HW5 ECE 332 Feedback Control

FALL 2015 Electrical engineering department University of Wisconsin, Madison

INSTRUCTOR: PROFESSOR B ROSS BARMISH

By

NASSER M. ABBASI

November 28, 2019

Contents

0.1	Problem 1		 •	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	;
0.2	Problem 2			•							•		•		•	•		•	•		•				•			•				•	6	;
0.3	Problem 3		 •								•		•	•	•	•		•	•	•				•			•	•				•	11	-
0.4	Problem 4	,	 •																							•							13	;
0.5	Problem 5		 •	•				•			•		•		•	•	•				•	•		•	•	•		•	•	•	•		15	,

List of Figures

List of Tables

0.1 Problem 1

Problem 1: Performances specifications for a second order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with $0 < \zeta < 1$ require that the maximum overshoot to a step input not exceed 30% and that the settling time be less than 0.25 seconds. Using the settling time approximation

$$t_s \approx \frac{3.2}{\zeta \omega_n},$$

find and sketch the region in the complex plane where the two poles need to be located.

SOLUTION:

There are two inequalities to satisfy. The first is given by the settling time requirement

$$t_s = \frac{3.2}{\zeta \omega_n} < 0.25 \tag{1}$$

The second is given by the overshoot requirement

$$e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} < 0.3 \tag{2}$$

From (2), taking the log of both sides gives

$$-\frac{\pi\zeta}{\sqrt{1-\zeta^2}} < \ln\left(0.3\right)$$

Multiplying both sides by -1 changes the inequality from < to >

$$\frac{\pi\zeta}{\sqrt{1-\zeta^2}} > -\ln\left(0.3\right)$$

Simplifying gives

$$\frac{\pi\zeta}{\sqrt{1-\zeta^2}} > \ln\left(\frac{1}{0.3}\right)$$
$$> 1.204$$

Squaring both sides and solving for ζ

$$\frac{\zeta^2}{1-\zeta^2} > \left(\frac{1.204}{\pi}\right)^2$$

$$\zeta^2 > 0.14688 \left(1-\zeta^2\right)$$

$$1.14688 \zeta^2 > 0.14688$$

$$\zeta^2 > 0.12807$$

_

Since ζ has to be positive then the positive root is used giving

$$\zeta > 0.35787$$

Back to the (1) specifications, which says

$$\frac{3.2}{\zeta \omega_n} < 0.25$$
$$\zeta \omega_n > 12.8$$

For each $\zeta_i > 0.3578$, we solve for ω_n from $\zeta \omega_n > 12.8$. This will give full description of where the poles are located.

Here is a plot of the (ζ, ω_n) space showing allowed values of ζ, ω_n .

```
ln(69)= RegionPlot[1 > z > 0.35787 & z w > 12.8, {z, 0, 1}, {w, 0, 50}, GridLines → Automatic, GridLinesStyle → LightGray, Frame → True,
                                     \texttt{FrameLabel} \rightarrow \{\{"\omega_n", \texttt{None}\}, \{"\xi", "\texttt{Region of allowed } \xi \texttt{ and } \omega_n"\}\}, \texttt{BaseStyle} \rightarrow \texttt{14}, \texttt{Epilog} \rightarrow \{\{(w_n, w_n), (w_n, w_n), (w_n,
                                                   {Dashed, Line[{{0.3578, 0}, {0.3578, 35}}], Line[{{0, 12.8}, {1, 12.8}}]},
                                                 Text["$=0.358", {0.358, 0}],
                                                 Text["\omega_n = 12.8", {0.084, 14.9}]
                                            }]
                                                                                                                       Region of allowed \xi and \omega_{e}
                                               50
                                               40
                                                30
                                  ß
Out[69]=
                                                20
                                                                    \omega_n = 12.8
                                                 10
                                                      0
                                                                                                                                   ζ=0.358
                                                           0.0
                                                                                                         0.2
                                                                                                                                                         0.4
                                                                                                                                                                                                       0.6
                                                                                                                                                                                                                                                      0.8
                                                                                                                                                                                                                                                                                                     1.0
```

By taking each point (ζ, ω_n) from the above plot, then the pole location with coordinates $-\zeta \omega_n \pm \omega_n \sqrt{1-\zeta^2}$ is generated. The following shows the final result, showing the region where

the poles have to be located in order to meet the performance requirements.

```
 \begin{bmatrix} n[456] = p = Normal @ RegionPlot[1 > z > 0.35787 & & z w > 12.8, & z, 0, 1 \}, & w, 0, 50 \} ]; \\ pts = DeleteDuplicates @ Flatten [Cases[p, Polygon[x_] \Rightarrow x, Infinity], 1]; \\ data = & {-First@ # Last@ #, Last@ # Sqrt[1 - (First@ #)^2] } & @ pts; \\ data2 = & {-First@ # Last@ #, -Last@ # Sqrt[1 - (First@ #)^2] } & @ pts; \\ ListPlot[Union[data, data2], AxesOrigin \rightarrow & {0, 0}, AxesLabel \rightarrow & "Re", "Im" & (*AxesLabel \rightarrow & { "-& w_n ", "w_n \sqrt{1-\xi^2 "} } ) ), PlotLabel \rightarrow & "Region of poles in ImageSize \rightarrow & 500 \end{bmatrix}
```


The above diagram shows the location of each pair of poles as a small dot. Complex poles come in pair of conjugates. One pole will be above the real axis and its pair below the real axis.

0.2 Problem 2

Problem 2: For the system shown in the figure below, find gains K and K_t so that the maximum overshoot of the output c(t) to a unit step input r(t) is about 20% and that the rise time is approximately 0.05 seconds. Find the resulting closed loop transfer function C(s)/R(s) and simulate the step response in Matlab. In your solution, use the rise time approximation

$$t_r \approx \frac{1 - 0.4167\zeta + 2.917\zeta^2}{\omega_n}.$$

SOLUTION:

The closed loop transfer function, in terms of K and K_t can be found using either Mason rule or simple block reduction. For this problem block reduction seems easier.

$$R(s) \longrightarrow \begin{matrix} E(s) \\ \hline K \\ \hline f(s) \\ \hline K \\ \hline f(s) \\ \hline f(s) \\ \hline K \\ \hline f(s) \hline f(s) \\ \hline f(s) \hline f(s) \\ \hline f(s) \hline f(s) \hline f(s) \\ \hline f(s) \hline f(s$$

Using $G_p = \frac{100}{1+0.2s}$ the above becomes

$$\frac{C(s)}{R(s)} = \frac{K\left(\frac{100}{1+0.2s}\right)}{20s\left(1+K_t\frac{100}{1+0.2s}\right)+K\frac{100}{1+0.2s}}$$
$$= \frac{100K}{20s\left(1+0.2s+100K_t\right)+100K}$$
$$= \frac{100K}{4s^2+(20+2000K_t)s+100K}$$
$$= \frac{25K}{s^2+(5+500K_t)s+25K}$$

The standard form is $\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}$ therefore by comparing to the above we find

$$\omega_n^2 = 25K$$

$$\omega_n = 5\sqrt{K} \tag{1}$$

And

$$5 + 500K_t = 2\zeta\omega_n$$
$$= 2\zeta\left(5\sqrt{K}\right)$$
$$\zeta = \frac{5 + 500K_t}{10\sqrt{K}}$$
(2)

Hence the transfer function is

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Where $\omega_n = 5\sqrt{K}$ and $\zeta = \frac{5+500K_t}{10\sqrt{K}}$. We now apply the user specifications in order to determine *K* and *K*_t. From the overshoot requirement, we write

$$e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \le 0.2\tag{3}$$

And from the rise time requirements we have

$$\frac{1 - 0.4167\zeta + 2.917\zeta^2}{\omega_n} = 0.05\tag{4}$$

From (3) and (4) we can now solve for ω_n and ζ and this allow us to find K and K_t by using

(1,2). From (3), taking logs and solving for ζ gives

$$-\frac{\pi\zeta}{\sqrt{1-\zeta^{2}}} \leq \ln(0.2)$$
$$\frac{\pi\zeta}{\sqrt{1-\zeta^{2}}} \geq \ln(5)$$
$$\frac{\pi\zeta}{\sqrt{1-\zeta^{2}}} \geq 1.6094$$
$$\pi^{2}\zeta^{2} \geq (1.6094)^{2} (1-\zeta^{2})$$
$$\pi^{2}\zeta^{2} \geq 2.5902 - 2.5902\zeta^{2}$$
$$(\pi^{2} + 2.5902) \zeta^{2} \geq 2.5902$$
$$\zeta \geq \sqrt{\frac{2.5902}{(\pi^{2} + 2.5902)}}$$

Hence

 $\zeta \geq 0.456$

Any $0.456 \le \zeta < 1$ can be used. In order to find ω_n , let us choose

$$\zeta = 0.46$$

For the rest of the calculations . From (4) we find

$$\frac{1 - 0.4167(0.46) + 2.917(0.46)^2}{\omega_n} = 0.05$$
$$\omega_n = \frac{1.4256}{0.05}$$

Therefore

$$\omega_n = 28.512 \text{ rad/sec}$$

Now that we found ζ and $\omega_n,$ we use (1,2) to find the gains. From (1)

$$\omega_n = 5\sqrt{K}$$
$$K = \frac{\omega_n^2}{25} = \frac{28.512^2}{25}$$
$$K = 32.517$$

Therefore

$$\zeta = \frac{5 + 500K_t}{10\sqrt{K}}$$
$$0.46 = \frac{5 + 500K_t}{10\sqrt{32.517}}$$

Hence

$$K_t = 0.04246$$

The final transfer function is

$$\frac{C(s)}{R(s)} = \frac{25K}{s^2 + (5 + 500K_t)s + 25K}$$
$$= \frac{25(32.517)}{s^2 + (5 + 500(0.04246))s + 25(32.517)}$$

Or

C(s)	812.93
$\overline{R(s)}$	$s^2+26.23s+812.93$

Matlab is used to simulate the step response, and to also verify the user requirements are met.

```
close all;
clear all;
s = tf('s');
sys = 812.93/(s<sup>2</sup>+26.23*s+812.93);
step(sys)
grid
```


The step information was also verified using the command stepinfo() which showed the specifications was indeed met.

stepinfo(sys)

RiseTime: 0.0549 SettlingTime: 0.2916 SettlingMin: 0.9225 SettlingMax: 1.1963 Overshoot: 19.6310 Undershoot: 0 Peak: 1.1963 PeakTime: 0.1229

0.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer function

$$G(s) = \frac{Ks(20s^2 + 1)}{s^4 + 5s^2 + 10s + 15}$$

connected in a classical unity feedback configuration. Use the Routh-Hurwitz criterion to find the range of K for which closed loop stability is assured.

SOLUTION:

$$G(s) = \frac{Ks(20s^2 + 1)}{s^4 + 5s^2 + 10s + 15}$$

In classical unity feedback, the closed loop transfer function T(s) is

$$T(s) = \frac{G(s)}{1+G(s)}$$

= $\frac{Ks(20s^2+1)}{(s^4+5s^2+10s+15)+Ks(20s^2+1)}$
= $\frac{Ks(20s^2+1)}{s^4+20Ks^3+5s^2+(10+K)s+15}$

Applying Routh-Hurwitz to the denominator $D(s) = s^4 + 20Ks^3 + 5s^2 + (10 + K)s + 15$ gives

s ⁴	1	5	15
<i>s</i> ³	20 <i>K</i>	(10 + K)	0
s ²	$\frac{20K(5)-(10+K)}{20K}$	15	0
s ¹	$\frac{\frac{(20K(5)-(10+K))}{20K}(10+K)-20K(15)}{\frac{20K(5)-(10+K)}{20K}}$	0	0
s^0	15		

Simplifying gives

s ⁴	1	5	15
s ³	20 <i>K</i>	(10 + K)	0
s ²	$\frac{1}{20K}(99K-10)$	15	0
s^1	$\frac{1}{10-99K} \left(5901K^2 - 980K + 100 \right)$	0	0
s^0	15		

For stability, we need the first column to be positive. Hence the conditions are

$$20K > 0$$
$$\frac{1}{20K} (99K - 10) > 0$$
$$\frac{1}{10 - 99K} (5901K^2 - 980K + 100) > 0$$

The first just says that K > 0. The second says 99K - 10 > 0 or $K > \frac{10}{99}$. Now for the third condition

$$\frac{1}{10 - 99K} \left(5901K^2 - 980K + 100 \right) > 0$$

Since $K > \frac{10}{99}$ is required, then $\frac{1}{10-99K}$ is negative quantity since 10-99K is negative for $K > \frac{10}{99}$. This means the above becomes

$$5901K^2 - 980K + 100 < 0$$

Notice the change of inequality from > to < since we multiplied both sides by a negative quantity (10 - 99K) to cancel it out. But $5901K^2 - 980K + 100 < 0$ can not be satisfied with a positive $K > \frac{10}{99}$. For example, using the minimum allowed K which is $\frac{10}{99}$, then the value of $5901K^2 - 980K + 100$ becomes

$$5901\left(\frac{10}{99}\right)^2 - 980\left(\frac{10}{99}\right) + 100 = 61.218$$

But it needs to be negative. So there does not exist K which makes the closed loop stable.

0.4 Problem 4

Problem 4: Consider the system with open loop transfer function

$$G(s) = \frac{K}{s(1+Ts)}$$

is connected in a unity feedback configuration. Given a > 0, the specification is that all closed loop poles have real part less than -a. Show how the Routh-Hurwitz criterion can modified to address this problem. Subsequently, for T = 1, find and sketch the region in the (a, K) plane associated with closed loop stability.

SOLUTION:

Given $G(s) = \frac{K}{s(1+Ts)}$ then the closed loop transfer function is

$$G_{closed}(s) = \frac{G}{1+G}$$
$$= \frac{K}{s(1+Ts)+K}$$
$$= \frac{K}{Ts^2 + s + K}$$

Therefore $D(s) = Ts^2 + s + K$. For the closed loop poles with real part to be less than -a, let $s_1 = s + a$. Then $s = s_1 - a$. We apply Routh-Hurwitz to D(s) but with $s = s_1 - a$. The new denominator polynomial becomes

$$D(s_1) = T(s_1 - a)^2 + (s_1 - a) + K$$

Expanding gives

$$D(s_1) = T(s_1^2 + a^2 - 2s_1a) + s_1 - a + K$$

= $Ts_1^2 + s_1(1 - 2Ta) + (Ta^2 - a + K)$

Routh table applied to the above polynomial is

s_{1}^{2}	Т	$Ta^2 - a + K$
s_1^1	1 - 2Ta	0
s_1^0	$Ta^2 - a + K$	

We need all entries in the first column to be same sign (positive in this case, since T = 1) for stability to hold (This is in addition to having the poles be with real part less than -a). For T = 1 the above becomes

s ²	1	$a^2 + a + K$
s^1	1 - 2a	0
<i>s</i> ⁰	$a^2 - a + K$	

The conditions for stability are

$$1 - 2a > 0$$
$$a(1 - a) + K > 0$$

The first condition gives $a > \frac{1}{2}$. The second condition gives

$$K > a^2 - a$$

Here is plot of the region in the (a, K) plane associated with closed loop stability.

0.5 Problem 5

Problem 5: An automatic depth control system for a submarine is depicted in the figure below. The depth is measured by a pressure transducer. For what values of K will the system be stable? Take H(s) = 1 and submarine transfer function

$$G(s) = \frac{(s+2)^2}{s^2 + 0.01}$$

SOLUTION:

The closed loop transfer function is

$$T(s) = \frac{KG(s)\frac{1}{s}}{1 + HKG(s)\frac{1}{s}}$$

Replacing H(s) = 1 and $G = \frac{(s+2)^2}{s^2+0.01}$ the above becomes

$$T(s) = \frac{\frac{K(s+2)^2}{s^2+0.01} \frac{1}{s}}{1 + \frac{K(s+2)^2}{s^2+0.01} \frac{1}{s}}$$
$$= \frac{K(s+2)^2}{s(s^2+0.01) + K(s+2)^2}$$
$$= \frac{K(s+2)^2}{s^3 + Ks^2 + (0.01 + 4K)s + 4K}$$

The Routh table for $D(s) = s^3 + Ks^2 + (0.01 + 4K)s + 4K$ is

s^3	1	0.01 + 4K
<i>s</i> ²	Κ	4K
s^1	4K - 3.99	0
s^0	4K	

Therefore for stability we need

$$K > 0$$

 $4K > 3.99$
 $4K > 0$

The first and the third conditions give K > 0. From the second condition, $K > \frac{3.99}{4} = 0.9975$. Therefore

To verify, here is the step response for k = 0.9974 and k = 0.9976, showing one is unstable and the second is stable.

```
close all; clear all;
   = tf('s');
S
G
    = (s+2)^2/(s^2+0.01);
    = .9974;
k
sys = feedback(k*G*1/s,1);
subplot(2,1,1);
step(sys);
title(sprintf('k=%f',k)); grid
subplot(2,1,2);
k = .9976;
sys = feedback(k*G*1/s,1);
step(sys);
title(sprintf('k=%f',k)); grid
```

