HW5 ECE 332 Feedback Control

FALL 2015
Electrical engineering department
University of Wisconsin, Madison

Instructor: Professor B Ross Barmish

Nasser M. Abbasi

November 28, 2019

Contents

0.1 Problem 1 3
0.2 Problem 2 6
0.3 Problem 3 11
0.4 Problem 4 13
0.5 Problem 5 15
List of Figures
List of Tables

0.1 Problem 1

Problem 1: Performances specifications for a second order system

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

with $0<\zeta<1$ require that the maximum overshoot to a step input not exceed 30% and that the settling time be less than 0.25 seconds. Using the settling time approximation

$$
t_{s} \approx \frac{3.2}{\zeta \omega_{n}}
$$

find and sketch the region in the complex plane where the two poles need to be located.

SOLUTION:

There are two inequalities to satisfy. The first is given by the settling time requirement

$$
\begin{equation*}
t_{s}=\frac{3.2}{\zeta \omega_{n}}<0.25 \tag{1}
\end{equation*}
$$

The second is given by the overshoot requirement

$$
\begin{equation*}
e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}}<0.3 \tag{2}
\end{equation*}
$$

From (2), taking the log of both sides gives

$$
-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}<\ln (0.3)
$$

Multiplying both sides by -1 changes the inequality from $<$ to $>$

$$
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}>-\ln (0.3)
$$

Simplifying gives

$$
\begin{aligned}
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & >\ln \left(\frac{1}{0.3}\right) \\
& >1.204
\end{aligned}
$$

Squaring both sides and solving for ζ

$$
\begin{aligned}
\frac{\zeta^{2}}{1-\zeta^{2}} & >\left(\frac{1.204}{\pi}\right)^{2} \\
\zeta^{2} & >0.14688\left(1-\zeta^{2}\right) \\
1.14688 \zeta^{2} & >0.14688 \\
\zeta^{2} & >0.12807
\end{aligned}
$$

Since ζ has to be positive then the positive root is used giving

$$
\zeta>0.35787
$$

Back to the (1) specifications, which says

$$
\begin{aligned}
& \frac{3.2}{\zeta \omega_{n}}<0.25 \\
& \zeta \omega_{n}>12.8
\end{aligned}
$$

For each $\zeta_{i}>0.3578$, we solve for ω_{n} from $\zeta \omega_{n}>12.8$. This will give full description of where the poles are located.

Here is a plot of the $\left(\zeta, \omega_{n}\right)$ space showing allowed values of ζ, ω_{n}.
$\operatorname{In}[69]=$ RegionPlot $[1>z>0.35787 \& \& z>12.8,\{z, 0,1\},\{w, 0,50\}$, GridLines \rightarrow Automatic, GridLinesStyle \rightarrow LightGray, Frame \rightarrow True,
FrameLabel $\rightarrow\left\{\left\{" \omega_{\mathrm{n}} "\right.\right.$, None $\},\left\{" \varsigma "\right.$, "Region of allowed ξ and $\left.\left.\omega_{\mathrm{n}} "\right\}\right\}$, BaseStyle \rightarrow 14, Epilog $\rightarrow\{$ $\{$ Dashed, $\operatorname{Line}[\{\{0.3578,0\},\{0.3578,35\}\}], \operatorname{Line}[\{\{0,12.8\},\{1,12.8\}\}]\}$, Text["乌=0.358", \{0.358, 0\}], Text[" $\left.\omega_{\mathrm{n}}=12.8 ",\{0.084,14.9\}\right]$
\}]

By taking each point $\left(\zeta, \omega_{n}\right)$ from the above plot, then the pole location with coordinates $-\zeta \omega_{n} \pm \omega_{n} \sqrt{1-\zeta^{2}}$ is generated. The following shows the final result, showing the region where
the poles have to be located in order to meet the performance requirements.

```
In[456]:= p = Normal@ RegionPlot[1>z> 0.35787&&zw> 12.8,{z,0, 1},{w, 0, 50}];
    pts = DeleteDuplicates@ Flatten[Cases[p, Polygon[x_] :->x, Infinity], 1];
    data = {-First@#Last@ #, Last@#Sqrt[1- (First@ #) ^ 2]} &/@ pts;
    data2 = {-First@#Last@#, - Last@ #Sqrt[1 - (First@ #) ^ 2]} &/@ pts;
```



```
        ImageSize }->\mathrm{ 500]
```


The above diagram shows the location of each pair of poles as a small dot. Complex poles come in pair of conjugates. One pole will be above the real axis and its pair below the real axis.

0.2 Problem 2

Problem 2: For the system shown in the figure below, find gains K and K_{t} so that the maximum overshoot of the output $c(t)$ to a unit step input $r(t)$ is about 20% and that the rise time is approximately 0.05 seconds. Find the resulting closed loop transfer function $C(s) / R(s)$ and simulate the step response in Matlab. In your solution, use the rise time approximation

$$
t_{r} \approx \frac{1-0.4167 \zeta+2.917 \zeta^{2}}{\omega_{n}}
$$

SOLUTION:

The closed loop transfer function, in terms of K and K_{t} can be found using either Mason rule or simple block reduction. For this problem block reduction seems easier.

Using $G_{p}=\frac{100}{1+0.2 \mathrm{~s}}$ the above becomes

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{K\left(\frac{100}{1+0.2 s}\right)}{20 s\left(1+K_{t} \frac{100}{1+0.2 s}\right)+K \frac{100}{1+0.2 s}} \\
& =\frac{100 K}{20 s\left(1+0.2 s+100 K_{t}\right)+100 K} \\
& =\frac{100 K}{4 s^{2}+\left(20+2000 K_{t}\right) s+100 K} \\
& =\frac{25 K}{s^{2}+\left(5+500 K_{t}\right) s+25 K}
\end{aligned}
$$

The standard form is $\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$ therefore by comparing to the above we find

$$
\begin{align*}
& \omega_{n}^{2}=25 K \\
& \omega_{n}=5 \sqrt{K} \tag{1}
\end{align*}
$$

And

$$
\begin{align*}
5+500 K_{t} & =2 \zeta \omega_{n} \\
& =2 \zeta(5 \sqrt{K}) \\
\zeta & =\frac{5+500 K_{t}}{10 \sqrt{K}} \tag{2}
\end{align*}
$$

Hence the transfer function is

$$
\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Where $\omega_{n}=5 \sqrt{K}$ and $\zeta=\frac{5+500 K_{t}}{10 \sqrt{K}}$. We now apply the user specifications in order to determine K and K_{t}. From the overshoot requirement, we write

$$
\begin{equation*}
e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}} \leq 0.2 \tag{3}
\end{equation*}
$$

And from the rise time requirements we have

$$
\begin{equation*}
\frac{1-0.4167 \zeta+2.917 \zeta^{2}}{\omega_{n}}=0.05 \tag{4}
\end{equation*}
$$

From (3) and (4) we can now solve for ω_{n} and ζ and this allow us to find K and K_{t} by using
(1,2). From (3), taking logs and solving for ζ gives

$$
\begin{aligned}
-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & \leq \ln (0.2) \\
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & \geq \ln (5) \\
\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}} & \geq 1.6094 \\
\pi^{2} \zeta^{2} & \geq(1.6094)^{2}\left(1-\zeta^{2}\right) \\
\pi^{2} \zeta^{2} & \geq 2.5902-2.5902 \zeta^{2} \\
\left(\pi^{2}+2.5902\right) \zeta^{2} & \geq 2.5902 \\
\zeta & \geq \sqrt{\frac{2.5902}{\left(\pi^{2}+2.5902\right)}}
\end{aligned}
$$

Hence

$$
\zeta \geq 0.456
$$

Any $0.456 \leq \zeta<1$ can be used. In order to find ω_{n}, let us choose

$$
\zeta=0.46
$$

For the rest of the calculations . From (4) we find

$$
\begin{aligned}
\frac{1-0.4167(0.46)+2.917(0.46)^{2}}{\omega_{n}} & =0.05 \\
\omega_{n} & =\frac{1.4256}{0.05}
\end{aligned}
$$

Therefore

$$
\omega_{n}=28.512 \mathrm{rad} / \mathrm{sec}
$$

Now that we found ζ and ω_{n}, we use (1,2) to find the gains. From (1)

$$
\begin{aligned}
\omega_{n} & =5 \sqrt{K} \\
K & =\frac{\omega_{n}^{2}}{25}=\frac{28.512^{2}}{25}
\end{aligned}
$$

Therefore

$$
K=32.517
$$

And from (2)

$$
\begin{aligned}
\zeta & =\frac{5+500 K_{t}}{10 \sqrt{K}} \\
0.46 & =\frac{5+500 K_{t}}{10 \sqrt{32.517}}
\end{aligned}
$$

Hence

$$
K_{t}=0.04246
$$

The final transfer function is

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{25 K}{s^{2}+\left(5+500 K_{t}\right) s+25 K} \\
& =\frac{25(32.517)}{s^{2}+(5+500(0.04246)) s+25(32.517)}
\end{aligned}
$$

Or

$$
\frac{C(s)}{R(s)}=\frac{812.93}{s^{2}+26.23 s+812.93}
$$

Matlab is used to simulate the step response, and to also verify the user requirements are met.

```
close all;
```

clear all;
s = tf('s');
sys $=812.93 /\left(s^{\wedge} 2+26.23 * s+812.93\right)$;
step(sys)
grid

The step information was also verified using the command stepinfo() which showed the specifications was indeed met.
stepinfo(sys)

```
    RiseTime: 0.0549
SettlingTime: 0.2916
```

SettlingMin: 0.9225
SettlingMax: 1.1963
Overshoot: 19.6310
Undershoot: 0
Peak: 1.1963
PeakTime: 0.1229

0.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer function

$$
G(s)=\frac{K s\left(20 s^{2}+1\right)}{s^{4}+5 s^{2}+10 s+15}
$$

connected in a classical unity feedback configuration. Use the RouthHurwitz criterion to find the range of K for which closed loop stability is assured.

SOLUTION:

$$
G(s)=\frac{K s\left(20 s^{2}+1\right)}{s^{4}+5 s^{2}+10 s+15}
$$

In classical unity feedback, the closed loop transfer function $T(s)$ is

$$
\begin{aligned}
T(s) & =\frac{G(s)}{1+G(s)} \\
& =\frac{K s\left(20 s^{2}+1\right)}{\left(s^{4}+5 s^{2}+10 s+15\right)+K s\left(20 s^{2}+1\right)} \\
& =\frac{K s\left(20 s^{2}+1\right)}{s^{4}+20 K s^{3}+5 s^{2}+(10+K) s+15}
\end{aligned}
$$

Applying Routh-Hurwitz to the denominator $D(s)=s^{4}+20 K s^{3}+5 s^{2}+(10+K) s+15$ gives

s^{4}	1	5	15
s^{3}	$20 K$	$(10+K)$	0
s^{2}	$\frac{20 K(5)-(10+K)}{20 K}$	15	0
s^{1}	$\frac{\frac{(20 K(5)-(10+K)}{2 K}(10+K)-20 K(15)}{\frac{20 K(5)-(10+K)}{20 K}}$	0	0
s^{0}	15		

Simplifying gives

s^{4}	1	5	15
s^{3}	$20 K$	$(10+K)$	0
s^{2}	$\frac{1}{20 K}(99 K-10)$	15	0
s^{1}	$\frac{1}{10-99 K}\left(5901 K^{2}-980 K+100\right)$	0	0
s^{0}	15		

For stability, we need the first column to be positive. Hence the conditions are

$$
\begin{aligned}
20 K & >0 \\
\frac{1}{20 K}(99 K-10) & >0 \\
\frac{1}{10-99 K}\left(5901 K^{2}-980 K+100\right) & >0
\end{aligned}
$$

The first just says that $K>0$. The second says $99 K-10>0$ or $K>\frac{10}{99}$. Now for the third condition

$$
\frac{1}{10-99 K}\left(5901 K^{2}-980 K+100\right)>0
$$

Since $K>\frac{10}{99}$ is required, then $\frac{1}{10-99 K}$ is negative quantity since $10-99 K$ is negative for $K>\frac{10}{99}$. This means the above becomes

$$
5901 K^{2}-980 K+100<0
$$

Notice the change of inequality from > to < since we multiplied both sides by a negative quantity ($10-99 K$) to cancel it out. But $5901 K^{2}-980 K+100<0$ can not be satisfied with a positive $K>\frac{10}{99}$. For example, using the minimum allowed K which is $\frac{10}{99}$, then the value of $5901 K^{2}-980 K+100$ becomes

$$
5901\left(\frac{10}{99}\right)^{2}-980\left(\frac{10}{99}\right)+100=61.218
$$

But it needs to be negative. So there does not exist K which makes the closed loop stable.

0.4 Problem 4

Problem 4: Consider the system with open loop transfer function

$$
G(s)=\frac{K}{s(1+T s)}
$$

is connected in a unity feedback configuration. Given $a>0$, the specification is that all closed loop poles have real part less than $-a$. Show how the Routh-Hurwitz criterion can modified to address this problem. Subsequently, for $T=1$, find and sketch the region in the (a, K) plane associated with closed loop stability.

SOLUTION:

Given $G(s)=\frac{K}{s(1+T s)}$ then the closed loop transfer function is

$$
\begin{aligned}
G_{\text {closed }}(s) & =\frac{G}{1+G} \\
& =\frac{K}{s(1+T s)+K} \\
& =\frac{K}{T s^{2}+s+K}
\end{aligned}
$$

Therefore $D(s)=T s^{2}+s+K$. For the closed loop poles with real part to be less than $-a$, let $s_{1}=s+a$. Then $s=s_{1}-a$. We apply Routh-Hurwitz to $D(s)$ but with $s=s_{1}-a$. The new denominator polynomial becomes

$$
D\left(s_{1}\right)=T\left(s_{1}-a\right)^{2}+\left(s_{1}-a\right)+K
$$

Expanding gives

$$
\begin{aligned}
D\left(s_{1}\right) & =T\left(s_{1}^{2}+a^{2}-2 s_{1} a\right)+s_{1}-a+K \\
& =T s_{1}^{2}+s_{1}(1-2 T a)+\left(T a^{2}-a+K\right)
\end{aligned}
$$

Routh table applied to the above polynomial is

s_{1}^{2}	T	$T a^{2}-a+K$
s_{1}^{1}	$1-2 T a$	0
s_{1}^{0}	$T a^{2}-a+K$	

We need all entries in the first column to be same sign (positive in this case, since $T=1$) for stability to hold (This is in addition to having the poles be with real part less than $-a$). For $T=1$ the above becomes

s^{2}	1	$a^{2}+a+K$
s^{1}	$1-2 a$	0
s^{0}	$a^{2}-a+K$	

The conditions for stability are

$$
\begin{aligned}
1-2 a & >0 \\
a(1-a)+K & >0
\end{aligned}
$$

The first condition gives $a>\frac{1}{2}$. The second condition gives

$$
K>a^{2}-a
$$

Here is plot of the region in the (a, K) plane associated with closed loop stability.

0.5 Problem 5

Problem 5: An automatic depth control system for a submarine is depicted in the figure below. The depth is measured by a pressure transducer. For what values of K will the systern be stable? Take $H(s)=1$ and submarine transfer function

$$
G(s)=\frac{(s+2)^{2}}{s^{2}+0.01}
$$

SOLUTION:

The closed loop transfer function is

$$
T(s)=\frac{K G(s) \frac{1}{s}}{1+H K G(s) \frac{1}{s}}
$$

Replacing $H(s)=1$ and $G=\frac{(s+2)^{2}}{s^{2}+0.01}$ the above becomes

$$
\begin{aligned}
T(s) & =\frac{\frac{K(s+2)^{2}}{s^{2}+0.01} \frac{1}{s}}{1+\frac{K(s+2)^{2}}{s^{2}+0.01} \frac{1}{s}} \\
& =\frac{K(s+2)^{2}}{s\left(s^{2}+0.01\right)+K(s+2)^{2}} \\
& =\frac{K(s+2)^{2}}{s^{3}+K s^{2}+(0.01+4 K) s+4 K}
\end{aligned}
$$

The Routh table for $D(s)=s^{3}+K s^{2}+(0.01+4 K) s+4 K$ is

s^{3}	1	$0.01+4 K$
s^{2}	K	$4 K$
s^{1}	$4 K-3.99$	0
s^{0}	$4 K$	

Therefore for stability we need

$$
\begin{aligned}
K & >0 \\
4 K & >3.99 \\
4 K & >0
\end{aligned}
$$

The first and the third conditions give $K>0$. From the second condition, $K>\frac{3.99}{4}=0.9975$. Therefore

$$
K>0.9975
$$

To verify, here is the step response for $k=0.9974$ and $k=0.9976$, showing one is unstable and the second is stable.

```
close all; clear all;
s = tf('s');
G = (s+2)^2/(s^2+0.01);
k = .9974;
sys = feedback(k*G*1/s,1);
subplot(2,1,1);
step(sys);
title(sprintf('k=%f',k)); grid
subplot(2,1,2);
k = .9976;
sys = feedback(k*G*1/s,1);
step(sys);
title(sprintf('k=%f',k)); grid
```


