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0.1 Problem 1 ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

SOLUTION:

0.1.1 Part(a)

𝐺𝐻 =
𝐾

𝑠 �𝑠2 + 𝑠 + 4�
(1)

The poles of the open loop are at 𝑠 = 0 and 𝑠 = −0.5 ± 𝑗1.94. So we draw Γ which encloses all
the poles in the RHS making sure we avoid the pole at 𝑠 = 0 by making small circle. Here is
the result. (we do not care about open loop poles in the LHS).

×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾
𝑠 �𝑠2 + 𝑠 + 4�

= lim
𝑠→0

𝐾
𝑠
= ∞𝑒−𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a very
large circle which goes from −900 to +900 (anti-clockwise). We update the plot after making
each segment so we see the progress.
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×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾
𝑠 �𝑠2 + 𝑠 + 4�

= lim
𝑠→∞

𝐾
𝑠3
= 0𝑒−𝑗3𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a very
small circle which goes from +2700 to −2700 on Γ𝐺𝐻. This is 1.5 circle rotation in clockwise
that goes from around 5400. updating the plot gives

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now do segment 1. For this we need to find the real and imaginary part of 𝐺𝐻 since we
need the axis crossings. From (1)

𝐺𝐻 =
𝐾

𝑠3 + 𝑠2 + 4𝑠
=

𝐾

�𝑗𝜔�
3
+ �𝑗𝜔�

2
+ 4 �𝑗𝜔�

=
𝐾

−𝑗𝜔3 − 𝜔2 + 4𝑗𝜔
=

𝐾
𝑗 �4𝜔 − 𝜔3� − 𝜔2

Multiply numerator and denominator by complex conjugate denominator gives

𝐺𝐻 =
𝐾

𝑗 �4𝜔 − 𝜔3� − 𝜔2

�−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

�−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

=
𝐾 �−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

�𝑗 �4𝜔 − 𝜔3� − 𝜔2� �−𝑗 �4𝜔 − 𝜔3� − 𝜔2�

=
−𝑗𝐾 �4𝜔 − 𝜔3� − 𝐾𝜔2

𝜔6 − 7𝜔4 + 16𝜔2
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Hence

Re (𝐺𝐻) = −𝐾
𝜔4 − 7𝜔2 + 16

Im (𝐺𝐻) =
−𝐾 �4𝜔 − 𝜔3�

𝜔6 − 7𝜔4 + 16𝜔2 =
𝐾 �𝜔2 − 4�

𝜔 �𝜔4 − 7𝜔2 + 16�

To find the crossing. Γ𝐺𝐻 will cross the real axis when Im (𝐺𝐻) = 0, hence

𝐾 �𝜔2 − 4�

𝜔 �𝜔4 − 7𝜔2 + 16�
= 0

𝐾 �𝜔2 − 4� = 0
𝜔2 − 4 = 0

𝜔2 = 4
𝜔 = ±2 rad/sec

Then

𝐺𝐻�𝑗2� =
𝐾

�𝑗2�
3
+ �𝑗2�

2
+ 4 �𝑗2�

=
𝐾

�−𝑗8� + (−4) + �𝑗8�

=
−1
4
𝐾

So Γ𝐺𝐻 will cross the real axis at −0.25𝐾.

Since 𝐾 > 0, this will be somewhere on the negative real axis. To find where Γ𝐺𝐻 crosses the
imaginary axis we set Re (𝐺𝐻) = 0, hence

−𝐾
𝜔4 − 7𝜔2 + 16

= 0

Which gives 𝜔 = ±∞. When 𝜔 = ±∞ then 𝐺𝐻 (±∞) = 0±. This means the crossing at origin.
This makes sense, as the small circle around the origin shrinks to zero size.

To find where segment (1) maps to, we see that for 𝜔 = +∞, Re (𝐺𝐻) < 0 and Im (𝐺𝐻) > 0,
so it starts in first quadrant. 𝜔 = 0+,Re (𝐺𝐻) < 0 and Im (𝐺𝐻) < 0, which means segment (1)
starts in the first quadrant but ends in the third quadrant.

Now for segment (3). we see that 𝜔 = 0−,Re (𝐺𝐻) < 0 and Im (𝐺𝐻) > 0, which means segment
(3) starts in the first quadrant. 𝜔 = −∞ then Re (𝐺𝐻) < 0 and Im (𝐺𝐻) < 0 which means
segment (3) in Γ𝐺𝐻 starts in quadrant 1 and ends up in quadrant 3. There will be crossing
at the real axis at −0.25𝐾. Therefore the plot now looks like this
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×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

−
0
.2
5
K

crossing depends on K

1′

3′

This circle
shrinks to
zero

As the circle around 𝑠 = 0 shrinks to zero, Γ𝐺𝐻 becomes as follows

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

1′

3′

−0.25K

We are now ready to answer the final question about stability and 𝐾. Since open loop has
zero poles in RHS, then we need to have zero net clock wise encirclements around −1 for
the closed loop to be stable. Only condition that will meet that, is to keep the crossing
point −0.25𝐾 to the right of −1. This means we need 0.25𝐾 < 1. This insures zero clockwise
encirclements. This means

𝐾 < 4

To verify, Routh table is used to determined 𝐾 using the closed loop transfer function. The
closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾

𝑠 �𝑠2 + 𝑠 + 4� + 𝐾

=
𝐾

𝑠3 + 𝑠2 + 4𝑠 + 𝐾
Hence the Routh table is

𝑠3 1 4
𝑠2 1 𝐾
𝑠1 4 − 𝐾
𝑠0 𝐾

For no sign change in first column, we need 𝐾 > 0 and 4 −𝐾 > 0. Which means 𝐾 < 4 as was
found above. Verified OK.
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0.1.2 Part(b)

𝐺𝐻 =
𝐾 (𝑠 + 1)
𝑠2 (𝑠 + 2)

=
𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

(1)

The poles of the open loop are at 𝑠 = 0 (two poles) and 𝑠 = −2. So we draw Γ which encloses
all the poles in the RHS making sure we avoid the poles at 𝑠 = 0 by making small circle.
Here is the result. (we do not care about open loop pole in the LHS and about the zeros of
the open loop).

×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

= lim
𝑠→0

𝐾
𝑠2
= ∞𝑒−2𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a very
large circle which goes from −1800 to +1800. This is a full circle in the anti-clockwise. We
update the plot after making each segment so we see the progress.

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

= lim
𝑠→∞

𝐾𝑠
𝑠3
= lim

𝑠→∞

𝐾
𝑠2
= 0𝑒−𝑗2𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a very
small circle which goes from +1800 to −1800 on Γ𝐺𝐻. This is basically a full circle in clockwise
around zero. updating the plot gives
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×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′

We now do segment 1. For this we need to find the real and imaginary part of 𝐺𝐻 since we
need the axis crossings. From (1)

𝐺𝐻 =
𝐾 (𝑠 + 1)
𝑠3 + 2𝑠2

=
𝐾 �𝑗𝜔 + 1�

�𝑗𝜔�
3
+ 2 �𝑗𝜔�

2 =
𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

Multiply numerator and denominator by complex conjugate denominator gives

𝐺𝐻 =
𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

�𝑗𝜔3 − 2𝜔2�

�𝑗𝜔3 − 2𝜔2�

=
𝑗 �−𝐾𝜔3� − �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�

Hence

Re (𝐺𝐻) =
− �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�

Im (𝐺𝐻) =
−𝐾𝜔3

𝜔4 �𝜔2 + 4�
=

−𝐾
𝜔 �𝜔2 + 4�

To find the crossing. Γ𝐺𝐻 will cross the real axis when Im (𝐺𝐻) = 0, hence
−𝐾

𝜔 �𝜔2 + 4�
= 0

𝜔 = ±∞ rad/sec

Therefore

𝐺𝐻�𝑗∞� = lim
𝜔→∞

𝐾 �𝑗𝜔 + 1�
−𝑗𝜔3 − 2𝜔2

= lim
𝜔→∞

𝑗𝜔
−𝑗𝜔3

= lim
𝜔→∞

𝑗
−𝑗𝜔2

= 0−

So Γ𝐺𝐻 will cross the real axis at 0. Which is where the small circle shrinks to zero. To find
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where Γ𝐺𝐻 crosses the imaginary axis we set Re (𝐺𝐻) = 0, hence
− �𝐾𝜔4 + 2𝐾𝜔2�

𝜔4 �𝜔2 + 4�
= 0

𝐾𝜔4 + 2𝐾𝜔2 = 0

𝜔2 �𝜔2 + 2� = 0

Hence

𝜔 = 0

And

𝜔 = ±𝑖√2

Since 𝜔 has to be real. Then 𝜔 = 0 is only used. When 𝜔 = 0 then 𝐺𝐻�𝑗0� = lim𝜔→0
𝐾�𝑗𝜔+1�

−𝑗𝜔3−2𝜔2 =

lim𝜔→0
𝐾

−2𝜔2 = ∞ . Hence Γ𝐺𝐻 will cross the imaginary axis at ∞.

To find which quadrants segment (1) maps to, we see that for positive 𝜔 then Re (𝐺𝐻)
is negative and Im (𝐺𝐻) is negative (since 𝐾 > 0). Therefore segment (1) maps to third
quadrant. And for segment (3), we see that negative 𝜔 then Re (𝐺𝐻) is negative and Im (𝐺𝐻)
is positive (since 𝐾 > 0). Therefore segment (3) maps to first quadrant

Therefore the plot now looks like this

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

This will
shrink to
zero

After the small circle shrinks to zero, and since the crossing on the real axis was found at 0
then the final plot looks like

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

We are now ready to answer the final question about stability and 𝐾. Since open loop has
zero poles in RHS, then we need to have zero net clockwise encirclements around −1 for
the closed loop to be stable. We see that there is no encirclements around −1. No matter
what 𝐾 > 0 value is. So the closed loop is stable for all positive 𝐾. To verify, Routh table is
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used to determined 𝐾 using the closed loop transfer function. The closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾 (𝑠 + 1)

𝑠3 + 2𝑠2 + 𝐾 (𝑠 + 1)
Hence the Routh table is

𝑠3 1 𝐾
𝑠2 2 𝐾
𝑠1 2𝐾−𝐾

2 = 𝐾
2

𝑠0 𝐾

For no sign change in first column, we need 𝐾 > 0 and 𝐾
2 > 0. Which is always true since 𝐾

is positive. Verified OK.
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0.2 Problem 2

ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

SOLUTION:

Since there is zero open loop poles in RHP, we need zero net clockwise encirclements around
−1. This means we need to keep point −0.5 to the right of −1 and keep the point −2 to the
left of −1. In other words, we need to satisfy

0.5𝐾 < 1
2𝐾 > 1

Or

𝐾 < 2

And

𝐾 >
1
2

Hence the range of stable closed loop is for 𝐾 to meet the following requirement

0.5 < 𝐾 < 2
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0.3 Problem 3

ECE 332 Homework # T

1. For each of the open loop transfer functions beltrw, a$sume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(.s)H(s): @*rit

(b) c(s)a(s) : #ti*ii

2. The Nyquist plot for a transfer function lfc(s) is shown below for K :7 and s.r ) 0'

Assuming a unity feedback configuration with G(s) having no pole.s in t,he closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

Re

3. (a) For the attitude control system shown below, assume that the velocitv feedlnck

gain K, is zero and sketch the Nvquist for open loop system G(s)//(s).

i
I
I

(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
Gn ls ) :  : 1 :  G ls t  :  : - : -  .  i  G r (s )  :

s + r  / - 3 0 s + 1 ' - r \ " /  G ' l g ) + ( s / 3 )  + t

6^ t s )

G s ( r /

leue I

SOLUTION:

0.3.1 Part(a)

When 𝐾𝑣 = 0 the open loop is 𝐺𝐻 = 𝐾 1
𝑠2 . This has no poles in RHP and two poles at zero.

Hence Γ is

×

Γ

<(GH)

=(GH)

−1

(1)

(2)

(3) (4)



13

We start at segment 2.

lim
𝑠→0

𝐾
𝑠2
= lim

𝜀→0

𝐾

�𝜀𝑒𝑗𝜃�
2 = ∞𝑒

−2𝑗𝜃

As 𝜃 goes from +900 to −900 on Γ segment 2 goes from −1800 to +180 on Γ𝐺𝐻 with ∞ radius
in anti-clockwise. Hence the plot now looks as follows

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

For segment 4 in Γ. We have

lim
𝑠→∞

𝐾
𝑠2
= lim

𝑅→∞

𝐾

�𝑅𝑒𝑗𝜃�
2 = 0𝑒

−2𝑗𝜃

𝜃 goes from −900 to +900 on Γ, segment 4 goes from +1800 to −180 on Γ𝐺𝐻 with 0 radius in
clockwise. Hence the plot now looks as follows

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′

Now
𝐾
𝑠2
=

𝐾

�𝑗𝜔�
2 =

𝐾
−𝜔2

Hence Re (𝐺𝐻) = 𝐾
−𝜔2 and there is no imaginary part. Therefore, there is no crossing on

the real axis. There is crossing on the imaginary axis at 𝜔 = ±∞ which occurs at 𝐺𝐻 = 0.
This is when the small circle shrinks to zero size. It is clear that segment 1 will map to third
quadrant and segment 3 will map to second quadrant since there is no crossing. The final
plot is
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×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

This will
shrink to
zero

After the small circle shrinks to zero, and since the crossing on the real axis was found at 0
then the final plot looks like

×

Γ

<

=

−1

(1)

(2)

(3) 4

×

ΓGH

−1

(2)′

=

<
4′1′

3′

0.3.2 Part(b)

Since open loop has zero poles in RHP, we need Γ𝐺𝐻 to have zero net clockwise encirclements.
Since Γ𝐺𝐻 has no crossing on the real axis that depends on 𝐾 then Γ𝐺𝐻 will remain as shown
for any 𝐾. So closed loop is stable for all 𝐾 > 0. To verify, we set the Routh table for the
closed loop polynomial

The closed loop is given by

𝑇 =
𝐺𝐻

1 + 𝐺𝐻

=
𝐾

𝑠2 + 𝐾
Hence the Routh table is

𝑠2 1 𝐾
𝑠1 0 0
𝑠0 0

We see that there is no sign change in first column, no matter what 𝐾 is.
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0.3.3 Part (c)

We first find the closed loop transfer function. Let 𝐸 (𝑠) be the error (just after the summing
junction) then

𝐸 = 𝜃𝑟 − 𝜃 − 𝐾𝑣𝑠𝜃

𝜃 = 𝐸𝐾
1
𝑠2

From the second equation 𝐸 = 𝜃𝑠2

𝐾 , hence the first equation becomes

𝜃𝑠2

𝐾
= 𝜃𝑟 − 𝜃 − 𝐾𝑣𝑠𝜃

𝜃𝑠2

𝐾
+ 𝜃 + 𝐾𝑣𝑠𝜃 = 𝜃𝑟

𝜃 �
𝑠2

𝐾
+ 1 + 𝐾𝑣𝑠� = 𝜃𝑟

Therefore the closed loop transfer function 𝑇 (𝑠) = 𝜃
𝜃𝑟

is

𝜃
𝜃𝑟
=

1
𝑠2

𝐾 + 1 + 𝐾𝑣𝑠

=
𝐾

𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾
We now find the open loop transfer function with unity feedback using the closed loop
transfer function. Since 𝑇 (𝑠) = 𝐺

1+𝐺 where 𝐺 (𝑠) is the closed loop transfer function, then

letting 𝐺 (𝑠) = 𝑁
𝐷 we have

𝐾
𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾

=
𝐺

1 + 𝐺

=
𝑁
𝐷

1 + 𝑁
𝐷

=
𝑁

𝑁 +𝐷
Therefore 𝑁 = 𝐾 and 𝑁 + 𝐷 = 𝑠2 + 𝐾𝐾𝑣𝑠 + 𝐾 which means 𝐷 (𝑠) = 𝑠2 + 𝐾𝐾𝑣𝑠. Therefore the
open loop transfer function is

𝐺 (𝑠) =
𝑁
𝐷
=

𝐾
𝑠2 + 𝐾𝐾𝑣𝑠

Hence

𝐺𝐻 = 𝐾
𝑠(𝑠+𝐾𝐾𝑣)

Therefore, the open loop has a pole at 𝑠 = 0 and at 𝑠 = −𝐾𝐾𝑣 .

Assuming positive gains, −𝐾𝐾𝑣 is in the LHP. Hence the open loop is stable. Which means
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the Nyquist plot should have zero net clockwise encirclement around −1 for the closed loop
to be stable.

We now start by mapping each segment from Γ to Γ𝐺𝐻. Starting with segment 2. We see that

lim
𝑠→0

𝐾
𝑠2 + 𝑠𝐾𝐾𝑣

= lim
𝑠→0

1
𝑠𝐾𝑣

= lim
𝜀→0

1
𝜀𝑒𝑗𝜃𝐾𝑣

= ∞𝑒−𝑗𝜃

Where 𝜃 goes from +900 to −900 in Γ. This means on Γ𝐺𝐻 segment (2) will map to a half
circle which goes from −900 to +900 in anti-clockwise.

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

We now go to segment 4 in Γ.

lim
𝑠→∞

𝐾
𝑠2 + 𝑠𝐾𝐾𝑣

= lim
𝑠→∞

𝐾
𝑠2
= lim

𝑅→∞

1
𝑅𝑒2𝑗𝜃

= 0𝑒−𝑗2𝜃

Where 𝜃 goes from −900 to +900 on Γ. This means on Γ𝐺𝐻 segment (4) will map to a very
small circle which goes from +1800 to −1800 on Γ𝐺𝐻. This is basically a full circle in clockwise
around zero. updating the plot gives

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

(2)′

=

<

To find the intersections,

𝐺𝐻 =
𝐾

𝑠2 + 𝑠𝐾𝐾𝑣
=

𝐾
−𝜔2 + 𝑗𝜔𝐾𝐾𝑣

=
𝐾

�−𝜔2 + 𝑗𝜔𝐾𝐾𝑣�

�−𝜔2 − 𝑗𝜔𝐾𝐾𝑣�

�−𝜔2 − 𝑗𝜔𝐾𝐾𝑣�

=
−𝐾𝜔2 − 𝑗𝜔𝐾2𝐾𝑣
𝐾2𝜔2𝐾2

𝑣 + 𝜔4 =
−𝐾

𝐾2𝐾2
𝑣 + 𝜔2 − 𝑗

𝐾2𝐾𝑣
𝐾2𝜔𝐾2

𝑣 + 𝜔3

Hence Re (𝐺𝐻) = −𝐾
𝐾2𝐾2𝑣+𝜔2 and Im (𝐺𝐻) = − 𝐾2𝐾𝑣

𝐾2𝜔𝐾2𝑣+𝜔3 . When Re (𝐺𝐻) = 0, we get 𝜔 = ±∞.
When means 𝐺𝐻 = 0 at this frequency. So Γ𝐺𝐻 crosses the imaginary axis at the origin.
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When Im (𝐺𝐻) = 0, we also get 𝜔 = ±∞ which also means Γ𝐺𝐻 crosses the real axis at zero.
By continuation, and since segment 1 must follow segment 4, then segment 1 maps to third
quadrant in Γ𝐺𝐻 and segment 3 must map to quadrant 2 in Γ𝐺𝐻. As 𝜀 → 0 the small circle
become a point at origin and we get the final plot

×

Γ

<

=

−1

(1)

(2)

(3) (4)

×

ΓGH

−1

2′

=

<
4′

3′

1′

intersection at origin

Since the intersection is always at the origin, Γ𝐺𝐻 will never move to the left passed −1 to
make any encirclement around −1. We need at least one net encirclement for the closed

loop to be unstable. Hence the closed loop is stable for all positive 𝐾,𝐾𝑣 .

To verify, we show Routh table for the closed loop found above, which is 𝐾
𝑠2+𝐾𝐾𝑣𝑠+𝐾

. The
Routh table is

𝑠2 1 𝐾
𝑠1 𝐾𝐾𝑣 0
𝑠0 𝐾

For positive 𝐾,𝐾𝑣, we see that there can not be a sign change. Hence closed loop is stable
for all 𝐾,𝐾𝑣. (Note, I assume 𝐾,𝐾𝑣 > 0. Verified this with instructor via email).
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0.4 Problem 4

(b) For the closed loop svstem above, for what range of gains K > 0 is stabilitv a^ssttre<l'l

(c) Now consider the case with both gains K and K,, non-zero. using an aPpropriate

Nvq.ist plot, find the range for these gains under which closed loop stabilitv is asstrrecl.

4. A level control system and its transfer function model is depicted below. Assuming

zero delay (7 : 0), use Matlab to generate the appropriate Nvquist plot w'hich <ran be

used to analyze closed loop stabilitv. Take

1 0  3 . 1 5  I
Gn ls ) :  : 1 :  G ls t  :  : - : -  .  i  G r (s )  :

s + r  / - 3 0 s + 1 ' - r \ " /  G ' l g ) + ( s / 3 )  + t

6^ t s )

G s ( r /

leue I

(b) Using the Nyquist plot from part (a), estimate the gain and phase margirts.

(c) With time delay T > 0, explain in detail what is meant by the following: "The

appropriate Nvquist plot is obtained from the plot in Part (a) by a frequencv rlepen<lent,

angular rotation." For the case when T:7, is the closed loop stable? Explain.

SOLUTION:
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0.4.1 Part(a)

The open loop transfer function 𝑇(𝑠) is 𝐺𝐴 (𝑠) 𝑒−𝑠𝑇𝐺 (𝑠)𝐺𝑓 (𝑠). For 𝑇 = 0, we have

𝑇 (𝑠) = 𝐺𝐴 (𝑠) 𝐺 (𝑠) 𝐺𝑓 (𝑠)

=
10
𝑠 + 1

3.15
30𝑠 + 1

1
𝑠2

9 +
𝑠
3 + 1

The Nyquist plot is (using the program I wrote which shows Γ and Γ𝐺𝐻 side by side)

Out[142]=

R0 2.2

2.2
ϵ 0.897 x 0.91 y 0.65 show arrow

0.5 1.0 1.5 2.0

-2

-1

1

2

-0.5 0.5

-0.6

-0.4

-0.2

0.2

0.4

0.6

In the limit, as 𝑅 becomes very large we obtain

Out[142]=

R0 10.

10.
ϵ 0.897 x 0.91 y 0.65 show arrow

2 4 6 8 10

-10

-5

5

10

-0.5 0.5

-0.6

-0.4

-0.2

0.2

0.4

0.6

Here is also Matlab nyquist output (zoomed in version)
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s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s^2/9+s/3+1);
sys =
850.5
----------------------------------------
90 s^4 + 363 s^3 + 1092 s^2 + 846 s + 27
nyquist([850.5],[90 363 1092 846 27])

-1.5 -1 -0.5 0 0.5 1 1.5

-5

-4

-3

-2

-1

0

1

2

3

4

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

0.4.2 Part(b)

For the gain margin, the Γ𝐺𝐻 curve crosses the real axis at about −0.41. Therefore we need

0.41𝐾max < 1

For stability. Hence

𝐾max =
1
0.41

= 2.439

In dB, the above becomes

𝑔𝑚 = 20 log10 2.439
= 7.74 db

For the phase margin, we draw a unit circle and find the intersection with Γ𝐺𝐻 and estimate
the angle between the line from origin to the intersection and the −1800 line. As follows
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The angle seems to be approximately between 300 and 350. This is the phase margin. To get
exact values, Matlab margin command can be used as follows

s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s^2/9+s/3+1);
sys =
850.5
----------------------------------------
90 s^4 + 363 s^3 + 1092 s^2 + 846 s + 27
>> [Gm,Pm,~,~] = margin(sys)
Gm =
2.3854
Pm =
35.6025

Converting the Gm value given in Matlab to dB, gives the result shown above. Matlab gives
35.60 as the exact phase margin.

0.4.3 Part(c)

Let the open loop 𝐺𝐻 when 𝑇 = 0 (which is what we analyzed in part (b)) be called 𝐺𝐻 (𝑠)
which can be written, in frequency domain as

𝐺𝐻 (𝑠)|𝑠=𝑗𝜔 = |𝐺𝐻| 𝑒
𝑗𝜃

Where both the magnitude |𝐺𝐻| and the phase 𝜃 in the above, are functions of the frequency
𝜔. The above is polar representation of the complex quantity 𝐺𝐻�𝑗𝜔�. When 𝑇 > 0, then
the open loop is now 𝑒−𝑠𝑇𝐺𝐻 (𝑠), which can be written in frequency domain as

𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� = �𝑒−𝑗𝜔𝑇� |𝐺𝐻| 𝑒𝑗(𝜃−𝜔𝑇)
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In other words, magnitudes multiply and phases are added. But �𝑒−𝑗𝜔𝑇� = 1, so the above is

𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� = |𝐺𝐻| 𝑒𝑗(𝜃−𝜔𝑇)

We see that the resulting open loop has the same magnitude as before, but its phase has
change. We subtract angle 𝜔𝑇 from the original phase 𝜃. subtract angle 𝜔𝑇 is the same as
rotating the complex vector representation clockwise 𝜔𝑇. So this causes the whole Nyquist
plot, which is a frequency plot 𝐺𝐻�𝑗𝜔� , to just rotate by 𝜔𝑇 clockwise (since negative angle)
to what it was before. This makes Γ𝐺𝐻 become closer to −1. This is illustrated in the following
diagram

−1

unit circle
ΓGH

phase margin

rotated clockwise by ωT

−1

unit circle

e−ωT ΓGH

reduced phase
margin as ΓGH

rotates clockwise
due to time delay.
At frequency 0dB

When 𝑇 = 1, the angle is 𝜔 radians. Since we found the phase margin to be 350 or about 0.61
radians, then the closed loop, which corresponds to the open 𝑒−𝑗𝜔𝑇𝐺𝐻�𝑗𝜔� , will have new
phase reduced by 𝜔 radians. Since phase margin is measured at 0𝑑𝐵 angle (or 𝜔 = 1 radian,
or 57.30). This is larger than the phase margin 350. Therefore the new system is unstable .
Γ𝐺𝐻 will rotate and will cross over −1.

−1

unit circle
ΓGH

350

after clockwise rotation by ωT where T = 1. Unstable.

−1

unit circle

e−ωT ΓGH

What the above shows, is that adding delays 𝑒−𝑠𝑇 makes the system less stable (closer to
becoming unstable). Delays causes the phase margin to reduce. We can find the amount of

delay 𝑇 before the system becomes unstable. We need 𝜔𝑇 < 350 or 𝑇 < 350

57.30 < 0.611 seconds.
This is the maximum delay 𝑇 we can have before the closed loop phase margin is all used
up and the system become unstable.
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