Always use the open loop transfer function, and
not the closed loop. First we find corner frequencies. Need to write the above in standard
for

𝐺 (𝑠) = 2500
1

𝑠 (5) � 𝑠5 + 1� (50) �
𝑠
50 + 1�

= 10
1

𝑠 � 𝑠5 + 1� �
𝑠
50 + 1�

So corner frequencies are 5 and 50 rad/sec. The gain 10 causes a 20 log10 10 = 20 dB shift
in the magnitude. We always start from 𝜔 = 0.01. The pole at 𝑠 = 0 always starts at 40 dB,
since 20 log10

1
𝜔 = −20 log10 0.01 = 40 dB. Here is the bode plot using Matlab. See HW8 for

more examples how to make Bode plot approximation by hand.
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2.30 Lecture 29, Dec 8 2015, Bode gain and phase,
e�ects of delay

Final exam on thursday. Three main topics on final: Root locus, Nyquist and Bode analysis.

Root locus: Know how to draw it and make inferences. What is important is the axis
crossings. We can make some inferences without drawing also. For example, what happens
at high frequency? Is the system stable or not at high gain? If the di�erence between number
of poles and zeros is over two, then we know the system will be not stable at high gain
since we know that some of the asymptotes will end up at infinity. Where do asymptotes
begin? At centeroid. We also covered the variant of root locus, where the system is in the

form 𝐺 (𝑠) = 𝑠2+𝑝𝑠+6

(𝑠+8)3
. We can’t apply Root locus on this form. We have to first convert it to

standard form and only then apply root locus.

For Nyquist, need to know how to do the mapping from Γ to Γ𝐺𝐻. Make sure to get the
cossing correct. Count number of open loop poles. Then count number of net clockwise
encirclements around −1 and see if they match. Then the closed loop is stable, else it is
not. We can also make the system stable by increasing the gain. We looked at e�ect of
delay on Nyquist. It will cause the plot to rotate, which can cause it to become unstable.

For Bode, learn how to make quick sketch. Must first convert 𝐺 (𝑠) to standard form for
approximation. We also looked at issue of signs. The di�erence between 1 + 𝜏𝑠 and 1 − 𝜏𝑠.
The magnitude remain the same, but the phase changes. Learn how to read gain and phase
margins from Bode plots.

Now back to the lecture.

If there is pure gain 𝐻 (𝑠) = 𝐾, then its e�ect is only on the magnitude, not on the phase.
It will cause the magnitude to shift by 20 log10 𝐾.

For the gain and phase margin. For example. Given 𝐺 (𝑠) = 1
2𝑠�1+ 𝑠

2 �
. The gain is 1

2 and there

is corner frequency at 2 rad/sec. Here is the Bode plot

M
ag

ni
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 (

dB
)

0
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10

15

20

10-1 100 101 102 103 104

P
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 (

de
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0

30

60

Bode Diagram

Frequency  (rad/s)

The gain margin is at frequency where phase is −1800. Notice that in this example, the
phase actually is never −1800 but can get as close to it as we want. So in theory, this has
infinite gain margin. The phase has to actually dip below −1800 to get an actual crossing.
Matlab reports infinite gain margin also. The frequency at which phase is −1800 is called
𝜔𝑝𝑐 and the frequency at which magnitude is 0 dB is called 𝜔𝑔𝑐. From the plot the phase
margin is about 760.
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So a gain only controller 𝐻 (𝑠) = 𝐾 only a�ects the magnitude but not the phase.

Now we will talk about the e�ect of delay on Bode plot. If we have 𝑒−𝑗𝜔𝑇 in forward path,
then since �𝑒−𝑗𝜔𝑇� = 1, the delay only a�ects the phase and not the magnitude. Nyquist plot
rotates clock wise by amout 𝑇 at 𝜔 = 1. For bode, as 𝜔 increases, the phase will decrease
more and more. So starting with a system that has postive phase margin, as 𝜔 is increased
for some 𝑇, we will see the phase margin decreasing, and the system can become unstable.

Original phase bode plot

modifed phase due to delay

phase

ω

−1800

phase margin
is reduced

Reader: How large can 𝑇 be in the example above before the system become unstable?

Reader: Make a bode plot of this system

10
s+1 e−sT 31.5

1+30s

1
s2

9 + s
3+1

+

−
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2.31 Lecture 30, Dec 10 2015, Final exam

Final exam.
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2.32 Cheat sheet

2.32.1 Laplace Transforms for exam

time Laplace

impulse 𝛿 (𝑡) 1
delayed impulse 𝛿 (𝑡 − 𝑎) 𝑒−𝑎𝑠

unit step 𝑢 (𝑡) 1
𝑠

delayed unit impulse 𝑢 (𝑡 − 𝑎) 1
𝑠 𝑒

−𝑎𝑠

ramp 𝑡 1
𝑠2

parabolic 𝑡2 2
𝑠3

𝑡𝑓 (𝑡) −𝐹′ (𝑠)
scaled 𝑓 (𝑎𝑡) 1

𝑎𝐹 �
𝑠
𝑎
�

𝑒𝑎𝑡𝑓 (𝑡) 𝐹 (𝑠 − 𝑎)
𝑓 (𝑡) 𝐹 (𝑠)

derivative 𝑓′ (𝑡) 𝑠𝐹 (𝑠) − 𝑓 (0)
second derivative 𝑓′′ (𝑡) 𝑠2𝐹 (𝑠) − 𝑠𝑓 (0) − 𝑓′ (0)

integrator ∫𝑡

0
𝑓 (𝜏) 𝑑𝜏 1

𝑠𝐹 (𝑠)

delay in time 𝑓 (𝑡 − 𝑎) 𝑢 (𝑡 − 𝑎) 𝑒−𝑎𝑠𝐹 (𝑠)
convolution 𝑓 (𝑡) ⊛ 𝑔 (𝑡) 𝐹 (𝑠) 𝐺 (𝑠)

𝑒−𝑎𝑡𝑢 (𝑡) 1
𝑠+𝑎

𝑒−𝑎|𝑡| 2𝑎
𝑎2−𝑠2

�1 − 𝑒−𝑎𝑡� 𝑢 (𝑡) 𝑎
𝑠(𝑠+𝑎)

sin (𝑎𝑡) 𝑢 (𝑡) 𝑎
𝑠2+𝑎2

cos (𝑎𝑡) 𝑢 (𝑡) 𝑠
𝑠2+𝑎2

𝑒−𝑏𝑡 sin (𝑎𝑡) 𝑢 (𝑡) 𝑎
(𝑠+𝑏)2+𝑎2

𝑒−𝑏𝑡 cos (𝑎𝑡) 𝑢 (𝑡) 𝑠+𝑏
(𝑠+𝑏)2+𝑎2

2.32.2 Partial fractions

1.
1

(𝑠 + 𝑎) (𝑠 + 𝑏)
=

𝐴
(𝑠 + 𝑎)

+
𝐵

(𝑠 + 𝑏)

𝐴 = lim
𝑠→−𝑎

1
(𝑠 + 𝑏)

𝐵 = lim
𝑠→−𝑏

1
(𝑠 + 𝑎)

2.
1

(𝑠 + 𝑎) (𝑠 + 𝑏)2
=

𝐴
(𝑠 + 𝑎)

+
𝐵

(𝑠 + 𝑏)
+

𝐶
(𝑠 + 𝑏)2

𝐴 = lim
𝑠→−𝑎

1
(𝑠 + 𝑏)2

𝐵 = lim
𝑠→−𝑏

𝑑
𝑑𝑠 �

1
(𝑠 + 𝑎)�

𝐶 = lim
𝑠→−𝑏

1
(𝑠 + 𝑎)2
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3.
1

(𝑠 + 𝑎) �𝑠2 + 𝑏�
=

𝐴
(𝑠 + 𝑎)

+
𝐵𝑠 + 𝐶
�𝑠2 + 𝑏�

𝐴 = lim
𝑠→−𝑎

1
�𝑠2 + 𝑏�

For 𝐵,𝐶, expand now and compare coe�cients (but there should be faster way)

2.32.3 Final value

Suppose 𝐹 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) is stable, then

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹 (𝑠)

𝐹 (𝑠) is allowed to have only one pole at origin and still use FVT. But if 𝐹 (𝑠) has more than
one pole at the origin, or unstable, we can’t use FVT to determine lim𝑡→∞ 𝑓 (𝑡).

2.32.4 Tracking
𝐸(𝑠)
𝑅(𝑠) =

1
1+𝐺𝐻 . To have lim𝑡→∞ 𝑒 (𝑡) = 0 when the input 𝑅 (𝑠) is step, we need to have integrator

in 𝐺 (𝑠)𝐻 (𝑠). Since we want 𝐺𝐻 to be very large for 𝑠 = 0. And integrator is 1
𝑠 . If the input

is ramp 𝑡, then we need 1
𝑠2 in 𝐺𝐻. If the input is 𝑡

2 then we need 1
𝑠3 in the controller. and

so on.

2.32.5 Second order system

𝐺 (𝑠) = 𝜔2
𝑛

𝑠2+2𝜁𝜔𝑛𝑠+𝜔2𝑛
, 𝑦𝑠𝑡𝑒𝑝 (𝑡) = 1 − 𝑒−𝜁𝜔𝑛𝑡

�1−𝜁2
�sin𝜔𝑛√1 − 𝜁2𝑡 + 𝜙� where 𝜙 = cos−1 𝜁. Maximum

overshoot is 𝑒
−𝜋𝜁

�1−𝜁2 . Resonance frequency 𝜔𝑟 = 𝜔𝑛√1 − 2𝜁2, and |𝐺 (𝜔𝑟)| =
1

2𝜁�1−𝜁2
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3.1 HW 1

3.1.1 Problems

2.

ECE 332
Honrework 1

1. For the circuit below, find the transfer function ffi.

Find the inverse Laplace transforms of the following:

(a) r(s) : G+br
(U) ^F(s) _ F+s,f,3,,1a

(c) r(s): 3filift3?
(d) P(s):fffi"-'

A system is described by the difierential equation

y(n) + y(t) + by(z) * Ty(o) + y - uQ) *2u(2) + 3u(r) + 7u

Find the transfer function ffi.
4. For the system in Problem 3, find the step response using lhe Matlob toolbox Simulink

(see handout).

(a) Plot your output for 30 seconds and comment. Please include descriptive titles
and axis labels.

(b) In view of the result in (a), a feedback gain K is introduced into the system.
This leads to a system with 7y(t) replaced bV (7 + K)y(t). Using Simulink, find
a suitable value of K so that the unstable oscillations in (a) are eliminated. Plot
30 seconds of the step response for the stabilized system. (Note: Try not to use
an excessively large gain if avoidable.)

For this problem submit the two plots as well as a copy of the Simulink schematic file
used to generate the plots ("oly one schematic is needed). Please enlarge the necessary
blocks so that all of the numbers inseide are visible, e.g. the transfer function block.

3.1.2 Problem 1 solution

Let the input impedance be 𝑍𝑖𝑛 and the output impedance be 𝑍𝑜𝑢𝑡, then

𝑍𝑜𝑢𝑡 = 𝑅2||𝑍𝑐1

Where 𝑍𝑐1 is the capacitor impedance given by 𝑍𝑐1 =
1
𝐶1𝑠

. To find 𝑍𝑜𝑢𝑡, we use the parallel
formula

1
𝑍𝑜𝑢𝑡

=
1
𝑅2

+
1
𝑍𝑐1

=
𝑍𝑐1 + 𝑅2

𝑅2𝑍𝑐1

Therefore

𝑍𝑜𝑢𝑡 =
𝑅2𝑍𝑐1
𝑍𝑐1 + 𝑅2

Now we find the input impedance, which is

𝑍𝑖𝑛 = 𝑅1 + 𝑅2||𝑍𝑐1

= 𝑅1 +
𝑅2𝑍𝑐1
𝑍𝑐1 + 𝑅2

Simplifying gives

𝑍𝑖𝑛 =
𝑅1 (𝑍𝑐1 + 𝑅2) + 𝑅2𝑍𝑐1

𝑍𝑐1 + 𝑅2
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Now voltage divider is used, which gives

𝑉2 (𝑠)
𝑉1 (𝑠)

=
𝑍𝑜𝑢𝑡
𝑍𝑖𝑛

=

𝑅2𝑍𝑐1
𝑍𝑐1+𝑅2

𝑅1�𝑍𝑐1+𝑅2�+𝑅2𝑍𝑐1
𝑍𝑐1+𝑅2

=
𝑅2𝑍𝑐1

𝑅1 �𝑍𝑐1 + 𝑅2� + 𝑅2𝑍𝑐1

=
𝑅2𝑍𝑐1

𝑅1𝑍𝑐1 + 𝑅1𝑅2 + 𝑅2𝑍𝑐1

=
1

𝑅1
𝑅2
+ 𝑅1

𝑍𝑐1
+ 1

=
1

𝑅1
𝑅2
+ 𝑅1𝐶𝑠 + 1

=
𝑅2

(𝑅1 + 𝑅2) + 𝑅2𝑅1𝐶𝑠
Hence the transfer function is

𝐺 (𝑠) = 𝑉2(𝑠)
𝑉1(𝑠)

= 𝑅2
(𝑅1+𝑅2)+𝑅2𝑅1𝐶𝑠

The above is a low pass filter since making 𝑠 = 𝑗𝜔 gives

𝐺 (𝜔) =
𝑅2

(𝑅1 + 𝑅2) + 𝑅2𝑅1𝐶𝑗𝜔

As the frequency 𝜔 → ∞ then |𝐺 (𝜔)| → 0 and as 𝜔 → 0, |𝐺 (𝜔)| → 𝑅2
𝑅1+𝑅2

. So the above
transfer function attenuate large frequencies.

3.1.3 Problem 2 solution

3.1.3.1 Part (a)

𝐹 (𝑠) = 1
(𝑠+2)4

. Using the Laplace transform property

𝐹 (𝑠 − 𝑎)⟺ 𝑒𝑎𝑡𝑓 (𝑡) (1)

Where 𝑓 (𝑡) is the inverse Laplace transform of 𝐹 (𝑠). And also using the property

1
𝑠𝑛
⟺

𝑡𝑛−1

(𝑛 − 1)!
(2)

Then, combining (1) and (2) gives

1
(𝑠 − 𝑎)𝑛

⟺𝑒𝑎𝑡
𝑡𝑛−1

(𝑛 − 1)!
For 𝑎 = −2 and 𝑛 = 4 the above becomes

1
(𝑠 + 2)4

⟺𝑒−2𝑡
𝑡3

3!
= 𝑒−2𝑡

𝑡3

6

3.1.3.2 Part (b)

𝐹 (𝑠) = 1
𝑠3+5𝑠2+8𝑠+4 . Using the computer, the factors are first found

𝑠3 + 5𝑠2 + 8𝑠 + 4 = (𝑠 + 1) (𝑠 + 2)2

Applying partial fractions decomposition on 1
(𝑠+1)(𝑠+2)2

gives

1
(𝑠 + 1) (𝑠 + 2)2

=
𝐴

(𝑠 + 1)
+

𝐵
(𝑠 + 2)

+
𝐶

(𝑠 + 2)2
(1)
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Multiplying both sides by (𝑠 + 1) and evaluating at 𝑠 = −1 gives

𝐴 =
1

(𝑠 + 2)2𝑠=−1
𝐴 = 1

Multiplying both sides by (𝑠 + 2)2 and evaluating at 𝑠 = −2 gives

𝐶 =
1

(𝑠 + 1)𝑠=−2
𝐶 = −1

Therefore (1) now becomes
1

(𝑠 + 1) (𝑠 + 2)2
=

1
(𝑠 + 1)

+
𝐵

(𝑠 + 2)
−

1
(𝑠 + 2)2

=
(𝑠 + 2)2 + 𝐵 (𝑠 + 2) (𝑠 + 1) − (𝑠 + 1)

(𝑠 + 1) (𝑠 + 2)2

=
2𝐵 + 3𝑠 + 𝐵𝑠2 + 3𝐵𝑠 + 𝑠2 + 3

(𝑠 + 1) (𝑠 + 2)2

Comparing numerator of RHS and LHS gives

1 = (2𝐵 + 3) + (3 + 3𝐵) 𝑠 + (𝐵 + 1) 𝑠2

Comparing coe�cients (powers of 𝑠) gives 1 = 2𝐵 + 3 or 𝐵 = −1. Therefore the partial
fraction decomposition of (1) becomes

1
(𝑠+1)(𝑠+2)2

= 1
(𝑠+1) −

1
(𝑠+2) −

1
(𝑠+2)2

The inverse Laplace transform is now applied to each term in the RHS and using 𝐹 (𝑠 − 𝑎)⟺
𝑒𝑎𝑡𝑓 (𝑡) which results in

1
(𝑠 + 1)

−
1

(𝑠 + 2)
−

1
(𝑠 + 2)2

⟺𝑒−𝑡 − 𝑒−2𝑡 − 𝑡𝑒−2𝑡

= 𝑒−𝑡 �1 − 𝑒−𝑡 − 𝑡𝑒−𝑡�

3.1.3.3 Part (c)

𝐹 (𝑠) = 7𝑠2+48𝑠+62
𝑠3+7𝑠2+10𝑠 . The denominator can be written as 𝑠 �𝑠2 + 7𝑠 + 10� which is now factored

to 𝑠 (𝑠 + 2) (𝑠 + 5). Applying partial fractions on this gives gives

𝐹 (𝑠) =
7𝑠2 + 48𝑠 + 62
𝑠 (𝑠 + 2) (𝑠 + 5)

=
𝐴
𝑠
+

𝐵
𝑠 + 2

+
𝐶
𝑠 + 5

Hence

𝐴 = lim
𝑠→0

7𝑠2 + 48𝑠 + 62
(𝑠 + 2) (𝑠 + 5)

=
62
10

𝐵 = lim
𝑠→(−2)

7𝑠2 + 48𝑠 + 62
𝑠 (𝑠 + 5)

=
7 (4) + 48 (−2) + 62

−2 (−2 + 5)
= 1

𝐶 = lim
𝑠→(−5)

7𝑠2 + 48𝑠 + 62
𝑠 (𝑠 + 2)

=
7 (25) + 48 (−5) + 62

−5 (−5 + 2)
= −

1
5

Therefore

𝐹 (𝑠) =
62
10
1
𝑠
+

1
𝑠 + 2

−
1
5

1
𝑠 + 5

The inverse Laplace transform is

𝑓 (𝑡) =
62
10
+ 𝑒−2𝑡 −

1
5
𝑒−5𝑡

For 𝑡 ≥ 0.
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3.1.3.4 Part (d)

𝐹 (𝑠) = 10(𝑠+2)
𝑠�𝑠2+4�(𝑠+1)

𝑒−𝑠. This is solved using time shifting property of Laplace transform, which

says that

ℒ�𝑓 (𝑡 − 𝑎)� = 𝑒−𝑎𝑠𝐹 (𝑠)

Where 𝐹 (𝑠) is the Laplace transform of 𝑓 (𝑡). We see that 𝑎 = 1 in the above. So we just

need to find ℒ −1 �
10(𝑠+2)

𝑠�𝑠2+4�(𝑠+1)� and then time shift (delay) the result by the amount 𝑎 which

is 1 in this case. Applying partial fractions on 10(𝑠+2)
𝑠�𝑠2+4�(𝑠+1)

gives

10 (𝑠 + 2)
𝑠 �𝑠2 + 4� (𝑠 + 1)

=
𝐴
𝑠
+

𝐵
(𝑠 + 1)

+
𝐶𝑠 + 𝐷
�𝑠2 + 4�

(1)

Hence

𝐴 = lim
𝑠→0

10 (𝑠 + 2)
�𝑠2 + 4� (𝑠 + 1)

= 5

𝐵 = lim
𝑠→−1

10 (𝑠 + 2)
𝑠 �𝑠2 + 4�

=
10
−5

= −2

Therefore (1) becomes
10 (𝑠 + 2)

𝑠 �𝑠2 + 4� (𝑠 + 1)
=
5
𝑠
−

2
(𝑠 + 1)

+
𝐶𝑠 + 𝐷
�𝑠2 + 4�

=
5 (𝑠 + 1) �𝑠2 + 4� − 2 (𝑠) ��𝑠2 + 4�� + (𝐶𝑠 + 𝐷) (𝑠) (𝑠 + 1)

𝑠 �𝑠2 + 4� (𝑠 + 1)

Or

10 (𝑠 + 2) = 5 (𝑠 + 1) �𝑠2 + 4� − 2 (𝑠) ��𝑠2 + 4�� + (𝐶𝑠 + 𝐷) (𝑠) (𝑠 + 1)

10𝑠 + 20 = 12𝑠 + 𝑠𝐷 + 𝐶𝑠2 + 𝐶𝑠3 + 𝑠2𝐷 + 5𝑠2 + 3𝑠3 + 20
= 𝑠 (12 + 𝐷) + 20 + 𝑠2 (𝐶 + 𝐷 + 5) + (𝐶 + 3) 𝑠3

Comparing coe�cients gives

12 + 𝐷 = 10
𝐷 = −2

And

0 = 𝐶 + 𝐷 + 5
𝐶 = −𝐷 − 5
= −3

Therefore
10 (𝑠 + 2)

𝑠 �𝑠2 + 4� (𝑠 + 1)
=
𝐴
𝑠
+

𝐵
(𝑠 + 1)

+
𝐶𝑠 + 𝐷
�𝑠2 + 4�

=
5
𝑠
−

2
(𝑠 + 1)

−
3𝑠 + 2
�𝑠2 + 4�

=
5
𝑠
−

2
(𝑠 + 1)

− 3
𝑠

�𝑠2 + 4�
−

2
�𝑠2 + 4�

(3)

Using tables,ℒ−1 � 𝑠
𝑠2+𝑎2

� = cos (𝑎𝑡) , henceℒ−1 �
𝑠

�𝑠2+4�� = cos 2𝑡. Also, from tablesℒ−1 � 𝑎
𝑠2+𝑎2

� =

sin (𝑎𝑡), henceℒ−1 � 2
𝑠2+4

� = sin 2𝑡. The complete the inverse Laplace transform of 10(𝑠+2)
𝑠�𝑠2+4�(𝑠+1)

is now found to be

𝑔 (𝑡) = ℒ −1

⎛
⎜⎜⎜⎜⎝

10 (𝑠 + 2)
𝑠 �𝑠2 + 4� (𝑠 + 1)

⎞
⎟⎟⎟⎟⎠

= 5 − 2𝑒−𝑡 − 3 cos 2𝑡 − sin 2𝑡
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Therefore the final answer is just a time shifted version of the above, which is

𝑓 (𝑡) = 𝑔 (𝑡 − 1)

= 5 − 2𝑒−(𝑡−1) − 3 cos 2 (𝑡 − 1) − sin 2 (𝑡 − 1)

For 𝑡 ≥ 1 and zero otherwise.

3.1.4 Problem 3 solution

Taking Laplace transform of both sides, and assuming zero for all initial conditions gives

𝑠4𝑌 (𝑠) + 𝑠3𝑌 (𝑠) + 5𝑠2𝑌 (𝑠) + 7𝑠𝑌 (𝑠) + 𝑌 (𝑠) = 𝑠3𝑈 (𝑠) + 2𝑠2𝑈 (𝑠) + 3𝑠𝑈 (𝑠) + 7𝑈 (𝑠)

𝑌 (𝑠) �𝑠4 + 𝑠3 + 5𝑠2 + 7𝑠 + 1� = 𝑈 (𝑠) �𝑠3 + 2𝑠2 + 3𝑠 + 7�
𝑌 (𝑠)
𝑈 (𝑠)

=
𝑠3 + 2𝑠2 + 3𝑠 + 7

𝑠4 + 𝑠3 + 5𝑠2 + 7𝑠 + 1

3.1.5 Problem 4 solution

3.1.5.1 Part (a)

Simulink model was setup and run for 30 seconds. The step response shows that the plant
is not stable. This is due to the numerator having roots with positive real parts

>> double(solve(s^4+s^3+5*s^2+7*s+1==0,s))
-1.1803 + 0.0000i
-0.1608 + 0.0000i
0.1706 - 2.2888i
0.1706 + 2.2888i

The following diagram show the simulink model and the output

Unstable 
plant

3.1.5.2 Part (b)

Replacing 7𝑦(1) with (7 + 𝑘) 𝑦(1) in the given di�erential equation leads to the following
transfer function

𝑠4𝑌 (𝑠) + 𝑠3𝑌 (𝑠) + 5𝑠2𝑌 (𝑠) + (7 + 𝑘) 𝑠𝑌 (𝑠) + 𝑌 (𝑠) = 𝑠3𝑈 (𝑠) + 2𝑠2𝑈 (𝑠) + 3𝑠𝑈 (𝑠) + 7𝑈 (𝑠)

𝑌 (𝑠) �𝑠4 + 𝑠3 + 5𝑠2 + (7 + 𝑘) 𝑠 + 1� = 𝑈 (𝑠) �𝑠3 + 2𝑠2 + 3𝑠 + 7�
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Hence

𝑌(𝑠)
𝑈(𝑠) =

𝑠3+2𝑠2+3𝑠+7
𝑠4+𝑠3+5𝑠2+(7+𝑘)𝑠+1

To determine what range of values for 𝑘 to use, Routh stability table is first applied to the
denominator polynomial

1 5 1
1 7 + 𝑘 0

− (2 + 𝑘) 1 0
−(2+𝑘)(7+𝑘)−1

−(2+𝑘) 0

Therefore, for no sign change in the first column, we need − (2 + 𝑘) > 0 or 2 + 𝑘 < 0 or

𝑘 < −2 and we also need −(2+𝑘)(7+𝑘)−1
−(2+𝑘) > 0 or 𝑘2+9𝑘+15

2+𝑘 > 0 which means 𝑘2 + 9𝑘 + 15 > 0. The
roots of this quadratic are 𝑘 = −2.208 7, 𝑘 = −6.7913. Putting all these conditions together
gives the range of value on 𝑘 for a stable system as

−6.79 < 𝑘 < −2.208

So any 𝑘 in this range can be used. Here is the response using simulink using 4 di�erent
values of 𝑘, all within the above range to keep the system stable, showing that all the
responses are stable, using the same 30 seconds duration.

K=-6 K=-5

K=-4 K=-3
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3.1.6 HW 1 key solution

BCE 332 Homework 1 Solutions

1. By voltage division, we know lhat V2 = 
Zfu;r,

, --  or#
Z z :  R z l l  * : t  R r * o

Therefore,

Rz
"Ct

1Rr+A

and in this case, Zr : 8r and

Rz
"C,

V z -

R r *

V z :
Rz

RrRzCrs* (Rt1^Bz)

Rz
tCt

I
Rz*- ;

sur

/  1 r  B z
f t ,  (n2 * *,) +;

2- (')

F(s ) :# r  + f ( t ) ,'[#']
jtse-2'u(t)

Y^,
I

f (t)

f(t)

(b)

r(")

f (t)

f (t)

f(") =

F(") _

f ( t ) _

6.2 I- +
s  s * 2

s 3 + 5 s 2 * 8 s * 4  ( s + 1 ) ( s  + 2 ) ,

4-r  (P(s))

("-' - e-2' - te-)') u(t)

7s2 + 48s * 62 7s2 * 48s * 62
s 3 + 7 s 2 * l o s s ( s * 2 ) ( s + 5 )

I

s * 1  s * 2  ( s * 2 ) 2

( . )

5(s + 5)

|"-")"1r;(o.z + e-2' -

Say V_1 = 1 volt

Since V_1 is not necessarily one volt, the quantity on the 
right hand side is the required transfer function V_2(s)/V_1(s)

;
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(d)

f ( t)  :  { t- tcos[2(t-  1)]  -sin[2(t-  1)]  -  2"-t t-r t lu(t-  1)

3. Given the differential equation

y(n) + y(.) + 5y(z) * 7y(t) * v - u(s) *2uQ) 13u(r) 17u

Taking the Laplace Transform of both sides yields:

say(s) * s3y(s) * 5s2y(s) * 7sy(s) + Y(s) : s3u(s) * 2s2U(s)+ 3sU(s) + 7U(s)

Y(") _u(')
" 3 + 2 " ' * 3 s * 7

s a { s 3 * 5 s 2 * 7 s * l

4. (a) The transfer function depicting a system which is unstable. The output oscillates

about the point a :7. (approximatally)

(b) K - -3 or K - -4 seem to work well'

Simulink Sdrematic lor Hornwork lt PrcUem 4.

H
Tinp

I

6

o
g 4

E.
€ 2

0

-2

40

o n
E
f=
o-
E

Unstable System ResPonse. Stable System ResPonse. K = -3

-201
0 1 0 ? o 3 0

Time, seconds
0 1 0 ? o 3 0

Time, seconG

?( l,latlab script file used to generate the plots.

subplot (22L), plot(t ine,yunst), grid, r label( 'Tine, seconds' )

y label ( 'Anpl i tude ' ) ,  t i t te( 'Unstable Systen Response. ' )

subplot  Q2r) ,  p lo t ( t ine,y) ,  x label ( 'T iue,  seconds '  ) ,  y label ( 'Anpl i tude ' )

gr id ,  t i t le( 'Stabl .e  Systeu Response-  K = -3 ' )

2 l
r + 1 1

Scope

You may wish to ignore the code above if you have been succesful making Simulink run

;
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3.2 HW 2

3.2.1 Problem 1
ECE 332 - Homework #2

problenr 1: Dctermrnc the step, rilmp ancl parabolic steady-state errors oi the tbllowing

unity-f'eec.lback control systems. l'he lbrward-pilth transf'er I'unctions aI€ glven

(a) G(s)H(s)=*#h,

(b) C(s)H(s;  = - .  t t " 'U
s ( s + l 0 X s + 1 0 0 )

K ( l +  2 s X l +  4 s )
( c )  C ( s ) l l ( s ) =  , , ,'  

s - ( s - + s + l )

(ct) What r.clati6nslrips ciln you llnd betwcen the nunrber of poles of G(s) ut the origin and

the rype ol ' input signal l<u which therc is a constant stcady-state error (* 0)? If  there

is a relation, state i t ;  i l ' thcre is no relation, give the evidence to support your claim.

Problent 2: C'onsider thc l inelr  cont l 'o l  systct l l  shown

and let R(t)=1.5t. Whtt is the steady state crror' /

SOLUTION:

In all of these systems, the feedback block diagram is configured as follows

H(s) G(s)
R(s)

Y (s)

feed forward path

plantcontroller

+
−

E(s)

E(s)
R(s) = 1

1+H(s)G(s)

Since we are looking at steady state, we need to obtain the transfer function between 𝐸 (𝑠)
and 𝑅 (𝑠). Given that 𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠) and 𝑌 (𝑠) = 𝐸 (𝑠) 𝐺 (𝑠)𝐻 (𝑠) then we solve these two
equations for 𝐸 (𝑠) by eliminating 𝑌 (𝑠) giving

𝐸 (𝑠) = 𝑅 (𝑠) − 𝐸 (𝑠) 𝐺 (𝑠)𝐻 (𝑠)
𝐸 (𝑠) (1 + 𝐺 (𝑠)𝐻 (𝑠)) = 𝑅 (𝑠)

𝐸 (𝑠)
𝑅 (𝑠)

=
1

1 + 𝐺 (𝑠)𝐻 (𝑠)
The above is is the transfer function used for the di�erent 𝑅 (𝑠) signals: unit step 𝑢 (𝑡), ramp
𝑡, and parabolic 𝑡2.

3.2.1.1 part (a)

The open loop transfer function is 1000
(1+0.1𝑠)(1+10𝑠) . Since the number of poles at zero is zero,

the system type1 is zero.

When the input is a unit step 𝑢 (𝑡), then 𝑅 (𝑠) = 1
𝑠 . Using the steady state error transfer

function found above gives

𝐸 (𝑠) =
𝑅 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠)

=
1
𝑠

1
1 + 1000

(1+0.1𝑠)(1+10𝑠)

=
1
𝑠

�1 + 1
10𝑠� (1 + 10𝑠)

�1 + 1
10𝑠� (1 + 10𝑠) + 1000

=
1
𝑠

�1 + 1
10𝑠� (1 + 10𝑠)

𝑠2 + 101
10 𝑠 + 1001

We see that the poles are located at 𝑠 = 0, 𝑠 = −5.05 ± 31.233𝑖. Therefore this is stable 𝐸 (𝑠)
as the real parts of the poles are negative. We are allowed one pole at the origin. Applying

1The system type is the number of poles at zero of the open loop transfer function 𝐺 (𝑠)𝐻 (𝑠).

104



3.2. HW 2 CHAPTER 3. HWS

the final value theorem gives

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

1
1 + 1000

(1+0.1𝑠)(1+10𝑠)

=
1

1 + 1000
lim𝑠→0(1+0.1𝑠)(1+10𝑠)

=
1

1 + 1000
Hence

𝑒𝑠𝑠 =
1

1001
When the input is a ramp, then 𝑅 (𝑠) = 1

𝑠2 , therefore

𝐸 (𝑠) =
𝑅 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠)

=
1
𝑠2

1
1 + 1000

(1+0.1𝑠)(1+10𝑠)

There are two poles at the origin and the other two poles are the same as above at
𝑠 = −5.05 ± 31.233𝑖. Since there are two poles at the origin, the final value is not defined
(taken from now on as infinity in order to be compatible with the text book result and
notation).

Finally, when the input is 𝑡2, then 𝑅 (𝑠) = 2
𝑠3 and

𝐸 (𝑠) =
2
𝑠3

1
1 + 𝐺 (𝑠)𝐻 (𝑠)

=
2
𝑠3

1
1 + 1000

(1+0.1𝑠)(1+10𝑠)

=
2 (1 + 0.1𝑠) (1 + 10𝑠)

𝑠3 (1 + 0.1𝑠) (1 + 10𝑠) + 1000𝑠3

=
2 (1 + 0.1𝑠) (1 + 10𝑠)
𝑠3 �𝑠2 + 10.1𝑠 + 1001�

There are now three poles at the origin 𝑠 = 0. As above, this means the final value is taken
as infinity.

3.2.1.2 part (b)

The open loop transfer function is 1000
𝑠(1+10)(𝑠+100) . There is one pole at the origin which means

the system type is one.

When the input is a unit step, then 𝑅 (𝑠) = 1
𝑠 and

𝐸 (𝑠) =
1
𝑠

𝑅 (𝑠)
1 + 𝐺 (𝑠)𝐻 (𝑠)

=
1
𝑠

1
1 + 1000

𝑠(1+10)(𝑠+100)

=
1

𝑠 + 1000
(1+10)(𝑠+100)

=
(1 + 10) (𝑠 + 100)

𝑠 (1 + 10) (𝑠 + 100) + 1000
=

(1 + 10) (𝑠 + 100)
11𝑠2 + 1100𝑠 + 1000

The poles are at 𝑠 = −0.9175, 𝑠 = −99.08. This is stable 𝐸 (𝑠) and we can now apply the final
value theorem

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠
1
𝑠

1 + 1000
𝑠(1+10)(𝑠+100)

=
1

1 + lim𝑠→0
1000

𝑠(1+10)(𝑠+100)
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Hence

𝑒𝑠𝑠 = 0

When the input is a ramp, then 𝑅 (𝑠) = 1
𝑠2 and

𝐸 (𝑠) =
𝑅 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠)

=
1
𝑠2

1
1 + 1000

𝑠(1+10)(𝑠+100)

=
1

𝑠2 + 1000𝑠
(1+10)(𝑠+100)

=
(1 + 10) (𝑠 + 100)

𝑠2 (1 + 10) (𝑠 + 100) + 1000𝑠

=
(1 + 10) (𝑠 + 100)

𝑠 �11𝑠2 + 1100𝑠 + 1000�

There is one pole at the origin 𝑠 = 0 and the other two poles are the same at 𝑠 = −0.9175, 𝑠 =
−99.08. This is stable. Applying the final value theorem gives

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

1
𝑠

1
1 + 1000

𝑠(1+10)(𝑠+100)

= lim
𝑠→0

1
𝑠 + 1000

(1+10)(𝑠+100)

= lim
𝑠→0

(1 + 10) (𝑠 + 100)
𝑠 (1 + 10) (𝑠 + 100) + 1000

=
(1 + 10) (100)

1000
Hence

𝑒𝑠𝑠 = 1.1

When the input is a 𝑡2, then 𝑅 (𝑠) = 2
𝑠3 and

𝐸 (𝑠) =
𝑅 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠)

=
2
𝑠3

1
1 + 1000

𝑠(1+10)(𝑠+100)

=
2

𝑠2 + 1000𝑠2

(1+10)(𝑠+100)

=
(2) (11) (𝑠 + 100)
𝑠2 (11𝑠 + 2100)

There are now two poles at the origin. Therefore final value is taken as infinity.

3.2.1.3 part (c)

The open loop transfer function is 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

. There are two poles at the origin which

means the system type is 2.

106



3.2. HW 2 CHAPTER 3. HWS

When the input is a unit step, then 𝑅 (𝑠) = 1
𝑠 and

𝐸 (𝑠) =
𝑅 (𝑠)

1 + 𝐺 (𝑠)𝐻 (𝑠)

=
1
𝑠

1

1 + 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

=
1

𝑠 + 𝐾(1+2𝑠)(1+4𝑠)
𝑠�𝑠2+𝑠+1�

=
𝑠 �𝑠2 + 𝑠 + 1�

𝑠2 �𝑠2 + 𝑠 + 1� + 𝐾 (1 + 2𝑠) (1 + 4𝑠)

We have to now assume that 𝐸 (𝑠) is stable to be able to apply the final value theorem as
this depends on the value of 𝑘 which is not given in the problem. Therefore

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
𝑠

1

1 + 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
𝑠→0

𝑠2 �𝑠2 + 𝑠 + 1�

𝑠2 �𝑠2 + 𝑠 + 1� + 𝐾 (1 + 2𝑠) (1 + 4𝑠)

=
0
𝐾

Which means

𝑒𝑠𝑠 = 0

When the input is a ramp, then 𝑅 (𝑠) = 1
𝑠2 . Applying the final value theorem gives

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
𝑠2

1

1 + 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
𝑠→0

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝑠2 + 𝐾(1+2𝑠)(1+4𝑠)
�𝑠2+𝑠+1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
𝑠→0

𝑠
⎛
⎜⎜⎜⎜⎝

�𝑠2 + 𝑠 + 1�

𝑠2 �𝑠2 + 𝑠 + 1� + 𝐾 (1 + 2𝑠) (1 + 4𝑠)

⎞
⎟⎟⎟⎟⎠

= lim
𝑠→0

𝑠 �
1
𝐾�

Hence

𝑒𝑠𝑠 = 0

When the input is 𝑡2 then 𝑅 (𝑠) = 2
𝑠3 and

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
2
𝑠3

1

1 + 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
𝑠→0

𝑠
⎛
⎜⎜⎜⎜⎝
2
𝑠

�𝑠2 + 𝑠 + 1�

𝑠2 �𝑠2 + 𝑠 + 1� + 𝐾 (1 + 2𝑠) (1 + 4𝑠)

⎞
⎟⎟⎟⎟⎠

= lim
𝑠→0

�2
1
𝑘�

Hence

𝑒𝑠𝑠 =
2
𝐾
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3.2.1.4 Part (d)

Summary of results from the above parts is

𝐺 (𝑠)𝐻 (𝑠) system type (number of poles at origin) 𝑒𝑠𝑠 step 𝑒𝑠𝑠 ramp 𝑒𝑠𝑠 𝑡2

part(a) 1000
(1+0.1𝑠)(1+10𝑠) 0 1

1001 ∞ ∞

part(b) 1000
𝑠(1+10)(𝑠+100) 1 0 11

10 ∞

part(c) 𝐾(1+2𝑠)(1+4𝑠)
𝑠2�𝑠2+𝑠+1�

2 0 0 2
𝐾

From the above table, we see that as the system type (number of poles at origin of the
open loop 𝐺 (𝑠)𝐻 (𝑠)) increases, then the system can handle more signal types while still
producing zero steady state error (this is good). The input signal that gives constant (non
zero) steady state error per system type is summarized below.

System type (open loop number of poles at origin) Input that gives constant nonzero 𝑒𝑠𝑠
0 step �𝑡0�
1 ramp �𝑡1�
2 parabolic �𝑡2�

So the relation between number of poles at origin of open loop and the type of signal that
gives constant non zero steady state error can be written as

if the system type is 𝑚 then nonzero constant 𝑒𝑠𝑠 is generated by signal 𝑡𝑚.

3.2.2 Problem 2

ECE 332 - Homework #2

problenr 1: Dctermrnc the step, rilmp ancl parabolic steady-state errors oi the tbllowing

unity-f'eec.lback control systems. l'he lbrward-pilth transf'er I'unctions aI€ glven

(a) G(s)H(s)=*#h,

(b) C(s)H(s;  = - .  t t " 'U
s ( s + l 0 X s + 1 0 0 )

K ( l +  2 s X l +  4 s )
( c )  C ( s ) l l ( s ) =  , , ,'  

s - ( s - + s + l )

(ct) What r.clati6nslrips ciln you llnd betwcen the nunrber of poles of G(s) ut the origin and

the rype ol ' input signal l<u which therc is a constant stcady-state error (* 0)? If  there

is a relation, state i t ;  i l ' thcre is no relation, give the evidence to support your claim.

Problent 2: C'onsider thc l inelr  cont l 'o l  systct l l  shown

and let R(t)=1.5t. Whtt is the steady state crror' /

SOLUTION:

Let the first input 𝑅 (𝑠) be 𝑈1 (𝑠) and the second input (the constant 0.25) be 𝑈2 (𝑠), then

𝑌 (𝑠) = ��2 +
1
𝑠 �
𝐸 (𝑠) + 𝑈2 (𝑠)� 𝐺 (𝑠)

And

𝐸 (𝑠) = 𝑈1 (𝑠) − 𝑌 (𝑠)

Hence

𝐸 (𝑠) = 𝑈1 (𝑠) − ��2 +
1
𝑠 �
𝐸 (𝑠) + 𝑈2 (𝑠)� 𝐺 (𝑠)

= 𝑈1 (𝑠) − �2 +
1
𝑠 �
𝐸 (𝑠) 𝐺 (𝑠) − 𝑈2 (𝑠) 𝐺 (𝑠)

𝐸 (𝑠) �1 + �2 +
1
𝑠 �
𝐺 (𝑠)� = 𝑈1 (𝑠) − 𝑈2 (𝑠) 𝐺 (𝑠)

𝐸 (𝑠) =
𝑈1 (𝑠) − 𝑈2 (𝑠) 𝐺 (𝑠)

1 + �2 + 1
𝑠
�𝐺 (𝑠)

(1)
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To obtain the error transfer function from 𝐸 (𝑠) to 𝑈1 (𝑠), the input 𝑈2 (𝑠) is set to zero.
To obtain the error transfer function from 𝐸 (𝑠) to 𝑈2 (𝑠), the input 𝑈1 (𝑠) is set to zero.
Applying these to (1) gives

𝐸 (𝑠)
𝑈1 (𝑠)

�
𝑈2=0

=
1

1 + �2 + 1
𝑠
�𝐺 (𝑠)

𝐸 (𝑠)
𝑈2 (𝑠)

�
𝑈1=0

=
−𝐺 (𝑠)

1 + �2 + 1
𝑠
�𝐺 (𝑠)

In Matrix form,

𝐸 (𝑠) = �
1

1+�2+ 1
𝑠 �𝐺(𝑠)

−𝐺(𝑠)

1+�2+ 1
𝑠 �𝐺(𝑠)

�

⎛
⎜⎜⎜⎜⎝
𝑈1 (𝑠)
𝑈2 (𝑠)

⎞
⎟⎟⎟⎟⎠

But 𝑈1 (𝑠) =
1.5
𝑠2 and 𝑈2 (𝑠) =

0.25
𝑠 , and the above becomes

𝐸 (𝑠) =

⎛
⎜⎜⎜⎜⎜⎝

1

1+�2+ 1
𝑠 �

100

(0.05𝑠+1)2

− 100

(0.05𝑠+1)2

1+�2+ 1
𝑠 �

100

(0.05𝑠+1)2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1.5
𝑠2
0.25
𝑠

⎞
⎟⎟⎟⎟⎠

Hence

𝐸(𝑠) =

𝐸1(𝑠)

�����������������������������������������������1.5
𝑠

(0.05𝑠 + 1)2

0.0025𝑠3 + 0.1𝑠2 + 201𝑠 + 100.0
−

𝐸2(𝑠)

�������������������������������������10000
𝑠3 + 40𝑠2 + 80400𝑠 + 40000

The poles of the first term are −19.751 ± 282.83𝑖 ,𝑠 = −0.497, 𝑠 = 0, Hence this is stable and
have at most one pole at origin. Then using F.V.T. gives

𝑒𝑠𝑠1 = lim
𝑠→0

𝑠𝐸1 (𝑠)

= lim
𝑠→0

1.5
(0.05𝑠 + 1)2

0.0025𝑠3 + 0.1𝑠2 + 201𝑠 + 100
= 0.015

For 𝐸2 (𝑠), the poles are at , 𝑠 = −19.75 ± 282.83𝑖, 𝑠 = −0.498, Hence this is stable. Therefore
using F.V.T. gives

𝑒𝑠𝑠2 = lim
𝑠→0

𝑠𝐸2 (𝑠)

= lim
𝑠→0

10000𝑠
𝑠3 + 40𝑠2 + 80400𝑠 + 40000

= 0

Hence

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 (𝑠)

= 0.015 − 0
= 0.015

3.2.3 Problem 3

Problem 3: Consider the closed loop system

r F
R - -rC) " -+1 G(s) l----1--"-+ Y- t r i i

L _ ____l
and assume thc tbl lowing:

(i) The steady state effor I'or u step input is zcro.

(ii)'l 'he denominator ol' the closed loop transt'er lunction P (also called the
R(s)

characterist ic polynornial ol ' the closccl loop system) is s3 + 4sr + 6s + 4 .

Fintl  the t lansl 'c; l ' t i rrct ion G(s). Also l ' inclthc steudy sti l te errol ' i1' the input is a unit ramp'

(l{ i1t: Lct n(s) ancl cl(s) bc the nLuncl 'ator lncl denominator of G(s). Express the closed

loop transf 'er function as I I 'unction ol 'n(s) and d(s) )

l 'roblenr 4: Two l'eeclbuck systcms arc shown in Figure I and Figurc 2.

Figule l: Feedback System I

Figure 2: Fecdback System 2

(a) Let K,, = l .  Determine the values of K, fbr system I and K. and K., tbr system 2 so

that both of' the systems cxhibit zero steady error to step inputs and such the steady

statc en'or to a Llnit ramp is I in both citscs.

(b) Suppose K,, changes f}om I to t + 6. Show that the steady state effor with this

perturbed K,, is still zero to a unit step input, for Figure l. Also show that this is not

the case fbr Figure 2.

(c) A tttntntl utl4ineer woultl pral'er tlrc .s\tstam in b'i14ure I to tlrc one itt Figura 2. Do you

agree with this staternent? Justify.

SOLUTION:
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Let 𝐺 (𝑠) = 𝑁(𝑠)
𝐷(𝑠) . The closed loop transfer function is

𝑌 (𝑠)
𝑅 (𝑠)

=
𝐺 (𝑠)

1 + 𝐺 (𝑠)
=

𝑁(𝑠)
𝐷(𝑠)

1 + 𝑁(𝑠)
𝐷(𝑠)

=
𝑁 (𝑠)

𝐷 (𝑠) + 𝑁 (𝑠)

We are given that 𝐷 (𝑠) + 𝑁 (𝑠) = 𝑠3 + 4𝑠2 + 6𝑠 + 4. The error transfer function is

𝐸 (𝑠)
𝑅 (𝑠)

=
1

1 + 𝐺 (𝑠)
=

1

1 + 𝑁(𝑠)
𝐷(𝑠)

=
𝐷 (𝑠)

𝐷 (𝑠) + 𝑁 (𝑠)

Substituting for 𝐷 (𝑠) + 𝑁 (𝑠) in the above with the given polynomial results in

𝐸 (𝑠)
𝑅 (𝑠)

=
𝐷 (𝑠)

𝑠3 + 4𝑠2 + 6𝑠 + 4
(1)

We are told that lim𝑠→0 𝑠𝐸 (𝑠) = 0 when 𝑅 (𝑠) =
1
𝑠 . Applying this to (1) gives

𝐸 (𝑠) =
1
𝑠

𝐷 (𝑠)
𝑠3 + 4𝑠2 + 6𝑠 + 4

𝐸 (𝑠) above is stable since the poles are at −2, −1 ± 𝑖 with another pole at zero. Hence F.V.T.
can be applied to 𝐸 (𝑠)

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠 �
1
𝑠

𝐷 (𝑠)
𝑠3 + 4𝑠2 + 6𝑠 + 4�

= lim
𝑠→0

𝐷 (𝑠)
4

We are also told that the above is zero. Hence

0 = lim
𝑠→0

𝐷 (𝑠)
4

The above implies that 𝐷 (𝑠) must contain only 𝑠 terms and no constant terms, since we
want 𝐷 (𝑠) = 0 when 𝑠 = 0.

Assuming proper transfer function 𝐺 (𝑠) where degree of 𝑁 (𝑠) ≤ degree of 𝑁 (𝑠), then 𝐷 (𝑠)
can be 𝑠3 or 𝑠3 + 4𝑠2, or 𝑠3 + 4𝑠2 + 6𝑠, since any of these will give lim𝑠→0

𝐷(𝑠)
4 = 0. But 𝐷 (𝑠)

can not be 𝑠2 for example, else 𝐺 (𝑠) will not proper 𝐺 (𝑠) .

There are actually an infinite number of 𝐷 (𝑠) polynomials which meets this condition (if
we use fractions for the coe�cients). Below is an example of two possible 𝐷 (𝑠) choices and
the corresponding 𝐺 (𝑠)

𝐷1 (𝑠) = 𝑠3 + 4𝑠2 + 6𝑠

Then

𝐺 (𝑠) = 4
𝑠3+4𝑠2+6𝑠

For steady state when input is ramp, using the above 𝐺 (𝑠) gives

𝑒𝑠𝑠 = lim
𝑠→0

𝑠 �
1
𝑠2

𝑠3 + 4𝑠2 + 6𝑠
𝑠3 + 4𝑠2 + 6𝑠 + 4�

= lim
𝑠→0

𝑠2 + 4𝑠 + 6
𝑠3 + 4𝑠2 + 6𝑠 + 4

Hence

𝑒𝑠𝑠 = 1.5

Another choice is 𝐷2 (𝑠) = 𝑠3 + 4𝑠2. Using this, 𝐺 (𝑠) = 6𝑠+4
𝑠3+4𝑠2 . Using this, and when the input
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is ramp then

𝑒𝑠𝑠 = lim
𝑠→0

𝑠 �
1
𝑠2

𝑠3 + 4𝑠2

𝑠3 + 4𝑠2 + 6𝑠 + 4�

= lim
𝑠→0

𝑠2 + 4𝑠
𝑠3 + 4𝑠2 + 6𝑠 + 4

= 0

So the steady state error for ramp depends on which 𝐺 (𝑠) is used.

3.2.4 Problem 4

Problem 3: Consider the closed loop system

r F
R - -rC) " -+1 G(s) l----1--"-+ Y- t r i i

L _ ____l
and assume thc tbl lowing:

(i) The steady state effor I'or u step input is zcro.

(ii)'l 'he denominator ol' the closed loop transt'er lunction P (also called the
R(s)

characterist ic polynornial ol ' the closccl loop system) is s3 + 4sr + 6s + 4 .

Fintl  the t lansl 'c; l ' t i rrct ion G(s). Also l ' inclthc steudy sti l te errol ' i1' the input is a unit ramp'

(l{ i1t: Lct n(s) ancl cl(s) bc the nLuncl 'ator lncl denominator of G(s). Express the closed

loop transf 'er function as I I 'unction ol 'n(s) and d(s) )

l 'roblenr 4: Two l'eeclbuck systcms arc shown in Figure I and Figurc 2.

Figule l: Feedback System I

Figure 2: Fecdback System 2

(a) Let K,, = l .  Determine the values of K, fbr system I and K. and K., tbr system 2 so

that both of' the systems cxhibit zero steady error to step inputs and such the steady

statc en'or to a Llnit ramp is I in both citscs.

(b) Suppose K,, changes f}om I to t + 6. Show that the steady state effor with this

perturbed K,, is still zero to a unit step input, for Figure l. Also show that this is not

the case fbr Figure 2.

(c) A tttntntl utl4ineer woultl pral'er tlrc .s\tstam in b'i14ure I to tlrc one itt Figura 2. Do you

agree with this staternent? Justify.

SOLUTION:

3.2.4.1 Part(a)

For system 1. Using 𝐾0 = 0 we first obtain expression for 𝐸 (𝑠) and 𝑌 (𝑠)

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠)

𝑌 (𝑠) = 𝐸 (𝑠) �
𝐾1
𝑠 � �

1
4𝑠 + 1�

Solving for 𝐸 (𝑠) from the above two equations gives

𝐸 (𝑠) = 𝑅 (𝑠) − �𝐸 (𝑠)
𝐾1

𝑠 (4𝑠 + 1)�

𝐸 (𝑠) �1 +
𝐾1

𝑠 (4𝑠 + 1)�
= 𝑅 (𝑠)

𝐸 (𝑠) = 𝑅 (𝑠)
𝑠 (4𝑠 + 1)

𝑠 (4𝑠 + 1) + 𝐾1

When 𝑅 (𝑠) = 1
𝑠 we want 𝑒𝑠𝑠 = 0, therefore

𝑒𝑠𝑠 = 0 = lim
𝑠→0

𝑠𝐸 (𝑠)

0 = lim
𝑠→0

𝑠 (4𝑠 + 1)
𝑠 (4𝑠 + 1) + 𝐾1

= lim
𝑠→0

𝑠 (4𝑠 + 1)
𝐾1

=
0
𝐾1
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The above is true for any 𝐾1 since the numerator is already zero. Considering now the
ramp input. When 𝑅 (𝑠) = 1

𝑠2 we want 𝑒𝑠𝑠 = 1, hence

𝑒𝑠𝑠 = 1 = lim
𝑠→0

𝑠𝐸 (𝑠)

1 = lim
𝑠→0

𝑠
1
𝑠2

𝑠 (4𝑠 + 1)
𝑠 (4𝑠 + 1) + 𝐾1

= lim
𝑠→0

4𝑠 + 1
𝑠 (4𝑠 + 1) + 𝐾1

=
1
𝐾1

Therefore

𝐾1 = 1

For system 2

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠) (1)

But

𝑌 (𝑠) = 𝑈 (𝑠) 𝐾3
1

4𝑠 + 1
(2)

And

𝑈 (𝑠) = 𝑅 (𝑠) 𝐾2 − 𝑌 (𝑠)

Hence (2) becomes

𝑌 (𝑠) = (𝑅 (𝑠) 𝐾2 − 𝑌 (𝑠))
𝐾3

4𝑠 + 1

𝑌 (𝑠) �1 +
𝐾3

4𝑠 + 1�
= 𝑅 (𝑠)

𝐾2𝐾3
4𝑠 + 1

𝑌 (𝑠) = 𝑅 (𝑠)
𝐾2𝐾3
4𝑠+1

1 + 𝐾3
4𝑠+1

= 𝑅 (𝑠)
𝐾2𝐾3

4𝑠 + 1 + 𝐾3
(3)

Substituting (3) into (1) gives

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑅 (𝑠)
𝐾2𝐾3

4𝑠 + 1 + 𝐾3

𝐸 (𝑠) = 𝑅 (𝑠) �1 −
𝐾2𝐾3

4𝑠 + 1 + 𝐾3
� (4)

When 𝑅 (𝑠) = 1
𝑠 we want 𝑒𝑠𝑠 = 0, hence

𝑒𝑠𝑠 = 0 = lim
𝑠→0

𝑠𝐸 (𝑠)

0 = lim
𝑠→0

𝑠
1
𝑠 �
1 −

𝐾2𝐾3
4𝑠 + 1 + 𝐾3

�

= 1 −
𝐾2𝐾3
1 + 𝐾3

For the above to be true, then

𝐾2𝐾3
1+𝐾3

= 1 (5)
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We now obtain a second equation from the ramp condition. When 𝑅 (𝑠) = 1
𝑠2 we want 𝑒𝑠𝑠 = 1,

hence

𝑒𝑠𝑠 = 1 = lim
𝑠→0

𝑠𝐸 (𝑠)

1 = lim
𝑠→0

𝑠
1
𝑠2 �

1 −
𝐾2𝐾3

4𝑠 + 1 + 𝐾3
�

= lim
𝑠→0

1
𝑠 �
1 −

𝐾2𝐾3
4𝑠 + 1 + 𝐾3

�

= lim
𝑠→0

1
𝑠 �
4𝑠 + 1 + 𝐾3 − (𝐾2𝐾3)

4𝑠 + 1 + 𝐾3
�

Replacing 𝐾2𝐾3 in the above with 1 + 𝐾3 found in (5) gives

1 = lim
𝑠→0

1
𝑠 �
4𝑠 + 1 + 𝐾3 − (1 + 𝑘3)

4𝑠 + 1 + 𝐾3
�

= lim
𝑠→0

1
𝑠 �

4𝑠
4𝑠 + 1 + 𝐾3

�

=
4

lim𝑠→0 (4𝑠 + 1 + 𝐾3)

1 =
4

1 + 𝐾3

Hence 1 + 𝐾3 = 4 or

𝐾3 = 3

Now that we found 𝐾3 we go back to (5) and solve for 𝐾2

𝐾2𝐾3
1 + 𝐾3

= 1

𝐾2 =
1 + 𝐾3
𝐾3

=
1 + 3
3

Hence

𝐾2 =
4
3

Summary

𝐾1 𝐾2 𝐾3

system 1 1 N/A N/A

system 2 N/A 4
3 3

3.2.4.2 Part (b)

For system 1.

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠)

𝑌 (𝑠) = 𝐸 (𝑠)
𝐾1
𝑠
(1 + 𝛿)
4𝑠 + 1

Hence

𝐸 (𝑠) = 𝑅 (𝑠) − �𝐸 (𝑠)
𝐾1
𝑠
1 + 𝛿
4𝑠 + 1�

𝐸 (𝑠) �1 +
𝐾1
𝑠
1 + 𝛿
4𝑠 + 1�

= 𝑅 (𝑠)

𝐸 (𝑠) = 𝑅 (𝑠)
1

1 + 𝐾1
𝑠

1+𝛿
4𝑠+1

= 𝑅 (𝑠)
𝑠 (4𝑠 + 1)

𝑠 (4𝑠 + 1) + 𝐾1 (1 + 𝛿)
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When 𝑅 (𝑠) = 1
𝑠 then

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠 (4𝑠 + 1)
𝑠 (4𝑠 + 1) + 𝐾1 (1 + 𝛿)

=
lim𝑠→0 𝑠 (4𝑠 + 1)

𝐾1 (1 + 𝛿)

=
0

𝐾1 (1 + 𝛿)
The above is zero for any 𝐾1 and any perturbation 𝛿 since the numerator is already zero.
This is the same condition we found in part(a). Perturbing 𝐾0 has no e�ect on the result
of 𝑒𝑠𝑠 for step input.

For system 2

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑌 (𝑠) (1)

But

𝑌 (𝑠) = 𝑈 (𝑠) 𝐾3
1 + 𝛿
4𝑠 + 1

(2)

And

𝑈 (𝑠) = 𝑅 (𝑠) 𝐾2 − 𝑌 (𝑠)

Replacing 𝑈 (𝑠) into (2)

𝑌 (𝑠) = (𝑅 (𝑠) 𝐾2 − 𝑌 (𝑠)) 𝐾3
1 + 𝛿
4𝑠 + 1

𝑌 (𝑠) �1 +
𝐾3 (1 + 𝛿)
4𝑠 + 1 � = 𝑅 (𝑠)

𝐾2𝐾3 (1 + 𝛿)
4𝑠 + 1

𝑌 (𝑠) = 𝑅 (𝑠)
𝐾2𝐾3(1+𝛿)

4𝑠+1

1 + 𝐾3(1+𝛿)
4𝑠+1

= 𝑅 (𝑠)
𝐾2𝐾3 (1 + 𝛿)

4𝑠 + 1 + 𝐾3 (1 + 𝛿)
(3)

Substituting 𝑌 (𝑠) from (3) into (1) gives

𝐸 (𝑠) = 𝑅 (𝑠) − 𝑅 (𝑠)
𝐾2𝐾3 (1 + 𝛿)

4𝑠 + 1 + 𝐾3 (1 + 𝛿)

= 𝑅 (𝑠) �1 −
𝐾2𝐾3 (1 + 𝛿)

4𝑠 + 1 + 𝐾3 (1 + 𝛿)
� (4)

When 𝑅 (𝑠) = 1
𝑠and using the F.V.T. gives

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

𝑠
1
𝑠 �
1 −

𝐾2𝐾3 (1 + 𝛿)
4𝑠 + 1 + 𝐾3 (1 + 𝛿)

�

= lim
𝑠→0

�1 −
𝐾2𝐾3 (1 + 𝛿)

4𝑠 + 1 + 𝐾3 (1 + 𝛿)
�

= 1 −
𝐾2𝐾3 (1 + 𝛿)
1 + 𝐾3 (1 + 𝛿)

For the above 𝑒𝑠𝑠 to be zero, then the condition is that
𝐾2𝐾3 (1 + 𝛿)
1 + 𝐾3 (1 + 𝛿)

= 1

or

𝐾2𝐾3 (1 + 𝛿) = 1 + 𝐾3 (1 + 𝛿)

𝐾2𝐾3 − 𝐾3 =
1

1 + 𝛿

114



3.2. HW 2 CHAPTER 3. HWS

Using 𝐾2 =
4
3 and 𝐾3 = 3 found in part (a) then the above becomes

�
4
3�
3 − 3 =

1
1 + 𝛿

1 =
1

1 + 𝛿
But this is impossible since the RHS must be either larger than one or smaller than one
(depending on the sign of 𝛿). This means if 𝐾0 is perturbed from unity, then it is no longer
possible to obtain zero steady state error for a step input with the same 𝑘2, 𝑘3.

3.2.4.3 Part(c)

I agree. For first system, it gives 𝑒𝑠𝑠 = 0 for a step input regardless of the value of 𝐾1 or 𝐾0
as was shown in part (b) above. But for system two, 𝑒𝑠𝑠 = 0 for step input only when using
specific values of 𝐾𝑖. Any small change in 𝐾0, the steady state error is no longer zero. In
other words, system one is more robust in this regard to changes in 𝐾0 and it is therefore
the preferred system.

3.2.5 Problem 5 - I

Problem 5t An imporrrnt p'oblem tbr tclevision

wobbling of the picture due to movement of the

cumera is mountcd on u moving truck or ui l 'plane'

below) which is intendecl to reducc the ell'ect ol'

scanning motion ol 25a/c, is expccted.

camera systems is the jumPing and

canlera. This effect occurs when the

A system has been designed (shown

rapid scanning motion, A maximum

ump l i f i e r m 0  t 0 f

c a m e r a
speed

v b

b e  l l o w s
s p e e d

(a) Deterrnine thc stcady statc cn'or ol' thc systcm lbl' a step input

that  t ,  is  "negl ig ib le"  and Kg = K,  = l '

(b) Dctctrninc thc neccssary loop gain K,K,,, when t l" /sec steady state effor ls

rl lowable. (Srnte i tssutnptions as Parl (a))

(c) Show thut tltc stcp responsc of the systeln is of the tblm

v , , ( t )  =  l { , - . - ' }
q t  

'

under the assumptions in Part (a), Express k and q in terms of the system parametefs'

(cl) The sctrling rrrno is cJelinecl as thc timc it takes lbr the step lesponse to be within 27o

ol thc steady state valuc. Givcn the expression of thc step response determined in Part

(c), clelivc the exprcssion tirr the settlilg timc of v,,. Also, find the loop gain K"K'

so that thc settling time of v,, iS less than <-rr equal to 0.04 sec' Take T,', = 0'4sec as

thc motor ttmc constunt.

V.(s) = I. Orrurn"

sTr , ,  + l

t a c h o m e t e r

SOLUTION:

3.2.5.1 Part (a)

We first need to find 𝐸(𝑠)
𝑉𝑐(𝑠)

. From the block diagram2.

𝑉𝑏 (𝑠) = 𝐸 (𝑠) 𝐾𝑎 �
𝐾𝑚

1 + 𝑠𝜏𝑚
� (1)

And

𝐸 (𝑠) = 𝑉𝑐 (𝑠) �
𝐾𝑔

1 + 𝑠𝜏𝑔
� − 𝐾𝑡𝑉𝑏 (𝑠) (2)

2Notice that the problem is saying 𝐸 (𝑠) is the variable to the left of the amplifier 𝐾𝑎 and this solution is
based on this and not on using 𝐸 (𝑠) = 𝑉𝑏 (𝑠) − 𝑉𝑐 (𝑠)
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Replacing 𝑉𝑏 (𝑠) in (2) with (1) gives

𝐸 (𝑠) = 𝑉𝑐 (𝑠) �
𝐾𝑔

1 + 𝑠𝜏𝑔
� − 𝐾𝑡𝐸 (𝑠) 𝐾𝑎 �

𝐾𝑚
1 + 𝑠𝜏𝑚

�

𝐸 (𝑠) �1 + 𝐾𝑡𝐾𝑎 �
𝐾𝑚

1 + 𝑠𝜏𝑚
�� = 𝑉𝑐 (𝑠) �

𝐾𝑔

1 + 𝑠𝜏𝑔
�

𝐸 (𝑠)
𝑉𝑐 (𝑠)

=
�

𝐾𝑔
1+𝑠𝜏𝑔

�

1 + 𝐾𝑡𝐾𝑎 �
𝐾𝑚

1+𝑠𝜏𝑚
�

Hence

𝐸(𝑠)
𝑉𝑐(𝑠)

= �1+𝑠𝜏𝑚1+𝑠𝜏𝑔
�

𝐾𝑔
1+𝑠𝜏𝑚+𝐾𝑡𝐾𝑎𝐾𝑚

When 𝑉𝑐 (𝑠) =
25
𝑠 , 𝐾𝑔 = 𝐾𝑡 = 1 then 𝐸 (𝑠) from above becomes

𝐸 (𝑠) =
25
𝑠 �

1 + 𝑠𝜏𝑚
1 + 𝑠𝜏𝑔

�
1

(1 + 𝐾𝑎𝐾𝑚) + 𝑠𝜏𝑚

The above 𝐸 (𝑠) has one pole at the origin, and has a pole at 𝑠 = −1
𝜏𝑔

and a pole at 𝑠 = −1+𝐾𝑎𝐾𝑚
𝜏𝑚

.

Hence this is stable (assuming 𝐾𝑎𝐾𝑚 > −1). Applying F.V.T. gives

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸 (𝑠)

= lim
𝑠→0

25 �
1 + 𝑠𝜏𝑚
1 + 𝑠𝜏𝑔

�
1

(1 + 𝐾𝑎𝐾𝑚) + 𝑠𝜏𝑚
Hence

𝑒𝑠𝑠 =
25

1 + 𝐾𝑎𝐾𝑚

3.2.5.2 Part(b)

When 𝑒𝑠𝑠 is one degree per second, then from the above

1 =
25

1 + 𝐾𝑎𝐾𝑚

Or

𝐾𝑎𝐾𝑚 = 24

3.2.5.3 Part(c)

To find the step response, we find the closed loop 𝑉𝑏(𝑠)
𝑉𝑐(𝑠)

transfer function first. Substituting
(2) into (1) found in part (a) above to obtain an expression for 𝑉𝑏 (𝑠)

𝑉𝑏 (𝑠) = �𝑉𝑐 (𝑠) �
𝐾𝑔

1 + 𝑠𝜏𝑔
� − 𝐾𝑡𝑉𝑏 (𝑠)� 𝐾𝑎 �

𝐾𝑚
1 + 𝑠𝜏𝑚

�

𝑉𝑏 (𝑠) �1 +
𝐾𝑚𝐾𝑡𝐾𝑎
1 + 𝑠𝜏𝑚

� = 𝑉𝑐 (𝑠)
𝐾𝑔𝐾𝑎𝐾𝑚

�1 + 𝑠𝜏𝑔� (1 + 𝑠𝜏𝑚)

Hence the closed loop transfer function is

𝑉𝑏 (𝑠)
𝑉𝑐 (𝑠)

=

𝐾𝑔𝐾𝑎𝐾𝑚
�1+𝑠𝜏𝑔�(1+𝑠𝜏𝑚)

1 + 𝐾𝑚𝐾𝑡𝐾𝑎
1+𝑠𝜏𝑚

=
1

�1 + 𝑠𝜏𝑔�
𝐾𝑔𝐾𝑎𝐾𝑚

(1 + 𝑠𝜏𝑚) + 𝐾𝑚𝐾𝑡𝐾𝑎

Using same assumptions as part (a), and now using that 𝜏𝑔 is negligible so that 1
�1+𝑠𝜏𝑔�

≈ 1

in the above, and using 𝑉𝑐 (𝑠) =
1
𝑠 since we are told in this part it is a step input (should we

have used 25
𝑠 again here? It is not clear, but it says step input so I think 1

𝑠 should be used
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in this part), then the above simplifies to

𝑉𝑏 (𝑠) = �
1
𝑠 �

𝐾𝑎𝐾𝑚
(1 + 𝑠𝜏𝑚) + 𝐾𝑚𝐾𝑎

=
1
𝑠

𝐾𝑎𝐾𝑚
(1 + 𝐾𝑚𝐾𝑎) + 𝑠𝜏𝑚

=
𝐾𝑎𝐾𝑚
𝜏𝑚

1
𝑠

1

𝑠 + �1+𝐾𝑚𝐾𝑎𝜏𝑚
�

We now need to find the inverse Laplace transform. Using partial fractions

�
𝐾𝑎𝐾𝑚
𝜏𝑚

�
1
𝑠

1

𝑠 + �1+𝐾𝑚𝐾𝑎𝜏𝑚
�
=
𝐴
𝑠
+

𝐵

𝑠 + �1+𝐾𝑚𝐾𝑎𝜏𝑚
�

(3)

Hence

𝐴 = lim
𝑠→0

�
𝐾𝑎𝐾𝑚
𝜏𝑚

�
1

1+𝐾𝑚𝐾𝑎
𝜏𝑚

+ 𝑠
=

𝐾𝑎𝐾𝑚
1 + 𝐾𝑚𝐾𝑎

And

𝐵 = lim
𝑠→−(1+𝐾𝑚𝐾𝑎)

𝜏𝑚

𝐾𝑎𝐾𝑚
𝜏𝑚

1
𝑠
=
𝐾𝑎𝐾𝑚
𝜏𝑚

1
−(1+𝐾𝑚𝐾𝑎)

𝜏𝑚

= −
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎

Now that we found 𝐴,𝐵 using partial fractions, we replace these values in (3) to obtain
𝑉𝑏 (𝑠)

𝑉𝑏 (𝑠) =
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎

1
𝑠
−

𝐾𝑎𝐾𝑚
1 + 𝐾𝑚𝐾𝑎

1
1+𝐾𝑚𝐾𝑎

𝜏𝑚
+ 𝑠

(4)

Now we can apply inverse Laplace transform. Hence

𝑣𝑏 (𝑡) = �
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎
−

𝐾𝑎𝐾𝑚
1 + 𝐾𝑚𝐾𝑎

𝑒−
1+𝐾𝑚𝐾𝑎

𝜏𝑚
𝑡
� 𝑢 (𝑡)

=
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎
�1 − 𝑒

− 1+𝐾𝑚𝐾𝑎
𝜏𝑚

𝑡
� 𝑢 (𝑡)

Let

𝑞 = 1+𝐾𝑚𝐾𝑎
𝜏𝑚

and

𝑘 = 𝐾𝑎𝐾𝑚
𝜏𝑚

Then 𝑣𝑏 (𝑡) can be written as required

𝑣𝑏 (𝑡) =
𝑘
𝑞
�1 − 𝑒−𝑞𝑡� 𝑢 (𝑡)

3.2.5.4 Part(d)

We first need to find the steady state 𝑣𝑏 (𝑡). From (4) found above in part (c)

𝑉𝑏 (𝑠) =
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎

1
𝑠
−

𝐾𝑎𝐾𝑚
1 + 𝐾𝑚𝐾𝑎

1
1+𝐾𝑚𝐾𝑎

𝜏𝑚
+ 𝑠

Then applying F.V.T. assuming stability

𝑉𝑏 (∞) = lim
𝑠→0

𝑠𝑉𝑏 (𝑠)

= lim
𝑠→0

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎝
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎

1
𝑠
−

𝐾𝑎𝐾𝑚
1 + 𝐾𝑚𝐾𝑎

1
1+𝐾𝑚𝐾𝑎

𝜏𝑚
+ 𝑠

⎞
⎟⎟⎟⎟⎟⎟⎠

=
𝐾𝑎𝐾𝑚

1 + 𝐾𝑚𝐾𝑎

=
𝑘
𝑞

117



3.2. HW 2 CHAPTER 3. HWS

Let the settling time be 𝑡𝑠, then we want to solve for 𝑡𝑠 from

𝑣𝑏 (𝑡𝑠) = 0.98𝑉𝑏 (∞)
𝑘
𝑞
�1 − 𝑒−𝑞𝑡𝑠� = 0.98

𝑘
𝑞

1 − 𝑒−𝑞𝑡𝑠 = 0.98
𝑒−𝑞𝑡𝑠 = 0.02

Taking natural logs on both sides gives

−𝑞𝑡𝑠 = ln (0.02)
𝑞𝑡𝑠 = 3.912

Hence

𝑡𝑠 =
3.912

� 1+𝐾𝑚𝐾𝑎
𝑡𝑚

�

Using 𝑡𝑚 = 0.4 seconds in the above gives

𝑡𝑠 =
1.5648
1 + 𝐾𝑚𝐾𝑎

For 𝑡𝑠 ≤ 0.04 then
1.5648

(1 + 𝐾𝑚𝐾𝑎)
≤ 0.04

1 + 𝐾𝑚𝐾𝑎 ≥
1.5648
0.04

1 + 𝐾𝑚𝐾𝑎 ≥ 39.12

Hence

𝐾𝑚𝐾𝑎 ≥ 38.12
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3.2.6 HW 2 key solution

, 
ECD332

-}IW. #2 Solutions

s 2 + l 0 J s + ll-(a)w.(s)=;ffiT

. l  -  I
- rh+-1001 "1,*=-  e ' | r . . *=-

"rs+lOXs+100)l-(b)w.(s)=ffi

t,. l*=o t. l,*=1 e.l*.on =-

l-(c) W.(s) =
s 2 ( s 2 + s + l )

3\o/ - s'1s' + s + l) + K(l+ 2s)(l+ as)

t.l*=o ..1,*=o ,.1*.-.=*

l-(d) Systems with e.l* = k (bcing k finitc and different from 0) have G(s) with no

poles at the origin (s = 0); Systems with e.l,* = k (being k finirc and diffcrent fr,om 0)

have G(s) with one pole at the origrn; Systems with e.lr_rr. = k (being k finitc ard
different from 0) have G(s) with trvo poles at thc origin.

;
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r00

R(s) +

(0.05s+l)(0.05s+l)

Where D(s) is the constant input D(s) = 925
s

So lim dt) = liry sE(s)
l--t- r-+0

= n'[,
rd l \

s(0.05s+1X0.05s+l)
s(0.05s + 1)(0.05s+t)+ (Zs + t)tm

100
+ l )

100
(O05s + l)(O05s + l)

D(s)

025 -100s 15S _
s s(005s + lX0.05s + t) + (Zs + tlm F

IJ= 
m 

= o'ol5

3I-et G(s) = *, where n(s) ard d(s) are polynomials. Thend ( s ) '

E(s)_ I  __ I  d(s)
RGt=t+c(')=F=4ffi

d(s)

n(s)

Ii'l = G(s) =-9(l)-= n(s)
RG) l+G(s)  

r *  
n ( t )  

-d (s )+n(s )

d(s)

Since the denominaton of the closed loop function is s3 + 4s2 + 6s + 4 then we have

n ( s ) + d ( s ) = s 3 + 4 s 2 + 6 + 4

Now, since the steady statc error for a step input is zero, wc have

* ( z + !

lim sE(s) - li,n r-d(t) d(s) I;b'*\-" ;jt" n(sffi R(s) - 
}gt;;fu1= 0

;
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Ttrc cquubn abora irplics that lir4d(s) = 0, or in othcr worrds d(s) = s p(s), whcre p(s)

is a pdymnial. So jrut trke

d(s )=s3+4s2+&

ard as consoquerEe we have

n(s) = 4

G(s)=#

Notc that this is not the only possiblc answcr.
The stcady statc to a unitramp is

"3 +Asl +6r I 6
l imsE(s)= l ims#*=i=15rdt d r-a4ff i f ; t=;='

4-(e) Fint find tlrc transfcrfunctiqrs facach sysEm

n:_-_ ,^ Y(s) _ K,Ko
Ilgurc t' 

RGi= s(4s+l)+K,Ko

E:_._ ". Y(r) _ KrK2Ko
.gur 't 

RG 
= 

(4* * l) + KsKo

Ncxt calculatc thc srcady strtr crru dr to a scp.

Figrre l: W.(s) = R(s)- Y(s) = n6{r 
#r]

E(5)=nr,{r #lqJ

E(s),=-t,t"ffi]
,.1*=H*ft=o

;
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Figure z' 5.trt = R(s)-Y(s) = nrr{r 
#t]

[.('F*o{'-ffi]
L6)=-,,{ffi

,.1.r=gffi
..1*=ff=o #

Whcn 1+ KrKo - K3K2K. = 0 thcn thc stcp rcspottsc will haw zc,ro stcady-statc
error. Thc constanrc K, and Kr will bc chccn so tlut this is tnrc.

Now that wc know that both of thc syst€ms havc zcro stcady-starc crror to stcp
inputs, wc can say that for cach trtnsftr firctbn, TF(s), thc DC gain (gaur at
ftcqrncy zrro) is I which npuls TF(0) = I fc botr syrcms.

Ncxt, wc can 6nd thc.stcady stalc c(rcr duc to unit nnp. Itm thc equatbru ebove,
we soe thc patern is W.(s) = n(r[l-ffft)]which rncurr thet

r-1,*=rimdr-ff(,t+=Ts+=ry|_
Givcn that wc want c.l,* = l, wc harrc thc folbwing cquatbns for systans that

nrc'rc strdying

Fig'rc,' -#1-" =
(4s '+s+K,Ks)r l . .n

* K r = l

Figr'e r. - o(Ttslll.- = 
ffi 

= t

=  
I  

=  
I  

= l
K,Ko Kr

+ 4KrK, - ( l+ K3)2

;

122



3.2. HW 2 CHAPTER 3. HWS

From equation # wc get I + K, = KrKr. Substituting thins ino equcion * we get

4(1+ Kr; = (l + Kr)2+ Kr = -1 or Kr = 3

Solving for K, in equation * we find that

1+ K"Kr=Ti

4
So, we get K, = 0 or K, = 

i 
but K, = 0 is not feasible.

The final rcsult is then

K r = 1  K r = :  K r = 3

4-(b) I.et Ko = 1+6

Figure l: e.l*
4 s 2 + s  4 s 2 + s=lsffi=Sre'=o

which is indcpendcnt of 6.

Figure 2:e-ln=lSffi

..lo* = H
Substituting with the results obaincd in Part (a) wc get

, s(3- 1*)".1* =ft;f *o
Hence, thc srcady statc crror is not zero in this casc

+(c) I agee because the first system is cbarly robust to variatbns in Ko, whib the

second is not.

;
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5. Uncler stated assumption, the error TF is

E(") )  1

V"(r): TT@*^4

A straightforward calculation with V"(s) :251s Ieads to

25
e"t: l , iSssE(s) 

: 
r+ K"K*

5-(b) The condition

Ieads to

1

Ieads to KoK^ :24.

5-(c) With ,R(s) : !f s, a Mason calculation gives bellows output

T--  K
V 6 @ ) :  -  ,  ,s(s * u#-) s(s * q)

where
KoK^ t + KoK-

h -  
, -  

i  q :  
, -

Now, the inverse Laplace transform gives the desired result.

5-(d) Enforcing the error requirement

e ( t \ :  
K  

, - n '  < 0 ' 0 2 K  a t  f  : 0 ' 0 4- \ - /  
q  

-  
q

.04q> 4: i .". '  o.o+1!!44t1' a'  0 .4

requirement KoK- > 39.with resulting Ioop gain

;
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3.3 HW 3

3.3.1 Problem 1

SOLUTION:

𝐺 (𝑠) =
𝐾𝑠 + 1

𝑠3 + 𝑠2 + (𝐾 + 𝑘) 𝑠 + 1

3.3.1.1 Part (a)

For 𝐾 = 1 the above becomes

𝐺 (𝑠) =
𝑠 + 1

𝑠3 + 𝑠2 + (1 + 𝑘) 𝑠 + 1
Hence

𝑆𝐺𝑘 =
𝑑𝐺
𝑑𝑘

𝑘
𝐺

=
𝑑
𝑑𝑘

𝑠 + 1
𝑠3 + 𝑠2 + (1 + 𝑘) 𝑠 + 1

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑘
𝑠+1

𝑠3+𝑠2+(1+𝑘)𝑠+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=
−𝑠 (𝑠 + 1)

�𝑠 + 𝑘𝑠 + 𝑠2 + 𝑠3 + 1�
2

𝑘 �𝑠3 + 𝑠2 + (1 + 𝑘) 𝑠 + 1�
𝑠 + 1

=
−𝑘𝑠

1 + (1 + 𝑘) 𝑠 + 𝑠2 + 𝑠3

At nominal 𝑘 = 2 the above becomes

𝑆𝐺𝑘 �𝑘=2 =
−2𝑠

3𝑠 + 𝑠2 + 𝑠3 + 1
Let 𝑠 = 𝑗𝜔 then

𝑆𝐺𝑘 =
−2 �𝑗𝜔�

3𝑗𝜔 + �𝑗𝜔�
2
+ �𝑗𝜔�

3
+ 1

=
−2𝑗𝜔

𝑗 �3𝜔 − 𝜔3� + �1 − 𝜔2�

Taking the magnitude

�𝑆𝐺𝑘 � =
2𝜔

��1 − 𝜔
2�

2
+ �3𝜔 − 𝜔3�

2

Here is a plot of �𝑆𝐺𝑘 � as function of 𝜔
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Out[126]=
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Problem 1, part (a)

3.3.1.2 Part (b)

For 𝐾 = 100 the transfer function becomes

𝐺 (𝑠) =
𝐾𝑠 + 1

𝑠3 + 𝑠2 + (𝐾 + 𝑘) 𝑠 + 1

=
100𝑠 + 1

𝑠3 + 𝑠2 + (100 + 𝑘) 𝑠 + 1
Hence

𝑆𝐺𝑘 =
𝑑𝐺
𝑑𝑘

𝑘
𝐺

=
𝑑
𝑑𝑘

100𝑠 + 1
𝑠3 + 𝑠2 + (100 + 𝑘) 𝑠 + 1

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑘
100𝑠+1

𝑠3+𝑠2+(100+𝑘)𝑠+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=
−𝑠 (100𝑠 + 1)

�100𝑠 + 𝑘𝑠 + 𝑠2 + 𝑠3 + 1�
2

𝑘 �𝑠3 + 𝑠2 + (100 + 𝑘) 𝑠 + 1�
100𝑠 + 1

=
−𝑘𝑠

100𝑠 + 𝑘𝑠 + 𝑠2 + 𝑠3 + 1
At nominal 𝑘 = 2 the above becomes

𝑆𝐺𝑘 �𝑘=2 =
−2𝑠

100𝑠 + 2𝑠 + 𝑠2 + 𝑠3 + 1

=
−2𝑠

102𝑠 + 𝑠2 + 𝑠3 + 1
Let 𝑠 = 𝑗𝜔 then

𝑆𝐺𝑘 =
−2 �𝑗𝜔�

102𝑗𝜔 + �𝑗𝜔�
2
+ �𝑗𝜔�

3
+ 1

=
−2𝑗𝜔

102𝑗𝜔 − 𝜔2 − 𝑗𝜔3 + 1

=
−2𝑗𝜔

𝑗 �102𝜔 − 𝜔3� + �1 − 𝜔2�

Taking the magnitude

�𝑆𝐺𝑘 � =
2𝜔

��1 − 𝜔
2�

2
+ �102𝜔 − 𝜔3�

2

Here is a plot of �𝑆𝐺𝑘 � as function of 𝜔
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Out[156]=
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Problem 1, part (b)

We clearly see that as 𝐾 became much larger, resonance occurs near 𝜔 = 10. This shows
that sensitivity of transfer function to changes in 𝑘, depends on the value of 𝐾.

3.3.2 Problem 2

ECE 332 - Homework ff4
Due Tuesday, October 13, 2011

1. Consider the system with transfer function

K s * l
G(s )  :

s 3 + s 2 + ( K + k ) + 1

(a) For K : l, find the sensitivity ,Sf; of this transfer function with respect

to k assuming nominal value k :2. Then plot is magnitude ars a function

of frequency.

(b) Repeat (u) with K : 100 and compare the effect of a large loop

gain on the sensitivity.

2. In many instaocel, stcdy statc errors in control eyctcm are due to some non-lineariticr
such as dcad zooes. A 'Clasg B' amplifier is a typical exa,mple of a dcvice haviag a
dead zone where it takes -l Volt of ioput sigjal to tur:n oo thc traogistor. Oncc tbc
device is on, however, it can be assumed to function lincarly. The Class B amplifier in
Figure I can be cbaracterizcd mathematically (assuming a lV threshold voltage and
Vcc = o) by ff(.) which is given by:

[ 0  i f  - l s u s l ,
Y : l u - L  i f  u > 1 ,

I u + L  i f  u  < - r .

Vsc

_Vcc

Figure 1: Class B Amplifier Circuit

(a) Develop a plot of Y vcnur f, with K = I in Figurc 2.

Figure 2: Fecdback Syrtem

(b) If  r(t) = Ssin(l),  sketch y(t).

(c) Now let l( = l0 and develop a plot of Y(s) venus R(s). Commenl on the

difierence in the output due to tbe sinusoid - coosider amplitude, distortion, etc'

(d) Comment on the change to Y(s) ve6us 8(s) if the gain block K were placed in

the feedback loop instead of lhe forward path'

3' The blocl diagram of a fcdbrck control syrtcrn is shown rn Figure 3

n(s)

Figure 3: Block Diagrart

(a) Apply Mason's gain formula to the block diagraru to find the transfer functions

c(') | c(") I
R(") l "o  N( t ) ln-o

E:cpress C(s) in terms of R(c) and N(s) wheo both inputs are applied simultare

ously.

(b) Find thc decired relation amoDg the traosfer functionr Gt("), Gr("), Gt(r), G.(')'
' ' 

ffr(s) asd &(s) so that thc oritput C(s) is not a,ffccted by the disturbance signal

N(s) at all.

Gr(s)

f fr(s)

SOLUTION:
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3.3.2.1 Part (a)

+

-
K nonlinear Y (s)x = K(R−N(x)) N(x)R(s)

R−N(x)

From the above we see that

𝑌 = 𝑁 (𝑥) (1)

The plot of 𝑌 (𝑥) is given below based on the definition given in the problem

Out[649]=
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At the output of the controller we have

𝑥 = 𝑘 (𝑅 − 𝑁 (𝑥))
𝑥 = 𝑘 (𝑅 − 𝑌)
𝑥 = 𝑘𝑅 − 𝑘𝑌

𝑌 = 𝑅 −
𝑥
𝑘

(2)

Equations (1) and (2) must both hold. We now setup a table of 𝑅 and corresponding 𝑌
values, and using 𝑘 = 1 for this part, we obtain

𝑅 𝑌 = 𝑅 − 𝑥 solution of 𝑌 = 𝑁 (𝑥) 𝑌 at solution

0 −𝑥 𝑥 = 0 0
0.1 0.1 − 𝑥 𝑥 = 0 0
0.2 0.2 − 𝑥 ⋮ ⋮

see program ⋮ ⋮ ⋮

Small code was written to finish the above table, using 𝑅 = −2⋯2 range with increments
of 0.1. Here is the generated table, followed by the plot
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Out[181]=

r r-x/k solution of N(x)= r-x/k Y at solution
-2. -2.-x -1.5 -0.5
-1.9 -1.9-x -1.45 -0.45
-1.8 -1.8-x -1.4 -0.4
-1.7 -1.7-x -1.35 -0.35
-1.6 -1.6-x -1.3 -0.3
-1.5 -1.5-x -1.25 -0.25
-1.4 -1.4-x -1.2 -0.2
-1.3 -1.3-x -1.15 -0.15
-1.2 -1.2-x -1.1 -0.1
-1.1 -1.1-x -1.05 -0.05
-1. -1.-x -1. 0
-0.9 -0.9-x -0.9 0
-0.8 -0.8-x -0.8 0
-0.7 -0.7-x -0.7 0
-0.6 -0.6-x -0.6 0
-0.5 -0.5-x -0.5 0
-0.4 -0.4-x -0.4 0
-0.3 -0.3-x -0.3 0
-0.2 -0.2-x -0.2 0
-0.1 -0.1-x -0.1 0
0. 0.-x 0 0
0.1 0.1-x 0.1 0
0.2 0.2-x 0.2 0
0.3 0.3-x 0.3 0
0.4 0.4-x 0.4 0
0.5 0.5-x 0.5 0
0.6 0.6-x 0.6 0
0.7 0.7-x 0.7 0
0.8 0.8-x 0.8 0
0.9 0.9-x 0.9 0
1. 1.-x 1. 0
1.1 1.1-x 1.05 0.05
1.2 1.2-x 1.1 0.1
1.3 1.3-x 1.15 0.15
1.4 1.4-x 1.2 0.2
1.5 1.5-x 1.25 0.25
1.6 1.6-x 1.3 0.3
1.7 1.7-x 1.35 0.35
1.8 1.8-x 1.4 0.4
1.9 1.9-x 1.45 0.45
2. 2.-x 1.5 0.5

And plot of 𝑌 vs. 𝑅 is below
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This below is the above plot, but with the original device output without feedback, in order
to better see the e�ect of feedback with 𝑘 = 1.

no feedback

feedback k=1
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Nonlinear device

For 𝑘 = 1, the dead zone did not change. But the slope became small after 𝑥 = ±1

3.3.2.2 Part (b)

When 𝑟 (𝑡) = 5 sin (𝑡), the following table shows result for 𝑡 = −2…2.

Out[188]=

t r = 5 sin(t) r-x/k solution of N(x)=r-x/k Y at solution
-2. -4.54649 -4.54649-x -2.77324 -1.77324
-1.9 -4.7315 -4.7315-x -2.86575 -1.86575
-1.8 -4.86924 -4.86924-x -2.93462 -1.93462
-1.7 -4.95832 -4.95832-x -2.97916 -1.97916
-1.6 -4.99787 -4.99787-x -2.99893 -1.99893
-1.5 -4.98747 -4.98747-x -2.99374 -1.99374
-1.4 -4.92725 -4.92725-x -2.96362 -1.96362
-1.3 -4.81779 -4.81779-x -2.9089 -1.9089
-1.2 -4.6602 -4.6602-x -2.8301 -1.8301
-1.1 -4.45604 -4.45604-x -2.72802 -1.72802
-1. -4.20735 -4.20735-x -2.60368 -1.60368
-0.9 -3.91663 -3.91663-x -2.45832 -1.45832
-0.8 -3.58678 -3.58678-x -2.29339 -1.29339
-0.7 -3.22109 -3.22109-x -2.11054 -1.11054
-0.6 -2.82321 -2.82321-x -1.91161 -0.911606
-0.5 -2.39713 -2.39713-x -1.69856 -0.698564
-0.4 -1.94709 -1.94709-x -1.47355 -0.473546
-0.3 -1.4776 -1.4776-x -1.2388 -0.238801
-0.2 -0.993347 -0.993347-x -0.993347 0
-0.1 -0.499167 -0.499167-x -0.499167 0
0. 0. 0.-x 0 0
0.1 0.499167 0.499167-x 0.499167 0
0.2 0.993347 0.993347-x 0.993347 0
0.3 1.4776 1.4776-x 1.2388 0.238801
0.4 1.94709 1.94709-x 1.47355 0.473546
0.5 2.39713 2.39713-x 1.69856 0.698564
0.6 2.82321 2.82321-x 1.91161 0.911606
0.7 3.22109 3.22109-x 2.11054 1.11054
0.8 3.58678 3.58678-x 2.29339 1.29339
0.9 3.91663 3.91663-x 2.45832 1.45832
1. 4.20735 4.20735-x 2.60368 1.60368
1.1 4.45604 4.45604-x 2.72802 1.72802
1.2 4.6602 4.6602-x 2.8301 1.8301
1.3 4.81779 4.81779-x 2.9089 1.9089
1.4 4.92725 4.92725-x 2.96362 1.96362
1.5 4.98747 4.98747-x 2.99374 1.99374
1.6 4.99787 4.99787-x 2.99893 1.99893
1.7 4.95832 4.95832-x 2.97916 1.97916
1.8 4.86924 4.86924-x 2.93462 1.93462
1.9 4.7315 4.7315-x 2.86575 1.86575
2. 4.54649 4.54649-x 2.77324 1.77324

the following is the plot of the output with the feedback for 𝑘 = 1
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no feedback

feedback with r=5 sin(t), k=1
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Matlab code to plot the solution

%matlab code to generate plot for part(b), HW3, problem 2
%ECE 332
close all; clear all;
figure
t=0:.1:10;
f=@(x) (x+1).*(x<-1)+(x-1).*(x>1)+0; %non-linear device
r = 5 *sin(t); %input
k =1; %change to 10 for second part
x = fsolve(@(x) f(x)-(r-x/k),r);

plot(t,f(x));
grid;
title('output of 5*sin(t), k=1');

3.3.2.3 Part (c)

Now 𝑘 = 10, and part(b) was repeated. the following table shows result for 𝑡 = −2…2.
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t r = 5 sin(t) r-x/10 solution of N(x)=r-x/10 Y at solution
-2. -4.54649 -4.54649-x -5.04226 -4.04226
-1.9 -4.7315 -4.7315-x -5.21045 -4.21045
-1.8 -4.86924 -4.86924-x -5.33567 -4.33567
-1.7 -4.95832 -4.95832-x -5.41666 -4.41666
-1.6 -4.99787 -4.99787-x -5.45261 -4.45261
-1.5 -4.98747 -4.98747-x -5.44316 -4.44316
-1.4 -4.92725 -4.92725-x -5.38841 -4.38841
-1.3 -4.81779 -4.81779-x -5.2889 -4.2889
-1.2 -4.6602 -4.6602-x -5.14563 -4.14563
-1.1 -4.45604 -4.45604-x -4.96003 -3.96003
-1. -4.20735 -4.20735-x -4.73396 -3.73396
-0.9 -3.91663 -3.91663-x -4.46967 -3.46967
-0.8 -3.58678 -3.58678-x -4.1698 -3.1698
-0.7 -3.22109 -3.22109-x -3.83735 -2.83735
-0.6 -2.82321 -2.82321-x -3.47565 -2.47565
-0.5 -2.39713 -2.39713-x -3.0883 -2.0883
-0.4 -1.94709 -1.94709-x -2.67917 -1.67917
-0.3 -1.4776 -1.4776-x -2.25236 -1.25236
-0.2 -0.993347 -0.993347-x -1.81213 -0.812133
-0.1 -0.499167 -0.499167-x -1.36288 -0.362879
0. 0. 0.-x 0 0
0.1 0.499167 0.499167-x 1.36288 0.362879
0.2 0.993347 0.993347-x 1.81213 0.812133
0.3 1.4776 1.4776-x 2.25236 1.25236
0.4 1.94709 1.94709-x 2.67917 1.67917
0.5 2.39713 2.39713-x 3.0883 2.0883
0.6 2.82321 2.82321-x 3.47565 2.47565
0.7 3.22109 3.22109-x 3.83735 2.83735
0.8 3.58678 3.58678-x 4.1698 3.1698
0.9 3.91663 3.91663-x 4.46967 3.46967
1. 4.20735 4.20735-x 4.73396 3.73396
1.1 4.45604 4.45604-x 4.96003 3.96003
1.2 4.6602 4.6602-x 5.14563 4.14563
1.3 4.81779 4.81779-x 5.2889 4.2889
1.4 4.92725 4.92725-x 5.38841 4.38841
1.5 4.98747 4.98747-x 5.44316 4.44316
1.6 4.99787 4.99787-x 5.45261 4.45261
1.7 4.95832 4.95832-x 5.41666 4.41666
1.8 4.86924 4.86924-x 5.33567 4.33567
1.9 4.7315 4.7315-x 5.21045 4.21045
2. 4.54649 4.54649-x 5.04226 4.04226

And the following is the plot of the result

no feedback

feedback, k=10, r=5 sin(t)
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The above plot shows that with 𝑘 = 10, the dead zone has shrunk to almost zero, and the
output of the nonlinear device is now linear. This is good. This is another plot, for larger
range of input values.
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no feedback

feedback, k=10, r=5sin(t)
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As range of input values become large, the output of the feedback linear device approaches
the open loop device output. This is outside the dead zone region as can be seen from the
above. Very close to the origin, there is very small non-linearity remains, but it is hard to
see.

3.3.2.4 part (d)

When the gain 𝑘 is in the feedback loop, as shown in the following diagram

+

-

K

nonlinear Y (s)x = R− kY N(x)R(s)

Therefore

𝑥 = 𝑅 − 𝑘𝑌

𝑌 =
(𝑅 − 𝑥)
𝑘

Before, when the gain was in the feedforward, 𝑌 = 𝑅 − 𝑥
𝑘 , so now 𝑘 a�ects 𝑅 as well. Using

this new 𝑥, the above plot was reproduced for the case of 𝑟 (𝑡) = 5 sin (𝑡).

the following table shows result for 𝑡 = −2…2.
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t r = 5 sin(t) (r-x)/10 solution of N(x)=(r-x)/10 Y at solution
-2. -4.54649 (-4.54649-x)/10 -1.32241 -0.322408
-1.9 -4.7315 (-4.7315-x)/10 -1.33923 -0.339227
-1.8 -4.86924 (-4.86924-x)/10 -1.35175 -0.351749
-1.7 -4.95832 (-4.95832-x)/10 -1.35985 -0.359848
-1.6 -4.99787 (-4.99787-x)/10 -1.36344 -0.363443
-1.5 -4.98747 (-4.98747-x)/10 -1.3625 -0.362498
-1.4 -4.92725 (-4.92725-x)/10 -1.35702 -0.357023
-1.3 -4.81779 (-4.81779-x)/10 -1.34707 -0.347072
-1.2 -4.6602 (-4.6602-x)/10 -1.33275 -0.332745
-1.1 -4.45604 (-4.45604-x)/10 -1.31419 -0.314185
-1. -4.20735 (-4.20735-x)/10 -1.29158 -0.291578
-0.9 -3.91663 (-3.91663-x)/10 -1.26515 -0.265149
-0.8 -3.58678 (-3.58678-x)/10 -1.23516 -0.235162
-0.7 -3.22109 (-3.22109-x)/10 -1.20192 -0.201917
-0.6 -2.82321 (-2.82321-x)/10 -1.16575 -0.165747
-0.5 -2.39713 (-2.39713-x)/10 -1.12701 -0.127012
-0.4 -1.94709 (-1.94709-x)/10 -1.0861 -0.0860992
-0.3 -1.4776 (-1.4776-x)/10 -1.04342 -0.0434183
-0.2 -0.993347 (-0.993347-x)/10 -0.993347 0
-0.1 -0.499167 (-0.499167-x)/10 -0.499167 0
0. 0. (0.-x)/10 0 0
0.1 0.499167 (0.499167-x)/10 0.499167 0
0.2 0.993347 (0.993347-x)/10 0.993347 0
0.3 1.4776 (1.4776-x)/10 1.04342 0.0434183
0.4 1.94709 (1.94709-x)/10 1.0861 0.0860992
0.5 2.39713 (2.39713-x)/10 1.12701 0.127012
0.6 2.82321 (2.82321-x)/10 1.16575 0.165747
0.7 3.22109 (3.22109-x)/10 1.20192 0.201917
0.8 3.58678 (3.58678-x)/10 1.23516 0.235162
0.9 3.91663 (3.91663-x)/10 1.26515 0.265149
1. 4.20735 (4.20735-x)/10 1.29158 0.291578
1.1 4.45604 (4.45604-x)/10 1.31419 0.314185
1.2 4.6602 (4.6602-x)/10 1.33275 0.332745
1.3 4.81779 (4.81779-x)/10 1.34707 0.347072
1.4 4.92725 (4.92725-x)/10 1.35702 0.357023
1.5 4.98747 (4.98747-x)/10 1.3625 0.362498
1.6 4.99787 (4.99787-x)/10 1.36344 0.363443
1.7 4.95832 (4.95832-x)/10 1.35985 0.359848
1.8 4.86924 (4.86924-x)/10 1.35175 0.351749
1.9 4.7315 (4.7315-x)/10 1.33923 0.339227
2. 4.54649 (4.54649-x)/10 1.32241 0.322408

And the following is the plot

no feedback

gain in feedback, k=10, r=5 sin(t)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

x

Y
(x
)

Nonlinear device

We see the e�ect of reducing 𝑅 (since it is now divided by 𝑘 > 1) and the output from the
non-linear device is not as good as when the gain was in the feedforward. The dead zone
has returned back and the output after the dead zone is much smaller in amplitude than
the original open loop output. Putting the gain in the feedback loop does not appear to
be a good choice in this case.
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3.3.3 Problem 3
(c) Now let l( = l0 and develop a plot of Y(s) venus R(s). Commenl on the

difierence in the output due to tbe sinusoid - coosider amplitude, distortion, etc'

(d) Comment on the change to Y(s) ve6us 8(s) if the gain block K were placed in

the feedback loop instead of lhe forward path'

3' The blocl diagram of a fcdbrck control syrtcrn is shown rn Figure 3

n(s)

Figure 3: Block Diagrart

(a) Apply Mason's gain formula to the block diagraru to find the transfer functions

c(') | c(") I
R(") l "o  N( t ) ln-o

E:cpress C(s) in terms of R(c) and N(s) wheo both inputs are applied simultare

ously.

(b) Find thc decired relation amoDg the traosfer functionr Gt("), Gr("), Gt(r), G.(')'
' ' 

ffr(s) asd &(s) so that thc oritput C(s) is not a,ffccted by the disturbance signal

N(s) at all.

Gr(s)

f fr(s)

SOLUTION:

3.3.3.1 Part(a)

The first step is to convert the block diagram to signal flow diagram. By assigning variables
as shown below, the following signal diagram we drawn

Converted to signal flow as

R(s)

N(s)

G1 G2 G3

−H1

−H2

G4

−1

−1

C(s)e1 e2

e3 e4 e5

For finding 𝐶(𝑠)
𝑅(𝑠) then 𝑁 (𝑠) is set to zero. There are two forward paths from 𝑅 (𝑠) to 𝐶 (𝑠)

they are

𝑀1 = {1, 1, 𝐺1, 𝐺2, 𝐺3, 1} = 𝐺1𝐺2𝐺3

𝑀2 = {1, 1, 𝐺4, 1} = 𝐺4
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The corresponding Mason deltas are

Δ1 = 1
Δ2 = 1 − (𝐺2) (−1) = 1 + 𝐺2

The loops, one at a time are

𝐿1 = (𝐺2) (−1) , (𝐺1) (𝐺2) (−𝐻1) , (𝐺2) (𝐺3) (−𝐻2) , (1) (𝐺1) (𝐺2) (𝐺3) (1) (−1) , (𝐺4) (1) (−1)
= −𝐺2, −𝐺1𝐺2𝐻1, −𝐻2𝐺2𝐺3, −𝐺1𝐺2𝐺3, −𝐺4

Two at a time are

𝐿2 = {(𝐺2) (−1) × (𝐺4) (1) (−1) (1)}
= 𝐺2𝐺4

Hence

Δ = 1 −�(−𝐺2 − 𝐺1𝐺2𝐻1 − 𝐻2𝐺2𝐺3 − 𝐺1𝐺2𝐺3 − 𝐺4) +�𝐺2𝐺4

= 1 + 𝐺2 + 𝐺1𝐺2𝐻1 + 𝐻2𝐺2𝐺3 + 𝐺1𝐺2𝐺3 + 𝐺4 + 𝐺2𝐺4

Hence
𝐶 (𝑠)
𝑅 (𝑠)

=
∑𝑀𝑖Δ𝑖
Δ

=
𝐺1𝐺2𝐺3 (1) + 𝐺4 (1 + 𝐺2)

1 + 𝐺2 + 𝐺1𝐺2𝐻1 + 𝐻2𝐺2𝐺3 + 𝐺1𝐺2𝐺3 + 𝐺4 + 𝐺2𝐺4

Hence

𝐶(𝑠)
𝑅(𝑠) =

𝐺1𝐺2𝐺3+𝐺4+𝐺4𝐺2
1+𝐺2+𝐺1𝐺2𝐻1+𝐻2𝐺2𝐺3+𝐺1𝐺2𝐺3+𝐺4+𝐺2𝐺4

For finding 𝐶(𝑠)
𝑁(𝑠) then 𝑅 (𝑠) is set to zero. There is now one forward path from 𝑁 (𝑠) to 𝐶 (𝑠)

𝑀1 = {1, 1} = 1

The corresponding Mason deltas are

Δ1 = 1 − {(𝐺2) (−1) + (𝐺1) (𝐺2) (−𝐻1)} = 1 + 𝐺2 + 𝐺1𝐺2𝐻1

The loops remain the same as above. Hence the mason delta do not change. Therefore

𝐶 (𝑠)
𝑁 (𝑠)

=
∑𝑀𝑖Δ𝑖
Δ

=
(1) (1 + 𝐺2 + 𝐺1𝐺2𝐻1)

1 + 𝐺2 + 𝐺1𝐺2𝐻1 + 𝐻2𝐺2𝐺3 + 𝐺1𝐺2𝐺3 + 𝐺4 + 𝐺2𝐺4

Hence

𝐶(𝑠)
𝑁(𝑠) =

1+𝐺2+𝐺1𝐺2𝐻1
1+𝐺2+𝐺1𝐺2𝐻1+𝐻2𝐺2𝐺3+𝐺1𝐺2𝐺3+𝐺4+𝐺2𝐺4

3.3.3.2 Part (b)

Since

𝐶 (𝑠) =
1 + 𝐺2 + 𝐺1𝐺2𝐻1

1 + 𝐺2 + 𝐺1𝐺2𝐻1 + 𝐻2𝐺2𝐺3 + 𝐺1𝐺2𝐺3 + 𝐺4 + 𝐺2𝐺4
𝑁 (𝑠)

Then we want 1 + 𝐺2 + 𝐺1𝐺2𝐻1 = 0 or for the denominator

1 + 𝐺2 + 𝐺1𝐺2𝐻1 + 𝐻2𝐺2𝐺3 + 𝐺1𝐺2𝐺3 + 𝐺4 + 𝐺2𝐺4

to be very large. Both of these will cause 𝐶 (𝑠) to remain zero for any value of 𝑁 (𝑠). But
since the denominator is the same as for 𝐶(𝑠)

𝑅(𝑠) then making this very large will also a�ect
𝐶(𝑠)
𝑅(𝑠) which we do not want to. Hence the choice left is

1 + 𝐺2 + 𝐺1𝐺2𝐻1 = 0
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3.3.4 Problem 4

SOLUTION:

3.3.4.1 Part (a)

For the 𝑌7
𝑌1
, There are two forward paths. The following diagrams shows them with the

gain on each.

F1  G1G2G3G4G5 F2  G6G5

𝐹1 = 𝐺1𝐺2𝐺3𝐺4𝐺5

𝐹2 = 𝐺6𝐺5

Now Δ𝑘 is found for each forward loop. Δ𝑘 is the Mason Δ but with 𝐹𝑘 removed from the
graph. Removing 𝐹1 removes all the loops, hence

Δ1 = 1

When removing 𝐹2 what remains is 𝐿2 and 𝐿3, hence

Δ2 = 1 − (𝐿2 + 𝐿3)
= 1 − (−𝐻2𝐺2 − 𝐻3𝐺3)
= 1 + (𝐻2𝐺2 + 𝐻3𝐺3)

For the 𝑌2
𝑌1
, there is one forward path 𝐹1 = 1, the associated Δ1 is

Δ1 = 1 −�−𝐺2𝐻2 − 𝐺3𝐻3 − 𝐺4𝐺5𝐻4 − 𝐻6 − 𝐺2𝐺3𝐺4𝐺5𝐻5

+�(−𝐺2𝐻2) (−𝐺4𝐺5𝐻4) + (−𝐺2𝐻2) (−𝐻6) + (−𝐺3𝐻3) (−𝐻6)

= 1 +
one at a time

�����������������������������������������������������������������𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 +
two at a time

�������������������������������������������������𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6

3.3.4.2 Part(b)

There are 8 loops. The following diagrams shows the loops with the gains
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L1  G1H1 L2  G2H2

L3  G3H3
L4  G4G5H4

L5  G2G3G4G5H5 L6  H6

L7  G6G5H5H1 L8  G6G5H4H3H2H1

Δ = 1 − (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5 + 𝐿6 + 𝐿7 + 𝐿8)
+ (𝐿1𝐿3 + 𝐿1𝐿4 + 𝐿1𝐿6 + 𝐿2𝐿4 + 𝐿2𝐿6 + 𝐿3𝐿6 + 𝐿3𝐿7) − 𝐿1𝐿3𝐿6

Therefore

Δ = 1 +
one at a time

�����������������������������������������������������������������������������������������������������������������������������𝐻1𝐺1 + 𝐻2𝐺2 + 𝐻3𝐺3 + 𝐻4𝐺4𝐺5 + 𝐻5𝐺2𝐺3𝐺4𝐺5 + 𝐻6 − 𝐺5𝐺6𝐻1𝐻5 − 𝐺6𝐺5𝐻4𝐻3𝐻2𝐻1
(1)

+
two at time

���������������������������������������������������������������������������������������������������������������������������������������������(𝐻1𝐺1𝐻3𝐺3 + 𝐻1𝐺1𝐻4𝐺4𝐺5 + 𝐻1𝐻6𝐺1 + 𝐻2𝐺2𝐻4𝐺4𝐺5 + 𝐻2𝐺2𝐻6 + 𝐻3𝐺3𝐻6 − 𝐺3𝐻3𝐺6𝐺5𝐻5𝐻1)

+
three at time

�����������������𝐻1𝐺1𝐻3𝐺3𝐻6

3.3.4.3 Part (c)

For 𝐺 (𝑠) = 𝑌7
𝑌1
, and using result found above in part (a) and part (b)

𝐺 (𝑠) =
𝑌7
𝑌1

=
Δ1𝐹1 + Δ2𝐹2

Δ

=
(𝐺1𝐺2𝐺3𝐺4𝐺5) + 𝐺6𝐺5 (1 + 𝐻2𝐺2 + 𝐻3𝐺3)

Δ
Where Δ is given in (1) found in part(b). To obtain 𝑌2

𝑌1
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𝑌2
𝑌1

=
Δ1𝐹1
Δ

=
1 +

one at a time

�����������������������������������������������������������������𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 +
two at a time

�������������������������������������������������𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6
Δ

=
1 + 𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 + 𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6

Δ

3.3.5 HW 3 key solution
ECE 332 Homervork 3 Solutions

kc =

(b) lsfti,ll = 2u
/tt  -  r t) '+ ( loz.r -  r t) '

Plot of Sensitivity -- K . 100
0

6g
o

vt

E 0.1
o
f.=
c
CDao

>
=u,
Ce

v,

E 1
I

.:
ot
C'

0 :
10 - ' 1oo 1ot

Frequency, radsec
1o'ro'

0 :
10 - ' ' roo 10'

Frequency, radlsec

r . logspace(-1 ,2 ,  looo)  ;
S G k  =  2 + u . /  ( s q r t ( ( f - c . ' 2 )  . ^ 2  +  ( 3 + c - c .  - S ) . ' Z ) ) ;

S G k l  =  2 t y . /  ( s q r t ( ( f - c . - Z ) . ' 2  +  ( t 0 2 + c - c . - 3 ) . - 2 ) ) ;
subplot  (22L) ,  seui logr( r ,SGk),gr id , t i t le  ( '  P lot  o f  Sensi t  iv i ty  - -
r label ( 'Frequency, rad/sec' ) ,  ylabel ( ' l {agnitude of Sens it  ivi ty'  )
a r i s ( [1e -1  1e2  0  2 ] )
subplot  (222) ,seui logr(n,SGk1) ,  gr id , t i t le( '  PIot  o f  Sensi t iv i ty  - -
: label ( '  Frequency, rad/sec' ),ylabel( ' l , lagnitude of Ssusit ivity'  )
a r i s ( [ t e - l  1 e 2  0  . 2 ] )

l .  G ( s ) =  -  '  K s + l- '  - \ " , f  s r + s ,  + ( K * a ) s +  I

(a) 5*c : AG
TF

Ils.'ri,rl =1 1=
lsfti."ll =

(1 - r ') '  + ((K + &)or - rt) '

When k =2 and K = l, l.Src(jr)l =

See printout below.

When k:2 aud K = l (X),

See printout below.
Plot ot Sensitivity - K. 1

- (Ks  +  l )  &
@ E '  s J  *  s ' +  ( K  +  A ) s  +  t

-  -k iu

K  =  1 ' )

K  =n  100 ' )

: : : : : l  . : : : :

: : : : : 1 . : : i i i i
" n

: : : : : : :  : : : : : : : l : l  .
: : : : : : :  .  , , . : : I :

;
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) ( a )  I f  K  - l , t h e n  U  =  R - f  a  Y  -  R - U
F o r  f t :  { . . . , - 2 , - 1 , 0 , 1 , 2 , 3 , . . . }  d r a w  t h e  l i n e  Y  :  R  -  U .  T h e  i n t e r s e c t i o n
points give the correspondeing values of Y.

Transfer Function Between Y and U

1 i \ \ ' \
\ : \ \ : \

\ :  \  \ :  \

0
Input, U

Resulting Y versus r?:
Transfer Function Between Y and R

4

3

tg
fo

62-24

-1

-2

-3

-4

_51
-6

f
CL
Jo

22

4

0

-1

8

2. 1

^ :
5 0
tt
f
O - 1

5

-5

-5

I
(,r
o
=

l 2
3
P 4
oo
g 6
oa

0
Input, r(t)

0

0 5 1 0
Tim€, s€conds

(b)  r ( t )  =  5s in( t ) .  Us ing the
transfer function between Y
and R, we cen generate y(t)
graphically by "bouncing" r(t)
(left) off of the transfer func-
tion graph (upper left) onto
y(t) (top). The t ime at which
the output becomes greater
than I occrus at |  = sin-t(|).

Resultant Output, y(0

\  , l
V

1 0

;
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(c) When r\ = I0, then
U - r 0 ( r ? - Y ) - Y - R - # "

F o r l l ? l  ! f i  Y : 0
F o r R > f i  Y = U - l  ( F r o m N ( ' ) )
U : Y + l #

Plugging $ into* we get Y = R- (ftf) + lOY = tQ.R -Y - |

r z -  l 0 p  I" - T rl l Y = 1 0 R - 1  = +

5 o
E
fo

I t '
fo

Transfer Function K-10

Y _

Transler Function K=10

Reultant Output, y(t)

-5_ -5- 5 0 5 - 0 5 1 0
Input, R Time, seconds

In general,
- l  ro  i f  7 s  n s  K

K R - T  . .
f f i  i r  n '*
K R + l  . ,  n ,  I
K + r  

t l  I t < - k

As for y(t), the amplitude approaches I as K + m and the missing middle section
of the output diminishes to zero.

(d) When we plasce the gain in the feedback loop, there is no effect on the missing
middle section of the ouput. Instead, the slope decreases so that in the limit we
have a flat output signai which would theoretically have no distortion.

0.40.4
Resultant Ouput, y(t)

-0.4- -4.4r -: I
- 5  0  5  

- " 0  
5  1 0

02
x
E O
It:o

42

A o
fo

-02

Input, R rime. seconds

;

141



3.3. HW 3 CHAPTER 3. HWS

In general, '=l i f  - l  <  R  s  i

u f t n - r l  i r  R> r

frtt* t1 ir ft < -i
Tbe key here is that the "circuit" connected to node Y2 can affect (and most likely
will) the transfer function between Fr and Y2. For instance, if Y, were I0 and Y2
were defined to be zero, then Y2 would not equal y1.

a /^ \  C(r ) l  _  Gr(s)Gz(s)Gs(s)  + Gr(s)J. (ai ff i ;"_o---f

where
A = I * Gr(s)Gz(s)I{1(s) + Gr(s)Gs(s)II2( * G2(s)Ga(r)H,(")Hr(s) + Gr +
GrGzGs

Y(s) = g8il"* n(s) + #fJl*" ",',
(b) When I + Gr(s)G2(s)Il1(s) = 0, Y(s) is not affected by N(s).

;

;
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3.4 HW 4

3.4.1 Problem 1

ECE 332 – Homework #4
Due Thursday, October 15, 2015.

Problem 1: Consider the system with transfer function

G(s) =
Ks + 1

s3 + s2 + (K + k) + 1
.

(a) For K = 1, find the sensitivity SG
k of this transfer function with respect

to k assuming nominal value k = 2. Then plot is magnitude as a function
of frequency.

(b) Repeat (a) with K = 100 and compare the effect of a large loop
gain on the sensitivity.

Problem 2: Consider the block diagram set-up for the disturbance at-
tenuation problem formulated in lecture with

G1(s) =
s + 1

s2 + 10s + 100

and

G2(s) =
1

s + 2
.

(a) Design control blocks H1(s) and H2(s) such that the following two
specifications are satisfied: First,

|Y (jω)

N(jω)
| ≤ 0.01

for all frequencies ω ≥ 0. Second, the output y(t) should respond to
command to r(t) in approximately the same manner in the closed loop as
in the open loop; i.e. for the closed loop, we desire

Y (s) ≈ G1(s)G2(s)R(s).

Note: In class, we did not fully solve for H1; i.e., we never found the con-
stant α. In this homework, a specific solution is sought.

(b) To make your solution “proper,” introduce a second order lowpass
filter as appropriate and solve for the filter parameter ε.

(c) For the compensated system resulting from (b), generate a frequency
response plot for the closed loop transfer function |Y (jω)/R(jω)| and com-
pare it to the target transfer function |G(jω)G2(jω)|. Plot the error be-
tween these two frequency responses as a function of the frequency ω ≥ 0.

SOLUTION:

3.4.1.1 Part (a)

The second condition which says that the closed loops should approximate the open loop
response, implies that we should use 𝐻2 (𝑠) =

1
𝐺1𝐺2

, i.e. to apply the inversion. This is

because 𝑌(𝑠)
𝑅(𝑠) =

𝐻1𝐺1𝐺2
1+𝐻1𝐺1𝐺2𝐻2

�
𝑁=0

and this becomes 𝑌(𝑠)
𝑅(𝑠) ≈ 𝐺1𝐺2 when we set 𝐻2 =

1
𝐺1𝐺2

and also

by making 𝐻1 = 𝛼 where 𝛼 is a large gain. So now we just need to worry about finding 𝛼

s.t. �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� ≤ 0.01 for all 𝜔 > 0.

We know that 𝑌(𝑠)
𝑁(𝑠) =

𝐺2
1+𝐺1𝐺2𝐻2𝐻1

, but since we are using the inversion, this reduces to

𝑌 (𝑠)
𝑁 (𝑠)

=
𝐺2

1 + 𝐻1

By setting 𝐻1 (𝑠) = 𝛼 and using 𝐺2 =
1

𝑠+2 and moving to the frequency domain, the above
becomes

𝑌 �𝑗𝜔�

𝑁 �𝑗𝜔�
=

1
𝑗𝜔+2

1 + 𝛼
=

1
�𝑗𝜔 + 2� (1 + 𝛼)

=
1

(1 + 𝛼) 𝑗𝜔 + 2 (1 + 𝛼)

Taking the magnitude

�
𝑌 �𝑗𝜔�

𝑁 �𝑗𝜔�
� =

1

�(1 + 𝛼)
2𝜔2 + 4 (1 + 𝛼)2
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We want the above to be smaller than 0.01 for all 𝜔, which implies
1

�(1 + 𝛼)
2𝜔2 + 4 (1 + 𝛼)2

≤ 0.01

1
(1 + 𝛼)2𝜔2 + 4 (1 + 𝛼)2

≤ 0.012

(1 + 𝛼)2𝜔2 + 4 (1 + 𝛼)2 ≥ 10000

𝜔2 ≥
10000 − 4 (1 + 𝛼)2

(1 + 𝛼)2

𝜔2 ≥
10000
(1 + 𝛼)2

− 4

𝜔 ≥
�

10000
(1 + 𝛼)2

− 4

The smallest 𝛼 to allow the above is when 𝜔 = 0, hence we need to solve for 𝛼 from

�

10000
(1 + 𝛼)2

− 4 = 0

10000
(1 + 𝛼)2

− 4 = 0

1
(1 + 𝛼)2

=
4

10000

(1 + 𝛼)2 =
10000
4

= 2500

1 + 𝛼 = 50

Hence

𝛼 ≥ 49

Therefore 𝐻1 (𝑠) = 𝛼 where 𝛼 ≥ 49 and 𝐻1 (𝑠) =
1

𝐺1(𝑠)𝐺2(𝑠)
. This complete this part.

3.4.1.2 Part(b)

One problem with the above inversion method for finding 𝐻2 (𝑠) =
1

𝐺1𝐺2
is that 𝐻2 (𝑠)

becomes improper:

𝐻2 (𝑠) =
1

𝐺1𝐺2
=

1
𝑠+1

𝑠2+10𝑠+100
1

𝑠+2

=
�𝑠2 + 10𝑠 + 100� (𝑠 + 2)

𝑠 + 1

=
𝑠3 + 12𝑠2 + 120𝑠 + 200

𝑠 + 1
𝐻2 (𝑠) is improper, since the numerator has a degree larger than the denominator. This
introduces di�erentiator in the feedback loop which is something we do not like to have.

We will now replace 𝐻2 =
1

𝐺1𝐺2
by � 1

𝐺1𝐺2
�𝐻𝐿𝑃 (𝑠) where 𝐻𝐿𝑃 (𝑠) =

1

(𝜀𝑠+1)𝑘
is a low pass filter

where 𝑘 is an integer and 𝜀 is some parameter, both are positive. The goal is to block high

frequency noise content and also make � 1
𝐺1𝐺2

�𝐻𝐿𝑃 (𝑠) become a proper transfer function.

We also want to make sure �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� remain less than 0.01.

Let

𝐻2 (𝑠) =
1

𝐺1𝐺2

1
(𝜀𝑠 + 1)𝑘

=
𝑠3 + 12𝑠2 + 120𝑠 + 200

(𝑠 + 1)
1

(𝜀𝑠 + 1)𝑘

The degree of the numerator is 3. So we want 𝑘 to be at least 2 (it can be more), so that
the denominator has at least degree 3 as well. If we want strict proper, then we make 𝑘 = 3.
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Using 𝑘 = 2 we now have

𝐻2 (𝑠) =
1

𝐺1𝐺2

1
(𝜀𝑠 + 1)2

Therefore,
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
now becomes

𝑌 (𝑠)
𝑁 (𝑠)

=
𝐺2

1 + 𝐺1𝐺2𝐻1 �
1

𝐺1𝐺2

1
(𝜀𝑠+1)2

�

=
1

𝑠+2
1 + 𝛼

(𝜀𝑠+1)2
(1)

Where we used 𝛼 for 𝐻1. We now move to the frequency domain and take the magnitude
in order to solve for 𝜀. We will use the same 𝛼 found in part (1), otherwise, there will be
two free parameters to adjust at the same time, which would make this a hard problem,
and the problem seems to indicate we are to use same 𝛼 value found in part (1) although
it did not say that explicitly. Therefore (1) becomes (using 𝛼 = 49)

𝑌 (𝑠)
𝑁 (𝑠)

=
(𝜀𝑠+1)2

𝑠+2

(𝜀𝑠 + 1)2 + 49
Hence

�
𝑌 �𝑗𝜔�

𝑁 �𝑗𝜔�
� =

�
�𝜀𝑗𝜔+1�

2

𝑗𝜔+2 �

��𝜀𝑗𝜔 + 1�
2
+ 49�

=

𝜀2𝜔2+1

√𝜔2+4

�−𝜀2𝜔2 + 1 + 2𝜀𝑗𝜔 + 49�

=

𝜀2𝜔2+1

√𝜔2+4

�4𝜀
2𝜔2 + �50 − 𝜀2𝜔2�

2

Hence

�
𝑌 �𝑗𝜔�

𝑁 �𝑗𝜔�
�

2

=
�𝜀2𝜔2 + 1�

2

�𝜔2 + 4� �4𝜀2𝜔2 + �50 − 𝜀2𝜔2�
2
�

We now find 𝜔 where �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� is maximum, which is the same as where the above is maximum.

The above is maximum when the denominator is minimum. Hence
𝑑
𝑑𝜔

�𝜔2 + 4� �4𝜀2𝜔2 + �50 − 𝜀2𝜔2�
2
� = 0

Solving for 𝜔 from the above using computer algebra (the algebra is too complicated to
do by hand. May be there is a short cut) in terms of 𝜀, and plugging the solution 𝜔max

back to �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� and setting the result to 0.01 and solving numerically for 𝜀 that satisfy the

equation gives

𝜀 = 0.0197

To verify this, a small demo was made to plot �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� for di�erent 𝜀 values. The following

plot shows �
𝑌�𝑗𝜔�

𝑁�𝑗𝜔�
� using 𝑘 = 2, 𝜀 = 0.0197 and the maximum magnitude was checked to be

just less than 0.01
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3.4.1.3 Part (c)

We will now use

𝐻1 = 49

𝐻2 =
1

𝐺1𝐺2

1
(0.0197𝑠 + 1)2

And plot �𝑌(𝑠)𝑅(𝑠) � = �
𝐻1𝐺1𝐺2

1+𝐻1𝐺1𝐺2𝐻2
� against the |𝐺1𝐺2| to see how good the choice of 𝐻1 and 𝐻2

are.
𝑌 (𝑠)
𝑅 (𝑠)

=
𝐻1𝐺1𝐺2

1 + 𝐻1𝐺1𝐺2𝐻2

=
49𝐺1𝐺2

1 + 49𝐺1𝐺2
1

𝐺1𝐺2

1
(0.0197𝑠+1)2

=
49 𝑠+1

𝑠2+10𝑠+100
1

𝑠+2

1 + 49 1
(0.0197𝑠+1)2

=
49 𝑠+1

𝑠2+10𝑠+100
1

𝑠+2
(0.0197𝑠 + 1)2

(0.0197𝑠 + 1)2 + 49
While

𝐺1𝐺2 =
𝑠 + 1

𝑠2 + 10𝑠 + 100
1

𝑠 + 2

The following plot shows �𝑌(𝑠)𝑅(𝑠) � vs. |𝐺1𝐺2| side by side

Out[348]=
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The following plot shows both on the same plot
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compensated open loop
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The following plot show di�erence between the magnitudes

Out[386]=
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Observations:

From the above di�erence plot, we see that the maximum di�erence between |𝐺1𝐺2| and the

compensated � 𝐻1𝐺1𝐺2
1+𝐻1𝐺1𝐺2𝐻2

� occurred at around 𝜔 = 350 and had value of about 0.0014. This
value seems relatively small, and seems to indicate that 𝐻1 and 𝐻2 used for compensation
were a good choice.
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3.4.2 HW 4 key solution
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Experimenting with various values of epsilon, we arrive at epsilon = 0.01 as reasonable for satisfaction
of the performance specification above. For this value of epsilon, we plot the quantity above

;
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3.5 HW 5

3.5.1 Problem 1
ECE 332 – Homework #5

Due Thursday, October 29, 2015

Problem 1: Performances specifications for a second order system

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

with 0 < ζ < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using

the settling time approximation

ts ≈
3.2

ζωn

,

find and sketch the region in the complex plane where the two poles need
to be located.

Problem 2: For the system shown in the figure below, find gains K

and Kt so that the maximum overshoot of the output c(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and

simulate the step response in Matlab. In your solution, use the rise time
approximation

tr ≈
1− 0.4167ζ + 2.917ζ2

ωn

.

SOLUTION:

There are two inequalities to satisfy. The first is given by the settling time requirement

𝑡𝑠 =
3.2
𝜁𝜔𝑛

< 0.25 (1)

The second is given by the overshoot requirement

𝑒
− 𝜋𝜁

�1−𝜁2 < 0.3 (2)

From (2), taking the log of both sides gives

−
𝜋𝜁

√1 − 𝜁2
< ln (0.3)

Multiplying both sides by −1 changes the inequality from < to >
𝜋𝜁

√1 − 𝜁2
> − ln (0.3)

Simplifying gives

𝜋𝜁

√1 − 𝜁2
> ln �

1
0.3�

> 1.204

Squaring both sides and solving for 𝜁

𝜁2

1 − 𝜁2
> �

1.204
𝜋 �

2

𝜁2 > 0.14688 �1 − 𝜁2�

1.146 88𝜁2 > 0.14688
𝜁2 > 0.12807

Since 𝜁 has to be positive then the positive root is used giving

𝜁 > 0.35787

Back to the (1) specifications, which says
3.2
𝜁𝜔𝑛

< 0.25

𝜁𝜔𝑛 > 12.8

For each 𝜁𝑖 > 0.3578, we solve for 𝜔𝑛 from 𝜁𝜔𝑛 > 12.8. This will give full description of
where the poles are located.
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ωn

√
1− ζ2

imaginary axis

−ζωn

|ωn|

real axis

X

X

Here is a plot of the (𝜁, 𝜔𝑛) space showing allowed values of 𝜁, 𝜔𝑛.

In[69]:= RegionPlot[1 > z > 0.35787 && z w > 12.8, {z, 0, 1}, {w, 0, 50}, GridLines → Automatic, GridLinesStyle → LightGray, Frame → True,

FrameLabel → {{"ωn", None}, {"ξ", "Region of allowed ξ and ωn"}}, BaseStyle → 14, Epilog → {

{Dashed, Line[{{0.3578, 0}, {0.3578, 35}}], Line[{{0, 12.8}, {1, 12.8}}]},

Text["ζ=0.358", {0.358, 0}],

Text["ωn=12.8", {0.084, 14.9}]

}]

Out[69]=
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By taking each point (𝜁, 𝜔𝑛) from the above plot, then the pole location with coordinates
−𝜁𝜔𝑛 ± 𝜔𝑛√1 − 𝜁2 is generated. The following shows the final result, showing the region
where the poles have to be located in order to meet the performance requirements.

In[456]:= p = Normal@RegionPlot[1 > z > 0.35787 && z w > 12.8, {z, 0, 1}, {w, 0, 50}];

pts = DeleteDuplicates@Flatten[Cases[p, Polygon[x_] ⧴ x, Infinity], 1];

data = {-First@# Last@#, Last@# Sqrt[1 - (First@#)^2]} & /@ pts;

data2 = {-First@# Last@#, -Last@# Sqrt[1 - (First@#)^2]} & /@ pts;

ListPlotUnion[data, data2], AxesOrigin → {0, 0}, AxesLabel → {"Re", "Im"}(*AxesLabel→"-ξ ωn","ωn 1-ξ2 "*), PlotLabel → "Region of poles in complex S plane",

ImageSize → 500

Out[460]=
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The above diagram shows the location of each pair of poles as a small dot. Complex poles
come in pair of conjugates. One pole will be above the real axis and its pair below the real
axis.
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3.5.2 Problem 2

ECE 332 – Homework #5

Due Thursday, October 29, 2015

Problem 1: Performances specifications for a second order system

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

with 0 < ζ < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using

the settling time approximation

ts ≈
3.2

ζωn

,

find and sketch the region in the complex plane where the two poles need
to be located.

Problem 2: For the system shown in the figure below, find gains K

and Kt so that the maximum overshoot of the output c(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and

simulate the step response in Matlab. In your solution, use the rise time
approximation

tr ≈
1− 0.4167ζ + 2.917ζ2

ωn

.

SOLUTION:

The closed loop transfer function, in terms of 𝐾 and 𝐾𝑡 can be found using either Mason
rule or simple block reduction. For this problem block reduction seems easier.

K
Gp(s)

1+KtGp(s)
1

20s

E(s) B(s) C(s)

K
Gp(s)

1+KtGp(s)
1

20s

1+K
Gp(s)

1+KtGp(s)
1

20s

R(s)

R(s) C(s)

KGp

20s(1+KtGp)+KGp
R(s) C(s)

Using 𝐺𝑝 =
100

1+0.2𝑠 the above becomes

𝐶 (𝑠)
𝑅 (𝑠)

=
𝐾 � 100

1+0.2𝑠
�

20𝑠 �1 + 𝐾𝑡
100

1+0.2𝑠
� + 𝐾 100

1+0.2𝑠

=
100𝐾

20𝑠 (1 + 0.2𝑠 + 100𝐾𝑡) + 100𝐾

=
100𝐾

4𝑠2 + (20 + 2000𝐾𝑡) 𝑠 + 100𝐾

=
25𝐾

𝑠2 + (5 + 500𝐾𝑡) 𝑠 + 25𝐾

The standard form is 𝜔2
𝑛

𝑠2+2𝜁𝜔𝑛𝑠+𝜔2𝑛
therefore by comparing to the above we find

𝜔2
𝑛 = 25𝐾

𝜔𝑛 = 5√𝐾 (1)
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And

5 + 500𝐾𝑡 = 2𝜁𝜔𝑛

= 2𝜁 �5√𝐾�

𝜁 =
5 + 500𝐾𝑡

10√𝐾
(2)

Hence the transfer function is
𝐶 (𝑠)
𝑅 (𝑠)

=
𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

Where 𝜔𝑛 = 5√𝐾 and 𝜁 = 5+500𝐾𝑡
10√𝐾

. We now apply the user specifications in order to

determine 𝐾 and 𝐾𝑡. From the overshoot requirement, we write

𝑒
− 𝜋𝜁

�1−𝜁2 ≤ 0.2 (3)

And from the rise time requirements we have

1 − 0.4167𝜁 + 2.917𝜁2

𝜔𝑛
= 0.05 (4)

From (3) and (4) we can now solve for 𝜔𝑛 and 𝜁 and this allow us to find 𝐾 and 𝐾𝑡 by using
(1,2). From (3), taking logs and solving for 𝜁 gives

−
𝜋𝜁

√1 − 𝜁2
≤ ln (0.2)

𝜋𝜁

√1 − 𝜁2
≥ ln (5)

𝜋𝜁

√1 − 𝜁2
≥ 1. 6094

𝜋2𝜁2 ≥ (1. 6094)2 �1 − 𝜁2�

𝜋2𝜁2 ≥ 2.5902 − 2.5902𝜁2

�𝜋2 + 2.5902� 𝜁2 ≥ 2.5902

𝜁 ≥
�

2.5902
�𝜋2 + 2.5902�

Hence

𝜁 ≥ 0.456

Any 0.456 ≤ 𝜁 < 1 can be used. In order to find 𝜔𝑛, let us choose

𝜁 = 0.46

For the rest of the calculations . From (4) we find

1 − 0.4167 (0.46) + 2.917 (0.46)2

𝜔𝑛
= 0.05

𝜔𝑛 =
1.425 6
0.05

Therefore

𝜔𝑛 = 28.512 rad/sec

Now that we found 𝜁 and 𝜔𝑛 , we use (1,2) to find the gains. From (1)

𝜔𝑛 = 5√𝐾

𝐾 =
𝜔2
𝑛
25

=
28.5122

25
Therefore

𝐾 = 32.517
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And from (2)

𝜁 =
5 + 500𝐾𝑡

10√𝐾

0.46 =
5 + 500𝐾𝑡

10√32.517
Hence

𝐾𝑡 = 0.04246

The final transfer function is
𝐶 (𝑠)
𝑅 (𝑠)

=
25𝐾

𝑠2 + (5 + 500𝐾𝑡) 𝑠 + 25𝐾

=
25 (32.517)

𝑠2 + (5 + 500 (0.04246)) 𝑠 + 25 (32.517)
Or

𝐶(𝑠)
𝑅(𝑠) =

812.93
𝑠2+26.23𝑠+812.93

Matlab is used to simulate the step response, and to also verify the user requirements are
met.

close all;
clear all;
s = tf('s');
sys = 812.93/(s^2+26.23*s+812.93);
step(sys)
grid
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The step information was also verified using the command stepinfo() which showed the
specifications was indeed met.

stepinfo(sys)

RiseTime: 0.0549
SettlingTime: 0.2916
SettlingMin: 0.9225
SettlingMax: 1.1963

Overshoot: 19.6310
Undershoot: 0

Peak: 1.1963
PeakTime: 0.1229
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3.5.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

𝐺 (𝑠) =
𝐾𝑠 �20𝑠2 + 1�

𝑠4 + 5𝑠2 + 10𝑠 + 15
In classical unity feedback, the closed loop transfer function 𝑇 (𝑠) is

𝑇 (𝑠) =
𝐺 (𝑠)

1 + 𝐺 (𝑠)

=
𝐾𝑠 �20𝑠2 + 1�

�𝑠4 + 5𝑠2 + 10𝑠 + 15� + 𝐾𝑠 �20𝑠2 + 1�

=
𝐾𝑠 �20𝑠2 + 1�

𝑠4 + 20𝐾𝑠3 + 5𝑠2 + (10 + 𝐾) 𝑠 + 15
Applying Routh-Hurwitz to the denominator 𝐷 (𝑠) = 𝑠4 + 20𝐾𝑠3 + 5𝑠2 + (10 + 𝐾) 𝑠 + 15 gives

𝑠4 1 5 15
𝑠3 20𝐾 (10 + 𝐾) 0
𝑠2 20𝐾(5)−(10+𝐾)

20𝐾 15 0

𝑠1
(20𝐾(5)−(10+𝐾))

20𝐾 (10+𝐾)−20𝐾(15)
20𝐾(5)−(10+𝐾)

20𝐾

0 0

𝑠0 15

Simplifying gives

𝑠4 1 5 15
𝑠3 20𝐾 (10 + 𝐾) 0
𝑠2 1

20𝐾
(99𝐾 − 10) 15 0

𝑠1 1
10−99𝐾

�5901𝐾2 − 980𝐾 + 100� 0 0
𝑠0 15

For stability, we need the first column to be positive. Hence the conditions are

20𝐾 > 0
1
20𝐾

(99𝐾 − 10) > 0

1
10 − 99𝐾

�5901𝐾2 − 980𝐾 + 100� > 0

The first just says that 𝐾 > 0. The second says 99𝐾 − 10 > 0 or 𝐾 > 10
99 . Now for the third

condition
1

10 − 99𝐾
�5901𝐾2 − 980𝐾 + 100� > 0

Since 𝐾 > 10
99 is required, then 1

10−99𝐾 is negative quantity since 10 − 99𝐾 is negative for

𝐾 > 10
99 . This means the above becomes

5901𝐾2 − 980𝐾 + 100 < 0

Notice the change of inequality from > to < since we multiplied both sides by a negative
quantity (10 − 99𝐾) to cancel it out. But 5901𝐾2 − 980𝐾 + 100 < 0 can not be satisfied with a
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positive 𝐾 > 10
99 . For example, using the minimum allowed 𝐾 which is 10

99 , then the value of
5901𝐾2 − 980𝐾 + 100 becomes

5901 �
10
99�

2

− 980 �
10
99�

+ 100 = 61.218

But it needs to be negative. So there does not exist 𝐾 which makes the closed loop stable.

3.5.4 Problem 4

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

Given 𝐺 (𝑠) = 𝐾
𝑠(1+𝑇𝑠) then the closed loop transfer function is

𝐺𝑐𝑙𝑜𝑠𝑒𝑑 (𝑠) =
𝐺

1 + 𝐺

=
𝐾

𝑠 (1 + 𝑇𝑠) + 𝐾

=
𝐾

𝑇𝑠2 + 𝑠 + 𝐾
Therefore 𝐷 (𝑠) = 𝑇𝑠2 + 𝑠 +𝐾. For the closed loop poles with real part to be less than −𝑎, let
𝑠1 = 𝑠 + 𝑎. Then 𝑠 = 𝑠1 − 𝑎. We apply Routh-Hurwitz to 𝐷 (𝑠) but with 𝑠 = 𝑠1 − 𝑎. The new
denominator polynomial becomes

𝐷 (𝑠1) = 𝑇 (𝑠1 − 𝑎)
2 + (𝑠1 − 𝑎) + 𝐾

Expanding gives

𝐷 (𝑠1) = 𝑇 �𝑠21 + 𝑎2 − 2𝑠1𝑎� + 𝑠1 − 𝑎 + 𝐾

= 𝑇𝑠21 + 𝑠1 (1 − 2𝑇𝑎) + �𝑇𝑎2 − 𝑎 + 𝐾�

Routh table applied to the above polynomial is

𝑠21 𝑇 𝑇𝑎2 − 𝑎 + 𝐾
𝑠11 1 − 2𝑇𝑎 0
𝑠01 𝑇𝑎2 − 𝑎 + 𝐾

We need all entries in the first column to be same sign (positive in this case, since 𝑇 = 1)
for stability to hold (This is in addition to having the poles be with real part less than −𝑎).
For 𝑇 = 1 the above becomes

𝑠2 1 𝑎2 + 𝑎 + 𝐾
𝑠1 1 − 2𝑎 0
𝑠0 𝑎2 − 𝑎 + 𝐾

The conditions for stability are

1 − 2𝑎 > 0
𝑎 (1 − 𝑎) + 𝐾 > 0

The first condition gives 𝑎 > 1
2 . The second condition gives

𝐾 > 𝑎2 − 𝑎

Here is plot of the region in the (𝑎, 𝐾) plane associated with closed loop stability.
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3.5.5 Problem 5

Problem 3: A system with adjustable gain K and open loop transfer

function

G(s) =
Ks(20s2 + 1)

s4 + 5s2 + 10s+ 15

connected in a classical unity feedback configuration. Use the Routh-

Hurwitz criterion to find the range of K for which closed loop stability is
assured.

Problem 4: Consider the system with open loop transfer function

G(s) =
K

s(1 + Ts)

is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than −a. Show

how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for T = 1, find and sketch the region in the (a,K) plane
associated with closed loop stability.

Problem 5: An automatic depth control system for a submarine is de-

picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1

and submarine transfer function

G(s) =
(s+ 2)2

s2 + 0.01

SOLUTION:

The closed loop transfer function is

𝑇 (𝑠) =
𝐾𝐺 (𝑠) 1𝑠

1 + 𝐻𝐾𝐺 (𝑠) 1𝑠

Replacing 𝐻 (𝑠) = 1 and 𝐺 = (𝑠+2)2

𝑠2+0.01 the above becomes

𝑇 (𝑠) =
𝐾(𝑠+2)2

𝑠2+0.01
1
𝑠

1 + 𝐾(𝑠+2)2

𝑠2+0.01
1
𝑠

=
𝐾 (𝑠 + 2)2

𝑠 �𝑠2 + 0.01� + 𝐾 (𝑠 + 2)2

=
𝐾 (𝑠 + 2)2

𝑠3 + 𝐾𝑠2 + (0.01 + 4𝐾) 𝑠 + 4𝐾
The Routh table for 𝐷 (𝑠) = 𝑠3 + 𝐾𝑠2 + (0.01 + 4𝐾) 𝑠 + 4𝐾 is

𝑠3 1 0.01 + 4𝐾
𝑠2 𝐾 4𝐾
𝑠1 4𝐾 − 3.99 0
𝑠0 4𝐾
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Therefore for stability we need

𝐾 > 0
4𝐾 > 3.99
4𝐾 > 0

The first and the third conditions give 𝐾 > 0. From the second condition, 𝐾 > 3.99
4 = 0.9975.

Therefore

𝐾 > 0.9975

To verify, here is the step response for 𝑘 = 0.9974 and 𝑘 = 0.9976, showing one is unstable
and the second is stable.

close all; clear all;
s = tf('s');
G = (s+2)^2/(s^2+0.01);

k = .9974;
sys = feedback(k*G*1/s,1);
subplot(2,1,1);
step(sys);
title(sprintf('k=%f',k)); grid

subplot(2,1,2);
k = .9976;
sys = feedback(k*G*1/s,1);
step(sys);
title(sprintf('k=%f',k)); grid
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3.5.6 HW 5 key solution

1) HOMEWORK OVERSHOOT SETTLING: 

 

 

 

The above shaded region represents cos θ ≥ 0.358. The θ  in the above figure is 
cos‐1(0.358)=69o 

 

 

 

 

 
;
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For the settling time constraint, we have, 

 

Since we want both conditions to be satisfied, the allowed region for the poles is 
the common shaded region from the above two figures: 

 

 

 

 

 

 

 

 

;
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2) HOMEWORK OVERSHOOT 

 

 

 

 

 
;
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;
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;
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;
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PROBLEM 1: 

 

 

ECE 332 - HW #5

Due Thursday, March 13, 2003

Problem 1: A s.ystem with with adjustable gain K and open loop transfer functiorr

G ( " ) :
K s(20s2 + 1)

s 4 + 5 s 2 * 1 0 s f 1 5

is connected in a classical unity feedback configuration. Find the range of giiins h for

which closed loop stability is assured.

Problem 2: consider the svstem with open loop transfer function

G ( s ) :  ,  
*

s (1  +  Zs)

t'otrttected in clmsical unity feedback configuration. Given a ) 0, the specifica,ti.n for

this svst'enr is that all close{ loop poles have real part less tha,n -o. T}rnt is, a,ll cl'stxl

loop poles should lie to the left of the line z : -a in the cr-rnrplex pla,ne. Show how

the Rorrth-Hurwitz criterion carr be modified to acldress this problern. Subseqrre'tly,

with ? 3 I ' find the region in the (o, K) plane a^ssr-rciated with closecl loop stabilit 1,.

Problem 3; An automabic depth control system for a submarine is depicted in the figure
be low.

kstrel
drpa+r e&n Y6)

FeSdure  cneoJore roeob

The depth is measured by a Pressure transducer. For what values of the actuator 1( willthe system be stable? The submarine has an approximate transfer function

G ( s ) = ( s + 0 . 2 ) 2\  /  
s 2 + 0 . 0 1

and the transducer may be taken to be

A c t , S  a t o c

fl(s)  -  1

;
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SolU b rons -

;
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4) PROBLEM 2: 

 

 

ECE 332 - HW #5

Due Thursday, March 13, 2003

Problem 1: A s.ystem with with adjustable gain K and open loop transfer functiorr

G ( " ) :
K s(20s2 + 1)

s 4 + 5 s 2 * 1 0 s f 1 5

is connected in a classical unity feedback configuration. Find the range of giiins h for

which closed loop stability is assured.

Problem 2: consider the svstem with open loop transfer function

G ( s ) :  ,  
*

s (1  +  Zs)

t'otrttected in clmsical unity feedback configuration. Given a ) 0, the specifica,ti.n for

this svst'enr is that all close{ loop poles have real part less tha,n -o. T}rnt is, a,ll cl'stxl

loop poles should lie to the left of the line z : -a in the cr-rnrplex pla,ne. Show how

the Rorrth-Hurwitz criterion carr be modified to acldress this problern. Subseqrre'tly,

with ? 3 I ' find the region in the (o, K) plane a^ssr-rciated with closecl loop stabilit 1,.

Problem 3; An automabic depth control system for a submarine is depicted in the figure
be low.

kstrel
drpa+r e&n Y6)

FeSdure  cneoJore roeob

The depth is measured by a Pressure transducer. For what values of the actuator 1( willthe system be stable? The submarine has an approximate transfer function

G ( s ) = ( s + 0 . 2 ) 2\  /  
s 2 + 0 . 0 1

and the transducer may be taken to be

A c t , S  a t o c

fl(s)  -  1

t .

I  t t
\;/

oI
J

_\
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ltl S,
79-Y O
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5) PROBLEM 3: 

 

ECE 332 - HW #5

Due Thursday, March 13, 2003

Problem 1: A s.ystem with with adjustable gain K and open loop transfer functiorr

G ( " ) :
K s(20s2 + 1)

s 4 + 5 s 2 * 1 0 s f 1 5

is connected in a classical unity feedback configuration. Find the range of giiins h for

which closed loop stability is assured.

Problem 2: consider the svstem with open loop transfer function

G ( s ) :  ,  
*

s (1  +  Zs)

t'otrttected in clmsical unity feedback configuration. Given a ) 0, the specifica,ti.n for

this svst'enr is that all close{ loop poles have real part less tha,n -o. T}rnt is, a,ll cl'stxl

loop poles should lie to the left of the line z : -a in the cr-rnrplex pla,ne. Show how

the Rorrth-Hurwitz criterion carr be modified to acldress this problern. Subseqrre'tly,

with ? 3 I ' find the region in the (o, K) plane a^ssr-rciated with closecl loop stabilit 1,.

Problem 3; An automabic depth control system for a submarine is depicted in the figure
be low.

kstrel
drpa+r e&n Y6)

FeSdure  cneoJore roeob

The depth is measured by a Pressure transducer. For what values of the actuator 1( willthe system be stable? The submarine has an approximate transfer function

G ( s ) = ( s + 0 . 2 ) 2\  /  
s 2 + 0 . 0 1

and the transducer may be taken to be

A c t , S  a t o c

fl(s)  -  1

;

;
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3.6 HW 6

3.6.1 Problem 1
ECE 332 - Homework Set 6

Due Wednesday, November 11, 2011 at 9 AM
Please slide submissions under my door

Problem 1

Problem 2
SOLUTION:

3.6.1.1 Part(a)

K 1
s(s+2)(s+5)(s+10) Y (s)R(s)

+

−

1. 𝑛 = 4 (The number of open loop poles), 𝑚 = 0 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles 𝑠 = 0, 𝑠 = −2, 𝑥 = −5, 𝑠 − 10 when 𝑘 = 0.
Since there are no open loop zeros, the branches will end up at ±∞

3. On the real axis, R.L. exists on segments based on number of poles and zeros to the
right of the segment. If this sum (including multiplicity) is odd, then the segment is
on the R.L., else it is not. The plot below shows the segments found.

××××
−2−5−10

4. Center of asymptotes is now found using 𝜎 =
∑𝑝𝑜𝑙𝑒𝑠−∑𝑧𝑒𝑟𝑜𝑠

𝑛−𝑚 = (0−2−5−10)
4 = −4.25

5. The asymptotes angles are 𝜃 = 1800±𝑘3600

𝑛−𝑚 for 𝑘 = 0, 1,⋯. Hence 𝜃 = 1800±𝑘3600

4 =
450 ± 𝑘900. The R.L. is updated below

××××
−4.25 450

900

900

900 450
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6. Finding the break away points. We need to find where on the two segments shown
above the root locus will break away from the real line. Since

1 + 𝐺 = 0

1 +
𝐾

𝑠 (𝑠 + 2) (𝑠 + 5) (𝑠 + 10)
= 0

𝐾 = −𝑠 (𝑠 + 2) (𝑠 + 5) (𝑠 + 10)
𝐾 = −𝑠4 − 17𝑠3 − 80𝑠2 − 100𝑠

Then we now solve for 𝑠
𝑑𝐾
𝑑𝑠

= −4𝑠3 − 51𝑠2 − 160𝑠 − 100 = 0

0 = 4𝑠3 + 51𝑠2 + 160𝑠 + 100

The roots are 𝑠 = −8.287, 𝑠 = −0.835, 𝑠 = −3.632. Not all these points will be break
away points. Looking at the segments on the real line, we see that 𝑠 = −0.835 and
𝑠 = −8.287 are on the R.L. but 𝑠 = −3.632 is not. We mark these points now on the
current plot and update the plot again

××××
−2−5−10

−0.83−8.28

break awaybreak way

7. Departure angles from poles. It is clear that R.L. depart from open loop poles on
the real axis as shown, moving towards the break away points. Hence the plot now
looks like the following

××××
−2

−5−10 −0.83−8.28

8. We now extend the branch from the break away points towards the asymptotes, since
there are no zeros, no need to calculate arrival angles. The branch will move to the
asymptotes. So we end up with the following

××××
−2

−5−10 −0.83−8.28
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It is important to remember that root locus will always be symmetric with respect to
the real axis.

9. Now the only lemma left is to find where R.L. crosses the imaginary axis. For this
we use Routh stability stable as follows. Since the characteristic polynomial is 𝐾 +
𝑠 (𝑠 + 2) (𝑠 + 5) (𝑠 + 10) = 0 then

𝑃(𝑠) = 𝑠4 + 17𝑠3 + 80𝑠2 + 100𝑠 + 𝐾

𝑠4 1 80 𝐾
𝑠3 17 100
𝑠2 74.118 𝐾
𝑠1 100 − 0.229𝐾
𝑠0 𝐾

We just need to find where it cross the imaginary axis. Setting the 𝑠1 row to zero
gives 𝐾 = 436.68. This means the closed loop will become unstable for 𝑘 > 436.68.
To find where R.L. crosses the imaginary axes, we go back to the even polynomial
𝑠2 (the row above the line 𝑠1) in above Routh table, which yields 74.118𝑠2 + 𝐾 = 0 or
74.118𝑠2 + 436.68 = 0, therefore 𝑠 = ±2.43𝑖. This complete R.L. Here is the final plot

×××× −2−5
−10 −0.83−8.28

2.43

−2.43

K = 436

K = 0

K =∞K =∞

K =∞
K =∞

−4.25
s = 0

3.6.1.2 Part(b)

K 1
(s2+s+2)(s+1) Y (s)R(s)

+

−

𝐺 (𝑠) =
𝐾

�𝑠2 + 𝑠 + 2� (𝑠 + 1)

1. 𝑛 = 3 (The number of open loop poles), 𝑚 = 0 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles 𝑠 = −1, 𝑠 = −0.5 ± 1.323𝑖 when 𝑘 = 0.
Since there are no open loop zeros, the branches end up at ±∞

3. On the real axis, R.L., since one pole on the real axis, then the R.L. segment is to
the left of the only pole, which is 𝑠 = −1
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×
−1

4. Center of asymptotes is now found. 𝜎 =
∑𝑝𝑜𝑙𝑒𝑠−∑𝑧𝑒𝑟𝑜𝑠

𝑛−𝑚 = (−1−0.5−0.5)
3 = −0.667

5. The asymptotes angles are 𝜃 = 1800±𝑘3600

𝑛−𝑚 for 𝑘 = 0, 1,⋯. Hence 𝜃 = 1800±𝑘3600

3 =
600 ± 𝑘1200. Therefore the R.L. now looks like the following

×
−0.667−1

600

1200

1200

600

×
−0.5 + 1.323i

×
−0.5− 1.323i

origin

6. Break away points. There is no break away points, since there are no segments
between two poles on the real line. We can see this also if we try to solve 𝑑𝐾

𝑑𝑠 = 0 as
follows

1 + 𝐺 = 0

1 +
𝐾

�𝑠2 + 𝑠 + 2� (𝑠 + 1)
= 0

𝐾 = �𝑠2 + 𝑠 + 2� (𝑠 + 1)

𝐾 = 𝑠3 + 2𝑠2 + 3𝑠 + 2

Then we now solve for
𝑑𝐾
𝑑𝑠

= 3𝑠2 + 4𝑠 + 3 = 0

The solution gives only complex roots. So we go to the next lemma.

7. Departure angles from poles. It is clear that R.L. depart from open loop pole on
the real axis 𝑠 = −1 as shown moving to −∞ along one of the asymptotes. But we
need to find departure angles from the two complex poles 𝑠 = −0.5 ± 1.323𝑖. For
𝑠 = −0.5 + 1.323𝑖, let this unknown angle be 𝜃1 and we write
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×
−1

×
−0.5 + 1.323i

×
−0.5− 1.323i

originθ2

θ3

θ1

This is the angle we
are solving for now

�
𝑧𝑒𝑟𝑜𝑠

∢𝑧𝑖 − �
𝑝𝑜𝑙𝑒𝑠

∢𝑝𝑖 = 1800 + 𝑘3600 𝑘 = 0, 1,⋯

− (𝜃1 + 𝜃2 + 𝜃3) = 1800 + 𝑘3600

𝜃1 = −1800 − 𝜃2 − 𝜃3 − 𝑘3600

We see from the diagram that 𝜃3 = 900 and 𝜃2 = tan−1 �1.323
0.5

� = 700, hence from above

𝜃1 = −1800 − 700 − 900 − 𝑘3600

= −3400

= 200

By symmetry (R.L. is symmetric with respect to the real axis), the departure angle
for the other complex pole 𝑠 = −0.5−1.323𝑖 must be −200. We can calculate it to make
sure it is indeed −200 as follows.

×
−1

×
−0.5 + 1.323i

×
−0.5− 1.323i

origin

θ2 = −700

θ3

θ1 = −900

This is the angle we
are solving for now

Let 𝜃3 be the departure angle for the lower complex pole 𝑠 = −0.5 − 1.323𝑖, then

�
𝑧𝑒𝑟𝑜𝑠

∢𝑧𝑖 − �
𝑝𝑜𝑙𝑒𝑠

∢𝑝𝑖 = 1800 + 𝑘3600 𝑘 = 0, 1,⋯

− (𝜃1 + 𝜃2 + 𝜃3) = 1800 + 𝑘3600

𝜃3 = −1800 − 𝜃2 − 𝜃1 − 𝑘3600

But 𝜃2 = −700 and 𝜃1 = −900 then 𝜃3 = −1800 + 70 + 90 = −200 as expected. The root
locus plot is now updated
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×
−1

×
−0.5 + 1.323i

×
−0.5− 1.323i

origin
−0.667

θ1 = 200

θ3 = −200

600

8. We now extend R.L. to the asymptotes, since there are no zeros, there is no need to
calculate arrival angles and we end up with the following

×
−1

×
−0.5 + 1.323i

×
−0.5− 1.323i

origin
−0.667

θ1 = 200

θ3 = −200

600

9. Now the only lemma left is to find where R.L. crosses the imaginary axis. For this
we use Routh stability stable as follows. Since the characteristic polynomial is 𝐾 +
�𝑠2 + 𝑠 + 2� (𝑠 + 1) = 0 then

𝑃(𝑠) = 𝑠3 + 2𝑠2 + 3𝑠 + 𝐾 + 2

𝑠3 1 3
𝑠2 2 𝐾 + 2
𝑠1 4−𝑘

2
𝑠0 𝐾 + 2

We need 𝐾 = 4 (by setting the 𝑠1 row to zero). This means system will be unstable for
𝑘 > 4. To find where R.L. crosses the imaginary axes, we go back to the 𝑠2 polynomial
above the line 𝑠1 in Routh table, which yields 2𝑠2 + 𝐾 + 2 = 0 or 2𝑠2 + 6 = 0, therefore
𝑠 = ±1.73𝑖. This complete R.L. Here is the final plot
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×
−1

×
−0.5 + 1.323i

×
−0.5− 1.323i

origin
−0.667

θ1 = 200

θ3 = −200

600

1.73i

−1.73i

3.6.1.3 Part(c)

K s2+2s+10
s(s+5)(s+10) Y (s)R(s)

+

−

𝐺 (𝑠) =
𝐾 �𝑠2 + 2𝑠 + 10�
𝑠 (𝑠 + 5) (𝑠 + 10)

1. 𝑛 = 3 (The number of open loop poles), 𝑚 = 2 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles 𝑠 = 0, 𝑠 = −5, 𝑠 = −10 when 𝑘 = 0 and
two of the branches end up at zeros 𝑠 = −1 ± 3𝑖. One branch will end up at ±∞.

3. On the real axis, there is R.L. segment between 𝑠 = 0, 𝑠 = −5 and another segment
to the left of 𝑠 = −10. No R.L. segment exist between 𝑠 = −5 and 𝑠 = −10. Current
diagram now looks like the following

×
−5

××
s = 0−10

−1 + 3i

−1− 3i

4. Center of asymptotes is now found. 𝜎 =
∑𝑝𝑜𝑙𝑒𝑠−∑𝑧𝑒𝑟𝑜𝑠

𝑛−𝑚 = −15−(−1−1)
1 = −13

5. The asymptotes angles are 𝜃 = 1800±𝑘3600

𝑛−𝑚 for 𝑘 = 0, 1,⋯. Hence 𝜃 = 1800±𝑘3600

1 =
1800 ± 𝑘3600. Therefore the R.L. now looks like the following
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×
−5

××
s = 0−10

−1 + 3i

−1− 3i

1800
asymptotes

σs = −13

6. Finding the break away points

1 + 𝐺 = 0

1 +
𝐾 �𝑠2 + 2𝑠 + 10�
𝑠 (𝑠 + 5) (𝑠 + 10)

= 0

𝑠 (𝑠 + 5) (𝑠 + 10) + 𝐾 �𝑠2 + 2𝑠 + 10�
𝑠 (𝑠 + 5) (𝑠 + 10)

= 0

𝑠 (𝑠 + 5) (𝑠 + 10) + 𝐾 �𝑠2 + 2𝑠 + 10� = 0

𝐾 =
−𝑠 (𝑠 + 5) (𝑠 + 10)
�𝑠2 + 2𝑠 + 10�

=
−𝑠3 − 15𝑠2 − 50𝑠
𝑠2 + 2𝑠 + 10

We now solve for𝑑𝐾𝑑𝑠 = 0

𝑑𝐾
𝑑𝑠

= 0

𝑑
𝑑𝑠 �

−𝑠3 − 15𝑠2 − 50𝑠
𝑠2 + 2𝑠 + 10 � = 0

𝑠4 + 4𝑠3 + 10𝑠2 + 300𝑠 + 500

�𝑠2 + 2𝑠 + 10�
2 = 0

𝑠4 + 4𝑠3 + 10𝑠2 + 300𝑠 + 500 = 0

The roots are {𝑠 = 2.43 ± 5.895𝑖, 𝑠 = −1.727, 𝑠 = −7.12} We want breakaway between
𝑠 = 0 and 𝑠 = −5, hence only valid value is −1.727. We now go to the next lemma.

7. Departure angles from poles. Since poles are all on the real axis, the angles of
departure are as shown below. The root locus plot now appears as follows

×
−5

××
s = 0−10

−1 + 3i

−1− 3i

−1.727
break away

8. Since there are zeros, we now need to calculate arrival angles. There are two angles
to calculate since there are two zeros. But we really need to calculate one, since the
other will be symmetrical. Let us pick the top zero. 𝑠 = −1 + 3𝑖. Let its unknown
arrival angle be 𝜃1. This is the angle we want to solve for. So we set up the following
diagram to use for the calculation
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×
−5

×× s = 0
−10

−1 + 3i

−1− 3i

θ1
angle to find

θ2 θ3

θ4

θ5

�
𝑧𝑒𝑟𝑜𝑠

∢𝑧𝑖 − �
𝑝𝑜𝑙𝑒𝑠

∢𝑝𝑖 = 1800 + 𝑘3600 𝑘 = 0, 1,⋯

(𝜃4 + 𝜃1) − (𝜃2 + 𝜃3 + 𝜃5) = 1800 + 𝑘3600

Now we do a little geometry to calculate the angles. 𝜃4 = 900, 𝜃2 = tan−1 � 3
10−1

� =

18.4350, 𝜃3 = tan−1 �3
4
� = 36.80 and 𝜃5 = 180 − tan−1 �3

1
� = 108.430. The above now

becomes

�900 + 𝜃1� − �18.4350 + 36.80 + 108.430� = 1800 + 𝑘3600

𝜃1 = 1800 − 900 + 18.4350 + 36.80 + 108.430 + 𝑘3600

= 253.670

= −106.330

Therefore, the arrival angle at the lower zero will be −253.670 or 106.330. The root
locus now is as follows

×
−5

×× s = 0
−10

−1 + 3i

−1− 3i

−1060

106.330

−
1.727

9. The only lemma left is to find where R.L. crosses the imaginary axis. But we do not
have to do this, since the zeros are to the left of the imaginary axis and the third
branch goes to −∞. So we are done. The above is the final root locus.

3.6.2 Problem 2

ECE 332 - Homework Set 6

Due Wednesday, November 11, 2011 at 9 AM
Please slide submissions under my door

Problem 1

Problem 2

SOLUTION:
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3.6.2.1 part a

K s2+2s+10
s(s+5)(s+10) Y (s)R(s)

+

−

𝐺 (𝑠) =
𝐾 (𝑠 + 1) (𝑠 + 5)
𝑠 (𝑠 + 1.5) (𝑠 + 2)

1. 𝑛 = 3 (The number of open loop poles), 𝑚 = 2 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles 𝑠 = 0, 𝑠 = −1.5, 𝑠 = −2 when 𝑘 = 0 and
two of the branches end up at zeros 𝑠 = −1 and 𝑠 = −5. One branch will end up at
±∞.

×××
0

−
1
.5

−
2

−
1
.5

−
5

3. On the real axis, the following diagram shows the segments.

×××
0

−
1
.5

−
2

−
1
.5

−
5

4. Center of asymptotes is now found. 𝜎 =
∑𝑝𝑜𝑙𝑒𝑠−∑𝑧𝑒𝑟𝑜𝑠

𝑛−𝑚 = −3.5−(−6)
1 = 2.5

5. The asymptotes angles are 𝜃 = 1800±𝑘3600

𝑛−𝑚 for 𝑘 = 0, 1,⋯. Hence 𝜃 = 1800±𝑘3600

1 =
1800 ± 𝑘3600. So the asymptote is the real axis itself. This is clear since all zeros and
poles are on the real axis.

6. Break away points.

1 + 𝐺 = 0

1 +
𝐾 (𝑠 + 1) (𝑠 + 5)
𝑠 (𝑠 + 1.5) (𝑠 + 2)

= 0

𝑠 (𝑠 + 1.5) (𝑠 + 2) + 𝐾 (𝑠 + 1) (𝑠 + 5)
𝑠 (𝑠 + 1.5) (𝑠 + 2)

= 0

𝑠 (𝑠 + 1.5) (𝑠 + 2) + 𝐾 (𝑠 + 1) (𝑠 + 5) = 0

𝐾 =
−𝑠 (𝑠 + 1.5) (𝑠 + 2)
(𝑠 + 1) (𝑠 + 5)

=
−𝑠3 − 3.5𝑠2 − 3𝑠
𝑠2 + 6𝑠 + 5
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Then we now solve for 𝑑𝐾
𝑑𝑠 = 0

𝑑𝐾
𝑑𝑠

= 0

𝑑
𝑑𝑠 �

−𝑠3 − 3.5𝑠2 − 3𝑠
𝑠2 + 6𝑠 + 5 � = 0

−
𝑠4 + 12𝑠3 + 33𝑠2 + 35𝑠 + 15
𝑠4 + 12𝑠3 + 46𝑠2 + 60𝑠 + 25

= 0

𝑠4 + 12𝑠3 + 33𝑠2 + 35𝑠 + 15.0 = 0

The roots are 𝑠 = −0.823 ± 0.57𝑖, 𝑠 = −8.619, 𝑠 = −1.735 We want breakaway between
𝑠 = −1.5 and 𝑠 = −2, since these are two poles facing each others, one of the breakaway
points is 𝑠 = −1.735 on that segment. The complex root is discarded since it is not
on the real line. The point 𝑠 = −8.619 is valid since it is on a segment on the real
line. It will be a break-in point since it is on a segment with only a zero on it. So the
current plot is now as follows

×××
0

−
1
.5

−
2

−
1
.5

−
5

−
1
.7
3
5

breakwaybreak-in

−
8
.6
1
9

7. Departure angles from poles. Since poles are all on the real axis and no complex
zeros exist, then the angles of departure are as shown above. There is nothing to do
in this step.

8. Since all the zeros are on the real axis, there is nothing to do for this step. We just
need to connect the break away branches to the break-in point on the real axis as
follows

×××
0

−
1
.5

−
2

−
1
.5

−
5 −
1
.7
3
5

−
8
.6
1
9

9. Now the only lemma left is to find where R.L. cross the imaginary axis. Again, we
do not have to do this since the zeros are all to the left of the imaginary axis and
the third branch goes to −∞. So we are done. The following is the final plot. Since
we need to have 3 branches (since 𝑛 = 3) and 𝑚 = 2, then one of the branches going
into the break in point at 𝑠 = −8.619 will go towards the zero at 𝑠 = −5, but the other
branch go to −∞. We do not know which of the two branches will go to the zero
and which will to go −∞. It does not really matter. We pick the bottom branch going
to the zero and the top branch going to −∞. So the final plot is
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×××
0

−
1
.5

−
2

−
1
.5

−
5 −
1
.7
3
5

−
8
.6
1
9

same branch

same branch

third branch

−∞

3.6.2.2 Part(b)

>> s=tf('s');
>> sys=((s+1)*(s+5)/(s*(s+1.5)*(s+2)))
sys =
s^2 + 6 s + 5
-------------------
s^3 + 3.5 s^2 + 3 s
Continuous-time transfer function.
>> rlocus(sys)

-16 -14 -12 -10 -8 -6 -4 -2 0 2
-4

-3

-2

-1

0

1

2

3

4
Root Locus

Real Axis (seconds-1)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

on
ds

-1
)

3.6.2.3 Part(c)

The gain 𝐾 any point on the roots locus is given by multiplying the distances from each
pole to the that point, divided by the product of the distances from all the zeros to the
same point. This comes from

1 + 𝐾𝐺𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝 = 0

𝐾 =
1

�𝐺𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝�
In other words, if we want to find gain at some point 𝑟, then

𝐾 =
��𝑝𝑖𝑟�
� |𝑧𝑖𝑟|
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Since the first breakaway point in this case is 𝑟 = −1.735 (the break away point), then the
above becomes

𝐾 =
(1.735) (1.735 − 1.5) (2 − 1.735)

(1.735 − 1) (5 − 1.735)
The above was done by just looking the diagram of the root locus and measuring the
distance from each pole to the breakaway point, and similarly for the zeros. The above
reduces to

𝐾 = 0.045

For the second break-in point in this case is 𝑟 = −8.617, therefore

𝐾 =
(8.617) (8.617 − 1.5) (8.617 − 2)

(8.617 − 1) (8.617 − 5)
The above was done by just looking the diagram of the root locus and measuring the
distance from each pole to the break-in point, and similarly for the zeros. The above
reduces to

𝐾 = 14.73
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Question 1(b)

g)

x

ct)(U
E

20

1 0

0

- 1 0

Question 1(a)

2

.32 1x

5 o(E
E - t

-2

-3-1916

.r2x

o,(6

.E

.t2x

o)(U
E

20

1 0

0

- 1 0

-rgi

- 1 0  0  1 0
RealAxis

Question 1(c)

- 1 0  0
Real Axis

- 2 0
RealAxis

Question 2(b)

- 5 0
RealAxis

;
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3.7 HW 7

3.7.1 Problem 1 ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

SOLUTION:

3.7.1.1 Part(a)

𝐺𝐻 =
𝐾

𝑠 �𝑠2 + 𝑠 + 4�
(1)

The poles of the open loop are at 𝑠 = 0 and 𝑠 = −0.5 ± 𝑗1.94. So we draw Γ which encloses
all the poles in the RHS making sure we avoid the pole at 𝑠 = 0 by making small circle.
Here is the result. (we do not care about open loop poles in the LHS).

×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾
𝑠 �𝑠2 + 𝑠 + 4�

= lim
𝑠→0

𝐾
𝑠
= ∞𝑒−𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a very
large circle which goes from −900 to +900 (anti-clockwise). We update the plot after making
each segment so we see the progress.

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾
𝑠 �𝑠2 + 𝑠 + 4�

= lim
𝑠→∞

𝐾
𝑠3
= 0𝑒−𝑗3𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a very
small circle which goes from +2700 to −2700 on Γ𝐺𝐻. This is 1.5 circle rotation in clockwise
that goes from around 5400. updating the plot gives
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×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now do segment 1. For this we need to find the real and imaginary part of 𝐺𝐻 since we
need the axis crossings. From (1)

𝐺𝐻 =
𝐾

𝑠3 + 𝑠2 + 4𝑠
=

𝐾

�𝑗𝜔�
3
+ �𝑗𝜔�

2
+ 4 �𝑗𝜔�

=
𝐾

−𝑗𝜔3 − 𝜔2 + 4𝑗𝜔
=

𝐾
𝑗 �4𝜔 − 𝜔3� − 𝜔2

Multiply numerator and denominator by complex conjugate denominator gives

𝐺𝐻 =
𝐾

𝑗 �4𝜔 − 𝜔3� − 𝜔2

�−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

�−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

=
𝐾 �−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

�𝑗 �4𝜔 − 𝜔3� − 𝜔2� �−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

=
−𝑗𝐾 �4𝜔 − 𝜔3� − 𝐾𝜔2

𝜔6 − 7𝜔4 + 16𝜔2

Hence

Re (𝐺𝐻) = −𝐾
𝜔4 − 7𝜔2 + 16

Im (𝐺𝐻) =
−𝐾 �4𝜔 − 𝜔3�

𝜔6 − 7𝜔4 + 16𝜔2 =
𝐾 �𝜔2 − 4�

𝜔 �𝜔4 − 7𝜔2 + 16�

To find the crossing. Γ𝐺𝐻 will cross the real axis when Im (𝐺𝐻) = 0, hence

𝐾 �𝜔2 − 4�

𝜔 �𝜔4 − 7𝜔2 + 16�
= 0

𝐾 �𝜔2 − 4� = 0
𝜔2 − 4 = 0

𝜔2 = 4
𝜔 = ±2 rad/sec

Then

𝐺𝐻�𝑗2� =
𝐾

�𝑗2�
3
+ �𝑗2�

2
+ 4 �𝑗2�

=
𝐾

�−𝑗8� + (−4) + �𝑗8�

=
−1
4
𝐾

So Γ𝐺𝐻 will cross the real axis at −0.25𝐾.

Since 𝐾 > 0, this will be somewhere on the negative real axis. To find where Γ𝐺𝐻 crosses
the imaginary axis we set Re (𝐺𝐻) = 0, hence

−𝐾
𝜔4 − 7𝜔2 + 16

= 0

Which gives 𝜔 = ±∞. When 𝜔 = ±∞ then 𝐺𝐻 (±∞) = 0±. This means the crossing at origin.
This makes sense, as the small circle around the origin shrinks to zero size.

To find where segment (1) maps to, we see that for 𝜔 = +∞, Re (𝐺𝐻) < 0 and Im (𝐺𝐻) > 0,
so it starts in first quadrant. 𝜔 = 0+,Re (𝐺𝐻) < 0 and Im (𝐺𝐻) < 0, which means segment
(1) starts in the first quadrant but ends in the third quadrant.

Now for segment (3). we see that 𝜔 = 0−,Re (𝐺𝐻) < 0 and Im (𝐺𝐻) > 0, which means
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segment (3) starts in the first quadrant. 𝜔 = −∞ then Re (𝐺𝐻) < 0 and Im (𝐺𝐻) < 0 which
means segment (3) in Γ𝐺𝐻 starts in quadrant 1 and ends up in quadrant 3. There will be
crossing at the real axis at −0.25𝐾. Therefore the plot now looks like this

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

−
0
.2
5
K

crossing depends on K

1′

3′

This circle
shrinks to
zero

As the circle around 𝑠 = 0 shrinks to zero, Γ𝐺𝐻 becomes as follows

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

1′

3′

−0.25K

We are now ready to answer the final question about stability and 𝐾. Since open loop has
zero poles in RHS, then we need to have zero net clock wise encirclements around −1 for
the closed loop to be stable. Only condition that will meet that, is to keep the crossing
point −0.25𝐾 to the right of −1. This means we need 0.25𝐾 < 1. This insures zero clockwise
encirclements. This means

𝐾 < 4

To verify, Routh table is used to determined 𝐾 using the closed loop transfer function. The
closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾

𝑠 �𝑠2 + 𝑠 + 4� + 𝐾

=
𝐾

𝑠3 + 𝑠2 + 4𝑠 + 𝐾
Hence the Routh table is

𝑠3 1 4
𝑠2 1 𝐾
𝑠1 4 − 𝐾
𝑠0 𝐾

For no sign change in first column, we need 𝐾 > 0 and 4 − 𝐾 > 0. Which means 𝐾 < 4 as
was found above. Verified OK.

3.7.1.2 Part(b)

𝐺𝐻 =
𝐾 (𝑠 + 1)
𝑠2 (𝑠 + 2)

=
𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

(1)

The poles of the open loop are at 𝑠 = 0 (two poles) and 𝑠 = −2. So we draw Γ which encloses
all the poles in the RHS making sure we avoid the poles at 𝑠 = 0 by making small circle.
Here is the result. (we do not care about open loop pole in the LHS and about the zeros
of the open loop).
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×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

= lim
𝑠→0

𝐾
𝑠2
= ∞𝑒−2𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a very
large circle which goes from −1800 to +1800. This is a full circle in the anti-clockwise. We
update the plot after making each segment so we see the progress.

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

= lim
𝑠→∞

𝐾𝑠
𝑠3
= lim

𝑠→∞

𝐾
𝑠2
= 0𝑒−𝑗2𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a
very small circle which goes from +1800 to −1800 on Γ𝐺𝐻. This is basically a full circle in
clockwise around zero. updating the plot gives

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′

We now do segment 1. For this we need to find the real and imaginary part of 𝐺𝐻 since we
need the axis crossings. From (1)

𝐺𝐻 =
𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

=
𝐾 �𝑗𝜔 + 1�

�𝑗𝜔�
3
+ 2 �𝑗𝜔�

2 =
𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

Multiply numerator and denominator by complex conjugate denominator gives

𝐺𝐻 =
𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

�𝑗𝜔3 − 2𝜔2�

�𝑗𝜔3 − 2𝜔2�

=
𝑗 �−𝐾𝜔3� − �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�

Hence

Re (𝐺𝐻) =
− �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�

Im (𝐺𝐻) =
−𝐾𝜔3

𝜔4 �𝜔2 + 4�
=

−𝐾
𝜔 �𝜔2 + 4�

188



3.7. HW 7 CHAPTER 3. HWS

To find the crossing. Γ𝐺𝐻 will cross the real axis when Im (𝐺𝐻) = 0, hence
−𝐾

𝜔 �𝜔2 + 4�
= 0

𝜔 = ±∞ rad/sec

Therefore

𝐺𝐻�𝑗∞� = lim
𝜔→∞

𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

= lim
𝜔→∞

𝑗𝜔
−𝑗𝜔3

= lim
𝜔→∞

𝑗
−𝑗𝜔2

= 0−

So Γ𝐺𝐻 will cross the real axis at 0. Which is where the small circle shrinks to zero. To find
where Γ𝐺𝐻 crosses the imaginary axis we set Re (𝐺𝐻) = 0, hence

− �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�
= 0

𝐾𝜔4 + 2𝐾𝜔2 = 0

𝜔2 �𝜔2 + 2� = 0

Hence

𝜔 = 0

And

𝜔 = ±𝑖√2

Since𝜔 has to be real. Then𝜔 = 0 is only used.When 𝜔 = 0 then𝐺𝐻�𝑗0� = lim𝜔→0
𝐾�𝑗𝜔+1�

−𝑗𝜔3−2𝜔2 =

lim𝜔→0
𝐾

−2𝜔2 = ∞ . Hence Γ𝐺𝐻 will cross the imaginary axis at ∞.

To find which quadrants segment (1) maps to, we see that for positive 𝜔 then Re (𝐺𝐻)
is negative and Im (𝐺𝐻) is negative (since 𝐾 > 0). Therefore segment (1) maps to third
quadrant. And for segment (3), we see that negative 𝜔 then Re (𝐺𝐻) is negative and Im (𝐺𝐻)
is positive (since 𝐾 > 0). Therefore segment (3) maps to first quadrant

Therefore the plot now looks like this

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

This will
shrink to
zero

After the small circle shrinks to zero, and since the crossing on the real axis was found at
0 then the final plot looks like

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

We are now ready to answer the final question about stability and 𝐾. Since open loop has
zero poles in RHS, then we need to have zero net clockwise encirclements around −1 for
the closed loop to be stable. We see that there is no encirclements around −1. No matter
what 𝐾 > 0 value is. So the closed loop is stable for all positive 𝐾. To verify, Routh table is
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used to determined 𝐾 using the closed loop transfer function. The closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾 (𝑠 + 1)

𝑠3 + 2𝑠2 + 𝐾 (𝑠 + 1)
Hence the Routh table is

𝑠3 1 𝐾
𝑠2 2 𝐾
𝑠1 2𝐾−𝐾

2 = 𝐾
2

𝑠0 𝐾

For no sign change in first column, we need 𝐾 > 0 and 𝐾
2 > 0. Which is always true since 𝐾

is positive. Verified OK.

3.7.2 Problem 2

ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

SOLUTION:

Since there is zero open loop poles in RHP, we need zero net clockwise encirclements
around −1. This means we need to keep point −0.5 to the right of −1 and keep the point
−2 to the left of −1. In other words, we need to satisfy

0.5𝐾 < 1
2𝐾 > 1

Or

𝐾 < 2

And

𝐾 >
1
2

Hence the range of stable closed loop is for 𝐾 to meet the following requirement

0.5 < 𝐾 < 2
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3.7.3 Problem 3

ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
Gn ls ) :  : 1 :  G ls t  :  : - : -  .  i  G r (s )  :

s + r  / - 3 0 s + 1 ' - r \ " /  G ' l g ) + ( s / 3 )  + t

6^ t s )

G s ( r /

leue I

SOLUTION:

3.7.3.1 Part(a)

When 𝐾𝑣 = 0 the open loop is 𝐺𝐻 = 𝐾 1
𝑠2 . This has no poles in RHP and two poles at zero.

Hence Γ is

×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)

We start at segment 2.

lim
𝑠→0

𝐾
𝑠2
= lim

𝜀→0

𝐾

�𝜀𝑒𝑗𝜃�
2 = ∞𝑒

−2𝑗𝜃

As 𝜃 goes from +900 to −900 on Γ segment 2 goes from −1800 to +180 on Γ𝐺𝐻 with ∞ radius
in anti-clockwise. Hence the plot now looks as follows

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<
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For segment 4 in Γ. We have

lim
𝑠→∞

𝐾
𝑠2
= lim

𝑅→∞

𝐾

�𝑅𝑒𝑗𝜃�
2 = 0𝑒

−2𝑗𝜃

𝜃 goes from −900 to +900 on Γ, segment 4 goes from +1800 to −180 on Γ𝐺𝐻 with 0 radius in
clockwise. Hence the plot now looks as follows

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′

Now
𝐾
𝑠2
=

𝐾

�𝑗𝜔�
2 =

𝐾
−𝜔2

Hence Re (𝐺𝐻) = 𝐾
−𝜔2 and there is no imaginary part. Therefore, there is no crossing on

the real axis. There is crossing on the imaginary axis at 𝜔 = ±∞ which occurs at 𝐺𝐻 = 0.
This is when the small circle shrinks to zero size. It is clear that segment 1 will map to
third quadrant and segment 3 will map to second quadrant since there is no crossing. The
final plot is

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

This will
shrink to
zero

After the small circle shrinks to zero, and since the crossing on the real axis was found at
0 then the final plot looks like

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

3.7.3.2 Part(b)

Since open loop has zero poles in RHP, we need Γ𝐺𝐻 to have zero net clockwise encir-
clements. Since Γ𝐺𝐻 has no crossing on the real axis that depends on 𝐾 then Γ𝐺𝐻 will
remain as shown for any 𝐾. So closed loop is stable for all 𝐾 > 0. To verify, we set the
Routh table for the closed loop polynomial

The closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾

𝑠2 + 𝐾
Hence the Routh table is
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𝑠2 1 𝐾
𝑠1 0 0
𝑠0 0

We see that there is no sign change in first column, no matter what 𝐾 is.

3.7.3.3 Part (c)

We first find the closed loop transfer function. Let 𝐸 (𝑠) be the error (just after the summing
junction) then

𝐸 = 𝜃𝑟 − 𝜃 − 𝐾𝑣𝑠𝜃

𝜃 = 𝐸𝐾
1
𝑠2

From the second equation 𝐸 = 𝜃𝑠2

𝐾 , hence the first equation becomes

𝜃𝑠2

𝐾
= 𝜃𝑟 − 𝜃 − 𝐾𝑣𝑠𝜃

𝜃𝑠2

𝐾
+ 𝜃 + 𝐾𝑣𝑠𝜃 = 𝜃𝑟

𝜃 �
𝑠2

𝐾
+ 1 + 𝐾𝑣𝑠� = 𝜃𝑟

Therefore the closed loop transfer function 𝑇 (𝑠) = 𝜃
𝜃𝑟

is

𝜃
𝜃𝑟
=

1
𝑠2

𝐾 + 1 + 𝐾𝑣𝑠

=
𝐾

𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾
We now find the open loop transfer function with unity feedback using the closed loop
transfer function. Since 𝑇 (𝑠) = 𝐺

1+𝐺 where 𝐺 (𝑠) is the closed loop transfer function, then

letting 𝐺 (𝑠) = 𝑁
𝐷 we have

𝐾
𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾

=
𝐺

1 + 𝐺

=
𝑁
𝐷

1 + 𝑁
𝐷

=
𝑁

𝑁 +𝐷
Therefore 𝑁 = 𝐾 and 𝑁 + 𝐷 = 𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾 which means 𝐷 (𝑠) = 𝑠2 + 𝐾𝐾𝑣𝑠. Therefore the
open loop transfer function is

𝐺 (𝑠) =
𝑁
𝐷
=

𝐾
𝑠2 + 𝐾𝐾𝑣𝑠

Hence

𝐺𝐻 = 𝐾
𝑠(𝑠+𝐾𝐾𝑣)

Therefore, the open loop has a pole at 𝑠 = 0 and at 𝑠 = −𝐾𝐾𝑣 .

Assuming positive gains, −𝐾𝐾𝑣 is in the LHP. Hence the open loop is stable. Which means
the Nyquist plot should have zero net clockwise encirclement around −1 for the closed
loop to be stable.

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾
𝑠2 + 𝑠𝐾𝐾𝑣

= lim
𝑠→0

1
𝑠𝐾𝑣

= lim
𝜀→0

1
𝜀𝑒𝑗𝜃𝐾𝑣

= ∞𝑒−𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a half
circle which goes from −900 to +900 in anti-clockwise.
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×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾
𝑠2 + 𝑠𝐾𝐾𝑣

= lim
𝑠→∞

𝐾
𝑠2
= lim

𝑅→∞

1
𝑅𝑒2𝑗𝜃

= 0𝑒−𝑗2𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a
very small circle which goes from +1800 to −1800 on Γ𝐺𝐻. This is basically a full circle in
clockwise around zero. updating the plot gives

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

To find the intersections,

𝐺𝐻 =
𝐾

𝑠2 + 𝑠𝐾𝐾𝑣
=

𝐾
−𝜔2 + 𝑗𝜔𝐾𝐾𝑣

=
𝐾

�−𝜔2 + 𝑗𝜔𝐾𝐾𝑣�

�−𝜔2 − 𝑗𝜔𝐾𝐾𝑣�

�−𝜔2 − 𝑗𝜔𝐾𝐾𝑣�

=
−𝐾𝜔2 − 𝑗𝜔𝐾2𝐾𝑣
𝐾2𝜔2𝐾2

𝑣 + 𝜔4 =
−𝐾

𝐾2𝐾2
𝑣 + 𝜔2 − 𝑗

𝐾2𝐾𝑣
𝐾2𝜔𝐾2

𝑣 + 𝜔3

Hence Re (𝐺𝐻) = −𝐾
𝐾2𝐾2𝑣+𝜔2 and Im (𝐺𝐻) = − 𝐾2𝐾𝑣

𝐾2𝜔𝐾2𝑣+𝜔3 . When Re (𝐺𝐻) = 0, we get 𝜔 = ±∞.
When means 𝐺𝐻 = 0 at this frequency. So Γ𝐺𝐻 crosses the imaginary axis at the origin.
When Im (𝐺𝐻) = 0, we also get 𝜔 = ±∞ which also means Γ𝐺𝐻 crosses the real axis at zero.
By continuation, and since segment 1 must follow segment 4, then segment 1 maps to
third quadrant in Γ𝐺𝐻 and segment 3 must map to quadrant 2 in Γ𝐺𝐻. As 𝜀 → 0 the small
circle become a point at origin and we get the final plot

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

2′

=

<
4′

3′

1′

intersection at origin

Since the intersection is always at the origin, Γ𝐺𝐻 will never move to the left passed −1 to
make any encirclement around −1. We need at least one net encirclement for the closed

loop to be unstable. Hence the closed loop is stable for all positive 𝐾,𝐾𝑣 .

To verify, we show Routh table for the closed loop found above, which is 𝐾
𝑠2+𝐾𝐾𝑣𝑠+𝐾

. The
Routh table is

𝑠2 1 𝐾
𝑠1 𝐾𝐾𝑣 0
𝑠0 𝐾
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For positive 𝐾,𝐾𝑣, we see that there can not be a sign change. Hence closed loop is stable
for all 𝐾,𝐾𝑣. (Note, I assume 𝐾,𝐾𝑣 > 0. Verified this with instructor via email).

3.7.4 Problem 4

(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
Gn ls ) :  : 1 :  G ls t  :  : - : -  .  i  G r (s )  :

s + r  / - 3 0 s + 1 ' - r \ " /  G ' l g ) + ( s / 3 )  + t

6^ t s )

G s ( r /

leue I

(b) Using the Nyquist plot from part (a), estimate the gain and phase margirts.

(c) With time delay T > 0, explain in detail what is meant by the following: "The

appropriate Nvquist plot is obtained from the plot in Part (a) by a frequencv rlepen<lent,

angular rotation." For the case when T:7, is the closed loop stable? Explain.

SOLUTION:

3.7.4.1 Part(a)

The open loop transfer function 𝑇(𝑠) is 𝐺𝐴 (𝑠) 𝑒−𝑠𝑇𝐺 (𝑠)𝐺𝑓 (𝑠). For 𝑇 = 0, we have

𝑇 (𝑠) = 𝐺𝐴 (𝑠) 𝐺 (𝑠) 𝐺𝑓 (𝑠)

=
10
𝑠 + 1

3.15
30𝑠 + 1

1
𝑠2

9 +
𝑠
3 + 1

The Nyquist plot is (using the program I wrote which shows Γ and Γ𝐺𝐻 side by side)
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Out[142]=

R0 2.2

2.2
ϵ 0.897 x 0.91 y 0.65 show arrow

0.5 1.0 1.5 2.0
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-1
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2
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-0.6
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0.2

0.4

0.6

In the limit, as 𝑅 becomes very large we obtain

Out[142]=

R0 10.

10.
ϵ 0.897 x 0.91 y 0.65 show arrow

2 4 6 8 10

-10

-5

5

10

-0.5 0.5

-0.6

-0.4

-0.2

0.2

0.4

0.6

Here is also Matlab nyquist output (zoomed in version)

s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s^2/9+s/3+1);
sys =
850.5
----------------------------------------
90 s^4 + 363 s^3 + 1092 s^2 + 846 s + 27
nyquist([850.5],[90 363 1092 846 27])

-1.5 -1 -0.5 0 0.5 1 1.5

-5

-4

-3

-2

-1

0

1

2

3

4

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

3.7.4.2 Part(b)

For the gain margin, the Γ𝐺𝐻 curve crosses the real axis at about −0.41. Therefore we need

0.41𝐾max < 1

For stability. Hence

𝐾max =
1
0.41

= 2.439
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In dB, the above becomes

𝑔𝑚 = 20 log10 2.439
= 7.74 db

For the phase margin, we draw a unit circle and find the intersection with Γ𝐺𝐻 and estimate
the angle between the line from origin to the intersection and the −1800 line. As follows

The angle seems to be approximately between 300 and 350. This is the phase margin. To
get exact values, Matlab margin command can be used as follows

s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s^2/9+s/3+1);
sys =
850.5
----------------------------------------
90 s^4 + 363 s^3 + 1092 s^2 + 846 s + 27
>> [Gm,Pm,~,~] = margin(sys)
Gm =
2.3854
Pm =
35.6025

Converting the Gm value given in Matlab to dB, gives the result shown above. Matlab
gives 35.60 as the exact phase margin.

3.7.4.3 Part(c)

Let the open loop 𝐺𝐻 when 𝑇 = 0 (which is what we analyzed in part (b)) be called 𝐺𝐻 (𝑠)
which can be written, in frequency domain as

𝐺𝐻 (𝑠)|𝑠=𝑗𝜔 = |𝐺𝐻| 𝑒
𝑗𝜃

Where both the magnitude |𝐺𝐻| and the phase 𝜃 in the above, are functions of the frequency
𝜔. The above is polar representation of the complex quantity 𝐺𝐻�𝑗𝜔�. When 𝑇 > 0, then
the open loop is now 𝑒−𝑠𝑇𝐺𝐻 (𝑠), which can be written in frequency domain as

𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� = �𝑒−𝑗𝜔𝑇� |𝐺𝐻| 𝑒𝑗(𝜃−𝜔𝑇)

In other words, magnitudes multiply and phases are added. But �𝑒−𝑗𝜔𝑇� = 1, so the above is

𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� = |𝐺𝐻| 𝑒𝑗(𝜃−𝜔𝑇)

We see that the resulting open loop has the same magnitude as before, but its phase has
change. We subtract angle 𝜔𝑇 from the original phase 𝜃. subtract angle 𝜔𝑇 is the same as
rotating the complex vector representation clockwise 𝜔𝑇. So this causes the whole Nyquist
plot, which is a frequency plot 𝐺𝐻�𝑗𝜔� , to just rotate by 𝜔𝑇 clockwise (since negative
angle) to what it was before. This makes Γ𝐺𝐻 become closer to −1. This is illustrated in
the following diagram
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−1

unit circle
ΓGH

phase margin

rotated clockwise by ωT

−1

unit circle

e−ωT ΓGH

reduced phase
margin as ΓGH

rotates clockwise
due to time delay.
At frequency 0dB

When 𝑇 = 1, the angle is 𝜔 radians. Since we found the phase margin to be 350 or about
0.61 radians, then the closed loop, which corresponds to the open 𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� , will have
new phase reduced by 𝜔 radians. Since phase margin is measured at 0𝑑𝐵 angle (or 𝜔 = 1
radian, or 57.30). This is larger than the phase margin 350. Therefore the new system is

unstable . Γ𝐺𝐻 will rotate and will cross over −1.

−1

unit circle
ΓGH

350

after clockwise rotation by ωT where T = 1. Unstable.

−1

unit circle

e−ωT ΓGH

What the above shows, is that adding delays 𝑒−𝑠𝑇 makes the system less stable (closer to
becoming unstable). Delays causes the phase margin to reduce. We can find the amount

of delay 𝑇 before the system becomes unstable. We need 𝜔𝑇 < 350 or 𝑇 < 350

57.30 < 0.611
seconds. This is the maximum delay 𝑇 we can have before the closed loop phase margin
is all used up and the system become unstable.
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3.7.5 HW 7 key solution

 

 

 

ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I

I

" Rit
i 8

/ te '

# 75o tu tr o,oSECE  3 3 L

L
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11
N,'rrl

-\
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) ^
:  s - -  f  QJo

K

= a#e

' 5,pqll ct<le

Qtsl t{s) 
lr-

Y
= -

l f d o

; d
R  e J  '

k
= <

B:" :3?

j rJ(-"rijd+4 )

k [- al'- j r^X4 -,,r'l]

K
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q(e) t-l(t)l 
r = Rd f
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f 69,^rl Fl(aurl] : " ,

C t a s S  P e o l  a x i s
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;
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ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I

I

;
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ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I

I

(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
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(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
Gn ls ) :  : 1 :  G ls t  :  : - : -  .  i  G r (s )  :

s + r  
/ - 3 0 s + 1 ' - r \ " /  

G ' l g ) + ( s / 3 )  + t

6 ^ t s )

G s ( r /

leue I

(b) Using the Nyquist plot from part (a), estimate the gain and phase margirts.

(c) With time delay T > 0, explain in detail what is meant by the following: 
"The

appropriate Nvquist plot is obtained from the plot in Part (a) by a frequencv rlepen<lent,

angular rotation." For the case when T:7, is the closed loop stable? Explain.

;
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;
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;
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c)  You  need  to  rotate  the  plot  by  the  phase  corresponding  to  the 
appropriate delay and reexamine the ‐1 point to check for stability. Due 
to 

€ 

e−sT = e− jωT factor,  some  points  will  be  rotated  more  than  others, 
depending upon the frequency. 

 

 
;

 

 

Acknowledgements: 

The solutions of Dan Morgan and Mark Omernick were helpful to the TA 
in preparing the solution set. 

;
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3.8 HW 8

3.8.1 Problem 1

I .

- ECE 332 Homework f $

Derivc a modcl for thc opcn-loop transfer function for thc system whocc frcqucncy
relponT plots a^re given on the last pagc. T\rrn in the plot with the ctraight-linc Bodc
approximationr of qho Td l% gain drawn on top of tUe true Bode plot. Will the
clocedJoop aystem be rteble with ncgative unity-feedback? What "r"'tUu gain and
phase marginr?

Giveo thc forwa,rd loop traosfer function for a negativc unity-feedbaclc aystem

r,t -\ - (r + 5)(r + 3)
t i f  a l  F- \ - '  

s ( r+  l ) ( r z  * r+4 ) '

(a) invertigate thc atability of the cyrtem uring both Nyquist atrd Bode in Matlab,
(b) fiod the gain aod phrse ma,rginc from eich method and their corresponding

clusover frequenciea. Dieplay thc gain and phase margins on the plots whcre
tbey occur

The block diagram shown in Figure I represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function Gr(r) being givenby

G ' ( s ) -  '  2 5 ( l + 5 s )
(sr * 49.277s2 *25.172s + 2.526)

The parameter values are r = L, K - 0.05, M = 10, and D = I with tr(s) = g.

Figure l: Hydroelectric Syotem Block Diagram
(a) Using the Bode plots, genereated using Mottab if you wish, find the maximum

nalue of K to retain stability.
(b) Find the gain marEin, qh.". matgin and the corresponding crossover frequencier

aod label them on the Bode plots.

Gr(c)

Bode plot for Problem I'

40

llagnilutb ReePonse

@
E
c
g -20

-40

-60

-  
- 1

1 0 '
t02lot100

I
tl

B - 1
Eo-

Frequency (tad/se)

Phase Re$ome

Frcquency (teUsc)

SOLUTION:

The first step is to find number of poles and number of zeros. Looking at the phase plot, we
see that at high frequency the phase is −2700. Therefore, there are 3 more poles than zeros.
(A pole adds −900 at high frequency and zero adds +900). Now we look at the magnitude
plot and look for any slope change in the positive direction. There is none. The slope starts
at −20 dB/decade and remains negative going to −40 dB/decade, then −60 dB/decade.

This implies there are no zeros since a zero makes the slope positive. We now know that
there are 3 poles and no zeros.

Next we look at where the phase starts. We see it starting at −900. This means this is type
1 system (i.e. one pole at the origin.). So now we can say that our system has this general
form

𝐺 (𝑠) =
𝐾

𝑠 �1 + 𝑠
𝜏1
� �1 + 𝑠

𝜏2
�

A pole at zero always starts at 40 dB at low frequency since 20 log 1
𝜔 = −20 log𝜔, and using
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𝜔 = 0.01 as the small frequency value (by convention), we obtain −20 log 0.01 = 40 dB. It
drops by −20 dB/decade. Now we need to find the locations of the break points 𝜏1 and 𝜏2
(also called corner frequencies).

To find 𝜏1 we draw an asymptotic lines between the first segment which has slop of −20
dB/decade and the next segment which has slope of −40 dB per decade and look for the
intersection point. We find it is 𝜏1 ≈ 1 rad/sec as illustrated below. Similarly between the
second segment which has slope of −40 dB/decade and the third segment which has slope
of −60 dB/decade we find the intersection to be around 𝜏1 ≈ 10 rad/sec

1 rad/sec

10 rad/
sec

Now that we found the corner frequencies, our system has this form

𝐺 (𝑠) =
𝐾

𝑠 (1 + 𝑠) �1 + 𝑠
10
�

The only thing left is to determine gain 𝐾. This is done by looking at low frequency. By
convention this is 𝜔 = 0.01 rad/sec. At 𝜔 = 0.1 we see the gain is about 45 dB, and since the
slope is −20 dB/decade we go back one decade, and conclude that magnitude at 𝜔 = 0.01
rad/sec must be 65 dB.

Since pole at zero at 40 dB, then the di�erence, which is 25 dB, must be due to the gain 𝐾.
Hence we solve for 𝐾 from

20 log𝐾 = 25

𝐾 = 10
25
20 = 17.78

Therefore our system is now complete. The open loop transfer function is

𝐺 (𝑠) = 17.78
𝑠(1+𝑠)�1+ 𝑠

10 �

Now we Draw the magnitude straight line approximation (this below was drawn by hand
using drawing program. This is not computer generated)
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0.01 0.1 1 10 100

−80

−60
−40

−20

0

20

40

60

−20db per decade

−40db per decade

−60db per decade

|G(jω)| db

log(ω) rad/sec

Now we draw the phase straight line approximation. Phase goes down by −450 for each
pole, starting one decade before the corner frequency, and ending one decade after the
corner frequency. This is only for the approximation factors in the form 1

1+ 𝑠
𝜏
. For the exact

pole 1
𝑠 , it starts at −90

0 and remains over the whole frequency range. For 𝜏1 = 1 rad/sec,
we start from 0.1 up to 10 rad/sec. For 𝜏1 = 10 rad/sec, we start from 1 rad/sec up to 100
rad/sec. Using this information, below is sketch of the phase straight line approximation.

0.01 0.1 1 10 100

−2250

−1800

−1350

−900

phase (degree)

log(ω) rad/sec
−2700

−450

00

−450 per decade for τ1 term

−450 per decade for τ2 term

−900 for pole at zero

0.01 0.1 1 10 100

−2250

−1800

−1350

−900

phase (degree)

log(ω) rad/sec

−2700

Sum each segment, we obtain the plot below

Below is the straight line approximation on top of the true bode plot as required to show.

s=tf('s'); sys=17.78/(s*(1+s)*(1+s/10))
bode(sys)
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Since the open loop is stable as it has poles at {0, −1, −0.1}, then the closed loop will be
stable if there is zero net clock wise encirclement around −1. This translates to having
positive phase margin when magnitude of �𝐺 �𝑗𝜔𝑔𝑐�� is unity and positive gain margin with
phase is −1800.

To find the gain margin and the phase margins, we first plot our approximation of the
system found above: 𝐺 (𝑠) = 17.78

𝑠(1+𝑠)�1+ 𝑠
10 �

using the bode command. Here it is, showing on

it the 𝜔𝑝𝑐 frequency (where phase is −1800) and the corresponding �𝐺 �𝑗𝜔𝑝𝑐�� in dB found,
which we will use to find the gain margin from
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HW8, problem 1, approximation of the system

Frequency  (rad/s)

System: sys
Frequency (rad/s): 3.2
Phase (deg): -180

System: sys
Frequency (rad/s): 3.19
Magnitude (dB): 4

We see that at −1800, the frequency is 3.2 rad/sec. This is called 𝜔𝑝𝑐. Going back to the
magnitude plot, we see that at 𝜔𝑝𝑐 then �𝐺 �𝑗𝜔𝑝𝑐��

𝑑𝐵
= 4 dB. This means the gain margin

𝐺𝑀𝑑𝐵 is

𝐺𝑀𝑑𝐵 = −4 dB

Notice that 𝐺𝑀𝑑𝐵 is negative of �𝐺 �𝑗𝜔𝑝𝑐��
𝑑𝐵
. The reason is due to the definition of 𝐺𝑀𝑑𝐵,

which is

𝐺𝑀𝑑𝐵 = 20 log10
1

�𝐺 �𝑗𝜔𝑝𝑐��

But �𝐺 �𝑗𝜔𝑝𝑐�� = 10
�𝐺�𝑗𝜔𝑝𝑐��𝑑𝐵

20 . Substituting this in the above gives

𝐺𝑀𝑑𝐵 = 20 log10
1

10
�𝐺�𝑗𝜔𝑝𝑐��𝑑𝐵

20

= −20 log10 10
�𝐺�𝑗𝜔𝑝𝑐��𝑑𝐵

20

= − �𝐺 �𝑗𝜔𝑝𝑐��
𝑑𝐵

log10 10

= − �𝐺 �𝑗𝜔𝑝𝑐��
𝑑𝐵

Therefore, 𝐺𝑀𝑑𝑏 is the negative of �𝐺 �𝑗𝜔𝑝𝑐��
𝑑𝑏
as read from bode plot. Since 𝐺𝑀𝑑𝐵 < 0 then

closed loop is not stable . To find the phase margin. we find the frequency 𝜔𝑔𝑚 which is

where magnitude plot is at 0 dB. We see that the frequency is 𝜔𝑔𝑚 = 4 rad/sec as shown in
the plot below.
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HW8, problem 1, approximation of the system

Frequency  (rad/s)

System: sys
Frequency (rad/s): 3.98
Phase (deg): -188

System: sys
Frequency (rad/s): 4.01
Magnitude (dB): -0.0374

At 𝜔𝑔𝑚, the phase is −1880. Subtracting 1800 from this phase gives −70. Hence

phase margin = −70

Phase margin must be positive for stable closed loop stable. The closed loop is not stable.

Note that both the phase margin and the gain margin must be positive for stable closed
loop system.

3.8.2 Problem 2

I .

- ECE 332 Homework f $

Derivc a modcl for thc opcn-loop transfer function for thc system whocc frcqucncy
relponT plots a^re given on the last pagc. T\rrn in the plot with the ctraight-linc Bodc
approximationr of qho Td l% gain drawn on top of tUe true Bode plot. Will the
clocedJoop aystem be rteble with ncgative unity-feedback? What "r"'tUu gain and
phase marginr?

Giveo thc forwa,rd loop traosfer function for a negativc unity-feedbaclc aystem

r,t -\ - (r + 5)(r + 3)
t i f  a l  F- \ - '  

s ( r+  l ) ( r z  * r+4 ) '

(a) invertigate thc atability of the cyrtem uring both Nyquist atrd Bode in Matlab,
(b) fiod the gain aod phrse ma,rginc from eich method and their corresponding

clusover frequenciea. Dieplay thc gain and phase margins on the plots whcre
tbey occur

The block diagram shown in Figure I represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function Gr(r) being givenby

G ' ( s ) -  '  2 5 ( l + 5 s )
(sr * 49.277s2 *25.172s + 2.526)

The parameter values are r = L, K - 0.05, M = 10, and D = I with tr(s) = g.

Figure l: Hydroelectric Syotem Block Diagram
(a) Using the Bode plots, genereated using Mottab if you wish, find the maximum

nalue of K to retain stability.
(b) Find the gain marEin, qh.". matgin and the corresponding crossover frequencier

aod label them on the Bode plots.

Gr(c)

SOLUTION:

The open loop

𝐺 (𝑠) =
(𝑠 + 5) (𝑠 + 3)

𝑠 (𝑠 + 1) �𝑠2 + 𝑠 + 4�

has poles at 𝑠 = 0, 𝑠 = −1 and 𝑠 = −1
2 ±

√3
2 𝑗, therefore it is stable. So we expect the closed

loop to be stable only if the Nyquist plot has a net of zero clockwise encirclement around
−1. When looking at the bode plot, the rules are these. The closed loop is stable, if both
these conditions are met:

1. The gain margin 𝐺𝑀𝑑𝑏 is positive. Or in other words, if �𝐺 �𝑗𝜔𝑔𝑐��
𝑑𝑏

is negative as
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read from the bode plot.

2. The phase margin is positive.

3.8.2.1 Part(a)

Here is Nyquist plot

s=tf('s');
sys=(s+5)*(s+3)/(s*(s+1)*(s^2+s+4));
nyquist1(sys)

Real Axis
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xi
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20
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40
Nyquist plot, problem 2, HW8

It shows there is one encirclement around −1. We can zoom in to make sure:

Real Axis
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8

10

Nyquist plot, problem 2, HW8

The above shows that the closed loop is not stable. We will now look at Bode plot. Here is
the result, where I showed the gain and phase margins on the generated Matlab plot. This
shows that the gain margin is negative, hence not stable, and it also shows that the phase
margin is negative, also indicating it is not stable.
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We can also ask Matlab to give us the margins and the corresponding break frequencies.
Matlab was correct and found that the closed system is also not stable:

>> [gm,pm,gwc,pwc]=margin(sys)
Warning: The closed-loop system is unstable.
> In ctrlMsgUtils.warning (line 25)
In DynamicSystem/margin (line 65)
gm =
0.4254
pm =
-42.9450
gwc =
1.9239
pwc =
2.4785

Notice that Matlab gives the gain margin 𝐺𝑀 in linear value. We see it says 𝐺𝑀 = 0.4254
above, which is −7.42 dB. Since it is negative, then closed loop is not stable.

3.8.2.2 Part(b)

We can display the cross over frequencies usingMatlab either by using the margin command
or using the GUI by using the mouse as shown below. First we find the frequency where
the phase is −1800, this is called 𝜔𝑝𝑐. We see it is 1.93 rad/sec. Then using the mouse, we
locate this frequency on the magnitude plot and read |𝐺(𝑗𝜔)| in dB. We see that |𝐺(𝑗𝜔)| in
dB is positive, hence 𝐺𝑀 is negative, and closed loop is not stable.
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Find frequency at -180 phase

Use it to locate 
magnitude here. 

To determine the stability using phase margin, we do the reverse. We locate the frequency
where the magnitude is zero dB using the mouse. This is called 𝜔𝑔𝑚. We see it is at 2.48
rad/sec. Then on the phase plot, we locate the phase at this frequency using the mouse.
We see it is −2280 . Adding −1800 gives −480. Since this is negative, then the close loop is
not stable.

Find frequency 
where magnitude 
is 0 db

Locate phase at this 
frequency in order to 
find phase margin

Using Nyquist to determine stability, we plot Nyquist. Then make a unit circle around the
origin to locate the gain and phase margin, as illustrated below
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<

=

1
Gm

Pm

−1

Locating gain and phase margin on Nyquist plot

Plotting the Nyquist plot using Matlab, and zooming in, and making a unit circle (Circle
was added by hand on top of the Matlab Nyquist plot), one can measure the gain and
phase margin as below

GM= 1/(2.34) = 0.42
Phase margin = -42 degree 

(angle between real line and 
intersection with circle)

3.8.3 Problem 3

I .

- ECE 332 Homework f $

Derivc a modcl for thc opcn-loop transfer function for thc system whocc frcqucncy
relponT plots a^re given on the last pagc. T\rrn in the plot with the ctraight-linc Bodc
approximationr of qho Td l% gain drawn on top of tUe true Bode plot. Will the
clocedJoop aystem be rteble with ncgative unity-feedback? What "r"'tUu gain and
phase marginr?

Giveo thc forwa,rd loop traosfer function for a negativc unity-feedbaclc aystem

r,t -\ - (r + 5)(r + 3)
t i f  a l  F- \ - '  

s ( r+  l ) ( r z  * r+4 ) '

(a) invertigate thc atability of the cyrtem uring both Nyquist atrd Bode in Matlab,
(b) fiod the gain aod phrse ma,rginc from eich method and their corresponding

clusover frequenciea. Dieplay thc gain and phase margins on the plots whcre
tbey occur

The block diagram shown in Figure I represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function Gr(r) being givenby

G ' ( s ) -  '  2 5 ( l + 5 s )
(sr * 49.277s2 *25.172s + 2.526)

The parameter values are r = L, K - 0.05, M = 10, and D = I with tr(s) = g.

Figure l: Hydroelectric Syotem Block Diagram
(a) Using the Bode plots, genereated using Mottab if you wish, find the maximum

nalue of K to retain stability.
(b) Find the gain marEin, qh.". matgin and the corresponding crossover frequencier

aod label them on the Bode plots.

Gr(c)
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SOLUTION:

3.8.3.1 Part (a)

The open loop transfer function is

𝐺 (𝑠) =
25 (1 + 5𝑠)

𝑠3 + 42.277𝑠2 + 25.772𝑠 + 2.526 �
1 − 𝑇𝑠
1 + 0.5𝑇𝑠� �

1
𝑀𝑠 + 𝐷� �

1
𝐾�

We start with 𝑇 = 1,𝑀 = 10,𝐷 = 1, 𝐾 = 1.

𝐺 (𝑠) =
25 (1 + 5𝑠)

𝑠3 + 42.277𝑠2 + 25.772𝑠 + 2.526 �
1 − 𝑠
1 + 0.5𝑠� �

1
10𝑠 + 1�

And make a bode plot, then find the �𝐺 �𝑗𝜔𝑝𝑐�� at corresponding −1800.
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HW8, problem 3

Frequency  (rad/s)

System: sys
Frequency (rad/s): 0.637
Phase (deg): 180

System: sys
Frequency (rad/s): 0.636
Magnitude (dB): -3.79

But the phase do not cross −1800. This indicates an infinite gain margin. Similarly we find
that the phase margin is infinite. Hence we conclude that we can make 𝐾 as close to zero
(since it is in denominator) as we want, while keeping the system stable and can make it
as large as we want. Note that we are assuming that gain itself can only be positive here.

3.8.3.2 Part (b)

Both the gain and the phase margin are infinite. There is no corresponding crossover
frequencies.
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3.8.4 Problem 4

t :

Problem 4: Thc opcn bop tnndcr ftnctim of r podtirur omuol sysrm is

G(s)-ffi
Assrure a rcguive unity ftcdbackconfiguntion.

(a) Skcrch thc Bodc diagram for K = I (Do Not Usc MATLAB). Fird rhc gsin nargia
gain-crossover frcquerrcn plusc margin ard thc phasc-crossorrcr @ucncy for thc
systcm.

(b) Usc MATLAB ocbcctyourplot

(c) Detcrmine the valuc of K which will satisfy thc following design criaria

l. Aphascmarginof55".

2. A gain margn of 2,6 dB.

SOLUTION:

3.8.4.1 part(a)

𝐺 (𝑠) =
�1 + 𝑠

10
�

𝑠 �1 + 𝑠
5
� �1 + 𝑠

2.5
�

For the magnitude, the corner frequencies are at 𝑠 = 0, 𝑠 = 5, 𝑠 = 2.5 for the poles and 𝑠 = 10
for the zeros. The pole at zero starts at 40 dB (we use 𝜔 = 0.01 as starting point by conven-
tion) with slope of −20 dB/decade. Each pole in the denominator adds a −20 dB/decade
slope, while each zero adds +20 dB/decade. Here is the magnitude plot approximation
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2
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Add each segment

−40 db/decade

−60 db/decade

−40 db/decade

For the phase, since this is type 1 system, it starts at −900 at the 𝜔 = 0.01. This stays for all
the range of frequencies. At 𝜔 = 5 and 𝜔 = 2.5, A −450 slope is added. This slope extends
one decade before the corner frequency up to one decade above it. At 𝜔 = 10 rad/sec, we
add +450 for the zero. Here is the result
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−900

−1350
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−2700
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2
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2
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2
5

1
0
01
0

5
0

0
.5

Now to answer the part about the gain and phase margins. For this, we show both �𝐺 �𝑗𝜔��
and phase plot that we sketched above in one diagram and mark on them the gain and
phase related quantities. This is the result.

223



3.8. HW 8 CHAPTER 3. HWS

In next part, we use Matlab to get accurate margin values, which shows that gain margin
is 30 dB and phase margin is 640. The gain cross over frequency is 7 rad/sec and the phase
cross over frequency is 0.92 rad/sec. The closed loop is stable.

3.8.4.2 Part(b)

Using Matlab

clear
s=tf('s');
sys=tf( (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode(sys);
grid
[gm,pm,gcw,pcw]=margin(sys)
gm =
30.0007
pm =
64.4735
gcw =
7.0711
pcw =
0.9260
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HW 8, problem 4, part(b)

Frequency  (rad/s)

3.8.4.3 Part(c)

3.8.4.3.1 Part(1) For phase margin of 550 we want the phase at −1250 to correspond to
0 dB in the magnitude plot. At phase −1250 the frequency is 1.3 rad/sec from the plot. At
this frequency the magnitude is −3.55 dB and not zero dB. Hence positive gain margin of
3.55 dB. We want to shift this up to 0 dB. So we need to solve for additional gain from

20 log10 𝐾 = 3.55

𝐾 = 10
� 3.5520 �

= 1.5

Hence

𝐾 = 1.5

To verify, here is the Matlab margin command, which shows the phase margin is indeed
now 550 when using 𝐾 = 1.5

clear
s=tf('s');
K=1.5;
sys=tf( K* (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode(sys);
grid
[gm,pm,gcw,pcw]=margin(sys)
gm =
20.0005
pm =
55.3798
gcw =
7.0711
pcw =
1.2991
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3.8.4.3.2 Part(2) At −1800 in the phase plot, we want the corresponding gain margin
to be 26 dB which means we want �𝐺 �𝑗𝜔𝑔𝑐�� = −26 dB. Currently, we see that at −1800, the
frequency is 7.1. The magnitude is −30 dB at this frequency. We want magnitude to be −26

dB instead. Hence we want to shift up by 4 dB the magnitude plot, or 𝐾 = 10
� 4
20 � = 1.585

𝐾 = 1.585

To verify, here is the Matlab margin command, which shows the gain margin is close to 26
dB now using 𝐾 = 1.585. (Matlab gives 𝑔𝑚 = 18.92 which is 25.54 dB)

clear
s=tf('s');
K=1.585;
sys=tf( K* (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
[gm,pm,gcw,pcw]=margin(sys)
gm =
18.9279
pm =
54.0559
gcw =
7.0711
pcw =
1.3568
>> 20*log10(gm)
25.5420
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3.8.5 HW 8 key solution

Problem 1: 

 

 
;
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Remark: 

This  problem  has  no  single  correct  solution.  Any  solution,  backed  up 
with a valid reasoning is acceptable. 

 
;
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Problem 2: 

 

 

I .

- ECE 332 Homework f $

Derivc a modcl for thc opcn-loop transfer function for thc system whocc frcqucncy
relponT plots a^re given on the last pagc. T\rrn in the plot with the ctraight-linc Bodc
approximationr of qho Td l% gain drawn on top of tUe true Bode plot. Will the
clocedJoop aystem be rteble with ncgative unity-feedback? What "r"'tUu gain and
phase marginr?

Giveo thc forwa,rd loop traosfer function for a negativc unity-feedbaclc aystem

r,t -\ - (r + 5)(r + 3)
t i f  a l  F- \ - '  

s ( r+  l ) ( r z  * r+4 ) '

(a) invertigate thc atability of the cyrtem uring both Nyquist atrd Bode in Matlab,
(b) fiod the gain aod phrse ma,rginc from eich method and their corresponding

clusover frequenciea. Dieplay thc gain and phase margins on the plots whcre
tbey occur

The block diagram shown in Figure I represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function Gr(r) being givenby

G ' ( s ) -  '  2 5 ( l + 5 s )

(sr * 49.277s2 *25.172s + 2.526)

The parameter values are r = L, K - 0.05, M = 10, and D = I with tr(s) = g.

Figure l: Hydroelectric Syotem Block Diagram

(a) Using the Bode plots, genereated using Mottab if you wish, find the maximum
nalue of K to retain stability.

(b) Find the gain marEin, qh.". matgin and the corresponding crossover frequencier
aod label them on the Bode plots.

Gr(c)

First a SUMMARY. Then supporting plots to follow 
It is easy to verify (for example use Routh) that closed loop is
unstable. Hence there are no gain and phase margins.

This is not really a gain margin. But it reflects the decibel
deficiency in the closed loop

Same comment here. THis is not really a phase  margin.
It reflects the phase deficiency.

Note that  Bode and Nyquist lead to the same "phony" gain and phase 
margins.

;
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;
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Problem 3: 

 

Multiplying all the factors and simplifying, we get, 

G(s) H(s)= 

 

 

I .

- ECE 332 Homework f $

Derivc a modcl for thc opcn-loop transfer function for thc system whocc frcqucncy
relponT plots a^re given on the last pagc. T\rrn in the plot with the ctraight-linc Bodc
approximationr of qho Td l% gain drawn on top of tUe true Bode plot. Will the
clocedJoop aystem be rteble with ncgative unity-feedback? What "r"'tUu gain and
phase marginr?

Giveo thc forwa,rd loop traosfer function for a negativc unity-feedbaclc aystem

r,t -\ - (r + 5)(r + 3)
t i f  a l  F- \ - '  

s ( r+  l ) ( r z  * r+4 ) '

(a) invertigate thc atability of the cyrtem uring both Nyquist atrd Bode in Matlab,
(b) fiod the gain aod phrse ma,rginc from eich method and their corresponding

clusover frequenciea. Dieplay thc gain and phase margins on the plots whcre
tbey occur

The block diagram shown in Figure I represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function Gr(r) being givenby

G ' ( s ) -  '  2 5 ( l + 5 s )

(sr * 49.277s2 *25.172s + 2.526)

The parameter values are r = L, K - 0.05, M = 10, and D = I with tr(s) = g.

Figure l: Hydroelectric Syotem Block Diagram

(a) Using the Bode plots, genereated using Mottab if you wish, find the maximum
nalue of K to retain stability.

(b) Find the gain marEin, qh.". matgin and the corresponding crossover frequencier
aod label them on the Bode plots.

Gr(c)

;
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Note: The inequality above for K describes the minimal value  for stability. Note that 
the problem statement asks for the maximum value. In fact, arbitrarily large K > 0 
leads to stability.

;
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Problem 3: Part (b): 

 
;
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;
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Problem 4: 

 

 

t :

Problem 4: Thc opcn bop tnndcr ftnctim of r podtirur omuol sysrm is

G(s)-ffi
Assrure a rcguive unity ftcdbackconfiguntion.

(a) Skcrch thc Bodc diagram for K = I (Do Not Usc MATLAB). Fird rhc gsin nargia
gain-crossover frcquerrcn plusc margin ard thc phasc-crossorrcr @ucncy for thc
systcm.

(b) Usc MATLAB ocbcctyourplot

(c) Detcrmine the valuc of K which will satisfy thc following design criaria

l. Aphascmarginof55".

2. A gain margn of 2,6 dB.

At gain crossover, estimate phase
to be about -130 degrees. So 
phase margin about 50 degrees.

At phase crossover, log gain is 
approximately -40 db. So gain
margine is about 40db

;
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;

 

Problem 4: Part (c): 

From the above plot, we see that K=1 satisfies the required criterion.  

To find value of K that satisfies the criterion exactly, we can proceed as 
follows –  

 

 

 

 

 

 

 

 

More precisely, we obtain a K which approximately meets both specs.

;
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4.1 First exam

4.1.1 questions

ECE 332 - Test #1 September 29, 2015 

INSTRUCTIONS: Closed notes and closed book. Be sure your name is on the 
exam booklet(s). Answer all questions showing your work. 

/ 
/ 

QUESTION 1 (25%): (a) For the system with block diagram below, wi¥h R(s) 
and D( s) corresponding to unit steps, find fJ( s) as a quotient of 2 polynomials. 
(b) With K = 1, supply a few lines of Matlab code to find the closed loop poles. 

D(s) 

~ 
R(s) j;~ I s~61 )~ 2 8( ...: 

s(s + 1) " 
II' 

s) 

10 
" -- ..... 

s+1O 

QUESTION 2 (25%): A tank with its transfer function G(s) = s2+~s+6 is con
nected with a PID controller H(s) = Kl + ~ + K3S in a classical unity feedback 
configuration. (a) Find gains K1, K2 and K3 so that the resulting closed loop 
transfer function is T(s) = s!5' (b) For this T(s), find the step response y(t). 

QUESTION 3 (25%): The open loop system with input u, output y and param
eter ( described by differential equation (50 + 10()-1t + (100 + 10()y = 3u(t). (a) 
Find the open loop transfer function. (b) For this open loop system with a unit 
step input, is there a choice of parameter ( leading to limt-+oo y(t) = I? Explain. 

QUESTION 4 (25%): A single-input two-output system with transfer function 
matrix G( s) is connected in a classical unity feedback configuration with con
troller having 1 x 2 transfer function matrix H(s). (a) Given the four matrix 
entries G11 (s) = 1/ S, G21 (S) = 1, Hll(S) = 0, H12(S) = 2, find Yl(t) with inputs 
rl(t) = 0 and r2(t) being a unit step. (b) Write a Matlab code using symbolic 
computation to find the closed loop transfer function matrix. 
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4.1.2 key solution

= 

Bcunu,S h 2. ~, 

~ G.t 51 ..I f.ddltt 

i: t 

I 

J;;CE. l~2' TeSH I - ~O_'Q_tl_OO.s 

9(5):: ~M • 
. (St8)( Sf ,) 

... 5(S ... ) #1 
f~ ~K 5 

\....!f5tl) (5 +'J(.sl 'cj 
T" d UtI' to 0 

20 oj 
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4.2 Second exam

4.2.1 questions
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4.2.2 key solution
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4.3 Final exam

4.3.1 questions
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4.3.2 key solution
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