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1 Problem 4.1.1(d)

41.1 Find the Fourier series on —n < x <= for
(a} f(x)=sin’x, an odd function
(b} f(x)=|sin x|, an even function
(c} f(x)=x?, integrating either x* cos kx or the sine series for f=x
(d) f(x)=e*, using the complex form of the series.
What are the even and odd parts of f(x)=¢* and f(x)=e™?

Figure 1: the Problem statement
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But % - ? = sinh (z), hence the above reduces to
1 . .
Cr = m sinh (n (1 - Zk)) (2)
Substituting (2) into (1) gives
st 1
1 (1 -ik)

Here are few terms in the series generated using symbolic software:

e = sinh (7t (1 — ik)) e~
k

ClearAll[x, k, n, f, ck]

cklk_, x_] := 1/(2 Pi) Integratel[Expl[x] Exp[-I k x], {x, -Pi, Pi}]

flk_, x_] := cklk, x]*Exp[I k x];

term[n_] := If[n == 0, N@f[0, x], N@Simplify@ComplexExpand[f[-n, x] + f[n, x]]
tbl = Table[{k, Simplify@TrigToExp@ck(k, x]1}, {k, -5, 5, 1}];
Grid[Join[{{"k", "C_k"}}, tbl], Frame -> All]
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Here is a plot of Fourier series of ¢* for k increasing range to compare with ¢*. To generate this plot
the terms with c_; + ¢, were added in order together to obtain a real valued function before plotting.
Plotting was done from x = —7 --- 7. We see as more terms are added, the approximation improves.
At 20 terms, the approximations became very good. Here is the plot

ck = 1/(2 Pi) Integratel[Exp[x] Exp[-I k1 x], {x, -Pi, Pil}]

flk_] := (ck /. k1 -> k) *Exp[I k x];

fs[n_] := Sum[Simplify([f[-k] + f[k]], {k, 1, n}] + £[0];

tbl = Table[Plot[{fs[n], Expl[x]}, {x, -Pi, Pi}, Frame -> True, Axes -> False,
FrameLabel -> {{"f(x)", None},

{"x", Row[{"Using " <> ToString[n] <> " terms"}]}},

PlotStyle -> {Dashed, Red}], {n, 1, 20, 1}];

Grid[Partition[tbl, 4]]
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Figure 2: Plot for problem 4.1.1
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The even part of ¢* are given by +2—E = coshx and the odd part is = sinh x. For ¢, the even

ZX+ —1X X —1X

part is = cosx and the odd part is =isinx
2 Problem 4.1.2
41.2 Asquare wave has f(x)= — 1 onthe left side —n <x <0and f(x)= + 1 on the right

side 0<x<m.
(1) Why are all the cosine coefficients a, =0?
(2) Find the sine series I b, sin kx from equation (6).

Figure 3: the Problem statement

2.1 Part (a)

Since f (-m) = —f (—n) then f (x) is an odd function. For an odd function all the a; = 0 since these
go with the even part.

2.2 Part(b)
by = % f F (x)sin (kx) dx

0 T
= %{ _f f (x) sin (kx) dx + bf f (%) sin (kx) dx]

0 b
= %[ f — sin (kx) dx + f sin (kx) dx]

—T 0
Changing the limits of integration changes the sign, hence the above can be written as

by = %[ f sin (kx) dx + f sin (kx) dx]

0 0
b

2
- = f sin (kx) dx
TC
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= — (1 -coskn) k=1,2,3,--
ik

Hence
4 k=1,3,5,--
bk — ik
0 k=2,4,6,-
Hence using f (x) = Zbk sin kx, we can write the Fourier series of f (x) as
k=1

(o)

fx) = Z %Sinkx

k=1,3,-
4 . 4 | 4

= —sinx+ —sin3x + —sin5x + ---
T 3n 571

4 ( . 1 . 1 .
= —|sinx+ —sin3x+ —sinb5x + ---
b 3 5

Here is a plot showing the Fourier series approximation to the square wave from x = -7 --- 7 as
more terms are added



Clear[f, k, x];

flx_, k_] := Sum[2/(Pi n) (1 - Cos[n Pi]) Sin[n x], {n, 1, k}]1;
tbl = Partition[Tablel[

Plot [{Sign[x], flx, k1}, {x, -Pi, Pi},

Exclusions -> None, PlotLabel -> Row[{"k=", k}],

PlotStyle -> {Thin, Red}], {k, 1, 20,2}], 3];

Grid[tbl, Frame -> All]

k=1 k=3 k=3
10 LOF L0
0.3 0.3 03

Figure 4: Plot for problem 4.1.2

3 Problem 4.1.3

41.3 Find this sine series for the square wave f in another way, by showing that
(a) df/dx =20(x)— 28(x + ) extended periodically

(b) 28(x)—25(x+m) = % (cos x + cos 3x + ---) from (10)

Integrate each term to find the square wave f.

Figure 5: the Problem statement

3.1 Part(a)

We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find

Tt
1 1
=— |o6()dx=—
%o 2nf (x) dx 27
—Tt

T
1 1
a, = ;fé (x) cos kxdx = - (since cos0=1)

1 s
b, = - f 6 (x)sinkxdx =0  (since sin0 = 0)



Hence
1 oo
o(x)=—+ k
(x) o éuk cos kx
1 1
= — 4+ — ), coskx
2n nig
1 1
= — + —(cosXx + cos2x + cosS3x + --+)
2n W
Now to determine Fourier series for 6 (x + 7t)
TC
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=Tt
n k
1 ) . N PN
a,=— | 6(x+m)coskxdx = ——  (since cos(—km) = coskn = (-1)")
nJ e
1 T
b, = —fé (x)sinkxdx =0  (since sin(-km) =0)
T[—T[
Hence
1 (o)
o(x+m)= o= +I§akcoskx
1 1 k
=—+—) (-1 k
o H,Z:{( )" coskx
1 1
= — + —(—cosx + cos2x —cos3x + )
2n W
Therefore

1 1
— + —(—cosx+cos2x—cos3x + )
2n W

1 1
26(x) —=20(x+m) =2 > + — (cosx + cos2x + cos3x + --+) | -2
T

1 2 1 2
= —+ — (cosx + cos2x + cos3x + ---) — — + — (cos x — cos 2x + cos 3x — cos 5x + --+)
T m mn

2
—(2cosx +2cos3x +2cosbx + )
T

4
— (cosx + cos3x + cosbx + --+)
e

Hence
d 4
—f = — (cosx + cos3x + cosbx + ---)
dx =
Hence
4 1 1
fx)= - (sinx + 3 sin 3x + B sin 5x + )
3.2 Part (b)
We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find
T
1 . 1
- — —ikx -
Ck = 27Tfé(x)e dx o
=Tt

Hence

(o8]
o(x) = Z cpet*
k=—c0
(o)
— E Leikx
e 2m
1 —ikx ikx —2ik 2ik
= 2—(1+e +e e 4o +)
174

1
= 2—(1 + 2 coskx + 2 cos2kx + 2 cos 3kx + --+)
T

Now to determine Fourier series for 6 (x + 71)

n k

1 , 1 . 1 -1
Ck = 7 fé (x + m) e " dx = —Znelk” = coskm = —( 27_3
=Tt



Hence
00 k
(-1)
S(x+m) = oikx
(+7) k§oo 21
1 . H .
= (1 —¢7ix — pix 4 p=2ix 4 p2ix _ p=3ix _ p3ix 4 )
271 (
1 . . . . . ,
= 2_ (1 _ (e—zx + elx) + p2ix 4 p20x _ (e—Szx i €3lx) 4 )
T
1
= (1-2cosx+2cos2x—2cos3x + --+)
Therefore

1 1
26(x) -20(x+m) =2 2—(1 +2cosx +2cos2x +2cos3x + ---)}—2[2— (1-2cosx+2cos2x—2cos3x+ --+)
T T

1 1
=—(1+2cosx+2cos2x+2cos3x+-)——(1—-2cosx+2cos2x—2cos3x+ ---)
T Tt

1
— (4cosx +4cos3x +4cosbx+ )
T

4
— (cosx + cos 3x + cosbx + -++)
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Hence

df _4

— (cosx + cos 3x + cosbx + --)
dx 7

Therefore

f ) 2 (s +1'3+1'5+
X) = —|sinx+ =sin3x + = sin5x + ---
s 3 5

Which is the same as above using the a;, b, method.

4 Problem 4.1.4

414 At x=m/2 the square wave equals 1. From the Fourier series at this point find the
alternating sum that equals =

n=4(1—3+5—4 ).

Figure 6: the Problem statement

From above we found that the Fourier series for square wave is
f()4'+1'3+1'5+
x) = —|sinx + - sin3x + —sin5x + -+
b 3 5
Therefore at x = g, the above becomes

1—4 i 7T+1 i 37T+1 i 57z+
= Sln2 3Sln 5 5Sln 5

Tt
Hence
—afsinZ + TsinaZ + Lsin52 +
T = SlIl2 3sm 5 5Sln 5
1 1 1
=4{l-=4+==-=+"--
( 3 5 7 )



5 Problem 4.1.5

41.5 From Parseval’s formula the square wave sine coefficients satisfy

n(b? + bi + ---)=J.'r If(x)lzdx=J‘ 1dx =2Zn.

SR

Derive another remarkable sum 72 = 8(1 +4+ 3%+ ).

Figure 7: the Problem statement

We found that only the by survive for the Fourier series of the wave function. They are

4

| & k=135
71 o k=246,

Applying Parseval’s formula leads to
T
2,12 12 2
n(B+B+ R+ ) = f|f(x)| dx = 21
=Tt

Where we used only the odd by terms since all others are zero. The above becomes
4y + 4y + 4y + =2

"= 3n 5n -
L L2 : A 2 +oe[=2

"\ =2 % \3 2 \5 -

e (3] (3 )2

Hence

6 Problem 4.1.8

41.8 Suppose f has period T instead of 2z, so that f(x) =f(x + T).Its graph from —T/2 to
T/2 is repeated on each successive interval and its real and complex Fourier series are

2nx . 2nx o
f(x)=a,+ay cos — - + b, sin e = _ZJQ c; eIt

Multiplying by the right functions and integrating from —T/2 to T/2, find g, by, and ¢;.
Figure 8: the Problem statement

ps. In the solution below, I was using T when I should be using g in all the limits. Need to correct
later. Or just let period be 2T then the math works ok.

In this problem, the basic idea is to observe that when the period was 27 then

f(x) = Yapcoskx + Y b sinkx
k=0 k=1

fE)= Y ™

k=—00
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Now when the period is a general value T we use (Z?Hk) in place of just k. So the above becomes
— 27 & . 27
fx) = ’gak cos (ka) + k:1bk sin (ka) 1)
0 .[2m
= 3 ael PP ®

k=—co

We now need to determine ay, by, ¢, using (1) and (2) in similar way we did when the period was 2m.

To find a; we multiply (1) by cos (m%nx) where m is some integer between 1 --- co, and integrating

from -T to T gives
r 2 (e 2 2 re 2 2
e T e . T T
[f (x) cos (me) dx = v{};)ak cos (ka) cos (me) dx + [ébk sin (ka) cos (me) dx

T T
— 2 2 ~ 2 2
= Efak cos (k—nx) cos (m—nx) dx + Efbk sin (k—nx) cos (m—nx) dx
= T T P T T
T -T

Due to orthogonality between the sin and cos, all the product of sin cos vanish, and only one term
in the product of cos cos remain which is the one when k = m, hence the above reduces to

T T
21 21 2n
ff (x) cos (m?x) dx = lam cos (me) cos (me) dx

-T
Since m is arbitrary, we can rename it back to k to keep the same naming as before.
r 2 r 2
ff (x) cos (k?nx) dx = fak cos? (k%x) dx (3)
-T -T
When k = 0 we find
T T
ff(x)dx = faodx
-T -T
= 2a,T

Hence
T
—if(mx
ag = 5T Tf X

s
Notice, when T = 7, the above reduces to ay = %ff (x)dx. Now to find a;, for k > 1, then from (3)

—Tt

T T

2 2
ff(x)cos kx| dx = fakcosz kZ x| dx
) T T

= ﬂkT

Hence

1 T 2
a = T f_Tf(x) cos (k%x) dx
s
Notice that when T = 7t the above reduces to g, = %ff(x) cos(kx) dx as before.
=T

Now we find by similarly. We multiply (1) by sin (m%nx) where m is some integer between 1 --- oo,

and integrating from -T to T gives

T T T
. 2n had 21 ) 271 ad ) 27 ) 271
[f (x) sin (me) dx = kz_;)[ak cos (ka) sin (me) dx + E[bk sin (ka) sin (me) dx

Due to orthogonality between the sin and cos, all the products of sin cos vanish, and only one term
in the product of sinsin remain which is the one when k = m, hence the above reduces to

T T
. 2m . 2\ . 271
jT‘f (x) sin (me) dx = J;bm sin (mFx) sin (me) dx
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Since m is arbitrary, we can rename it back to k to keep the same naming as before.

T T
. 271 .2 27
[f (x) sin (k?x) dx = [bk sin (k?x) dx

= b,T

= %fTTf (x) sin (kZan) dx

T

Notice that when T = 7t the above reduces to b, = %ff (x) sin (kx) dx as before. We now find cy.

-7t

fx) = E cke( ;)

Hence

2n

Multiplying both side by e_i(mT)x and integrating over the period

T
—z' _ )x
_{ Fx)e Vi = E f e dx

k=—co"p
All terms other than ones which k = m remain. Hence the above becomes

f f (x)e dx = f cmei(m%n)xe_i(m%n)xdx

=T
T

= fcmdx

-T
Therefore, since m is now arbitrary, we rename it back to k and simplifying

ff (x)e dx =2Tc;
Lro (i)
k= — f(x)e_Z T/ dx
ZT_jT‘

7 Problem 4.1.10

4110 What constant function is closest in the least square sense to f=cos?x? What
multiple of cos x is closest to f=cos’x?

Figure 9: the Problem statement

The a, term in the Fourier series of cos®x is the constant term. Hence it is the constant that is

2 x in the square sense. Therefore

us
1
=— 2 xd
ag 27zfcos.xx
=Tt

1 Tt
= — f cos? xdx
27
-n

closest to cos

2

To find the multiple of cosx which is closest to cos
since that is the term which has a; cosx in it. Hence

3 x, we find a4, term in the Fourier series of cos® x

a = —fcos3xcos xdx
n

=T
1 (3n
(5]
3
4



12

8 Problem 4.1.11

4111 Sketch the graph and find the Fourier series of the even function f=1—|x|/n
(extended periodically) in either of two ways: integrate the square wave or compute (with

ap=1)
ak=%jf f(x)coskxdx=zr(l—E)coskxdx.

T Jo

Figure 10: the Problem statement

The function we are approximating using Fourier series is

f[x_] := Piecewise[{{1 + x/Pi, x < 0}, {1 - x/Pi, x >= 0}}];
Plot[f[x], {x, -Pi, Pi}]

Figure 11: Plot for problem 4.1.11

Since it is even, we only need to determine a;

T

1 2
a, = —ff(x) cos kxdx = —f(l - f) cos kxdx
nJ n b

_ 2 (1-coskn
o k2
Hence
fx)=a9+ Eak cos kx
k=1
1 2(l-cosm 2 (1-cos2m 2 (1-cos3m
=—+—|——|cosx+ —|———|cos2x + — | ——— | cos3x + ---
2 m i 4n T 97
1 2(2 2 (2 2( 2
=—-+4+—|—=|cosx+ —|—]cos3x+ —[=—]cosSx + ---
2 m\m T \97m T \2571
1+ 4 + 4 3x + 4 5x +
=-+4+ —cosx+ —cos3x+ —cosbx + -
2 2 972 57

Here is a plot showing the approximation as more terms are added. The label of each plot show
the number of terms used. The more terms we use, the better the approximation

ck = (2/Pi) Integrate[(1 - x/Pi) Coslk x], {x, 0, Pi}];

upTo[n_, x_]1 := (1/2) + Sum[(ck /. k -> m)* Cos[m x], {m, 1, n}];
tbl = Table[Plot [upTo[m, x], {x, -Pi, Pi},

PlotLabel -> Row[{"terms used =", m}]], {m, O, 18, 2}];
Grid[Partition[tbl, 3], Frame -> All]
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Figure 12: Plot for problem 4.1.11 part 2

9 Problem 4.1.16

41.16 If the boundary condition for Laplace’s equation is u, =1 for 0 <@ <7 and u, =0
for —n < 0 <0, find the Fourier series solution u{r, #) inside the unit circle. What is u at the

origin?
Figure 13: the Problem statement

The first step is to obtain the a;, by coefficients by expanding the boundary value of the solution
using Fourier series. On the boundary

{1 0<O<m
MOZ

0 -m<6<0
Hence
1 [ 1
o= fao =1
27 2
0
And
T
1 1 . 7
a, = —fcosk@d@ = —[sinkf]; =0
T kmt 0
0
And

us
1 1
by = —fsink@d@ = — [-coskO] =0 = — [coskm — cos 0]
) kn 0 kn

(22 2
|\ w 3% 51

Only odd values of k survive. Now that we found the Fourier coefficient, we use them in the solution
given in equation (22), page 276 on the book

u(r,0) = ag + byrsin O + byr® sin 30 + bsr®sin® O + ---

—1+2 ‘9+13'36+15'56+
—2 - T Sin 37’ Sin 57’ Sin
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At the origin, let r =0

1
M(0,9)= E

10 Problem 4.1.19

4.1.19 A plucked string goes linearly from f(0)=0 to f(p)=1 and back to f(m)=0. The
linear part f= x/p reaches to x = p, followed by f=(n — x)/(z — p} to x ==. Sketch f as an

odd function and find a plucking point p for which the second harmonic sin 2x will not be
s heard (b, =0).

Figure 14: the Problem statement

A sketch of the function (string) is below.

Clear[x, £, pl;

flx_, p_] := Piecewise[{{(-x - Pi)/(Pi - p), x < -p},
{x+p)/p -1, -p < x <0}, {x/p, 0 < x < p},

{(x - Pi)/(p - Pi), p < x < Pi}}]

Plot[f[x, .8 Pi], {x, -Pi, Pi}, Frame -> True,
FrameLabel -> {{"f(x)", None}, {x, "problem 4.1.19"}}]

problem 4.1.19
1o
os|
E 0]
_Dj -
~10]
-3 2 A 0 1 2 3

Figure 15: Plot for problem 4.1.19

Since f (x) is odd, we only need to determine by

2 Tt
by = —ff (x) sin kxdx
T
0

p b4
= %{ffsinkxdx+fx_nsinkxdx]
b Op pp—n

3 E(Sinkp—kpcoskp N k(n—p) coskp +sinkp—sinkn]

” e @ (m-p)
2 (71 sinkp - p sinkn)
k2pm (n - p)
For k=2
(7’( sin2p — psin 27'()
bz =
2pm (n - p)
Tt sin2p

- 2pm (7’( —p)




For zero, we need

0=msin2p
sin2p =0
Hence
T
=3

11 Problem 4.1.20

15

41.20 Show that P,=x?—1% is orthogonal to Py=1 and P;=x over the interval
—1<x<1. Can you find the next Legendre polynomial by choosing ¢ to make x> —c¢x
orthogonal to Py, P, and P,?

Figure 16: the Problem statement

1
Two functions f,g are if the inner product is zero f f(x)g(x)dx =0. Hence
-1
1

1 3 1
szPodx:f(xz—l)dx:(%—x) =0
-1 1

-1 -
1
szpldx =
-1

Now let P3 = x® — cx, we want this to be orthogonal to Py, Py, P,. Hence

1 4

1 o1
1 1 1 1

fP3P0dx:fx3—cxdx:(x——cx—) Z(——c—)—(——c—)

] 4 2), \4 2 4 2

-1
0=0

And
1 4

(32 -1)xix = (xz—xz—z)ll =0

-1 -

This equation did not help us find c. We try the next one

1 5

1 3\ 1
X X 1 1 1 1 2 2
de :f 3 _ d: — —C— =|l=-=-c=-]|-|—-= ===
j; 374X (X CX)X X (5 C3)_1 (5 C3) ( 5+C3) 5 3C

-1

Hence

12 Problem 4.1.26

41.26 If [ has the double sine series TX by, sin kx sin Iy, show that Poisson’s equation
— Uy — Uy, = f is solved by the double sine series u = LX by, sin kx sin Iy/(k* + 1%). This is the
solution with u = 0 on the boundary of the square —n <x, y <m.

Figure 17: the Problem statement

The proposed solution is

by sinkx sinl
(o) - E el

1)
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To see if this solves

Uy — Uy = f = EEbkl sin kx sin ly (1A)
we will take (1) and substitute in the LHS of Poisson equation (1A) and see if we get the RHS of
(1A) which is f.

du byjk cos kx sin ly
FraapIp) (k2 + )

Pu —byk? sin kx sin Iy
preaapIpY (k2 +2) @)

And

% 3 by sin (kx) I cos ly
@_EZ (k2 + )

Pu ~by sin (kx) 2 sin Iy .
TPy (e +p) ®

Substituting (2) and (3) in the LHS of (1A) gives

byk? sin kx sin ly by, sin (kx) I? sin ly
g~y = ) + 20

(k2 + ) (k2 +12)
B byk? sin kx sin Iy + by sin (kx) I? sin Iy
) (k2 + )
_ (bk, sin kx sin ly) (k2 + lz)
-L2 (k2 +12)
= Z Ebkl sin kx sin ly
Which is f. Hence u (x, y) = Ezw is the solution verified.

(k2+12)

13 Problem 4.3.3

4.3.3 Find the inverse transforms of

(@) f(k)=8(k) (b) f(k)=e '™ (separate k <0 from k> 0).

Figure 18: the Problem statement
13.1 Part(a)

Fx) = é;i:fié(k)e*xdk

1. 1
=5 )= 5

13.2 Part(b)

[se]

1 .
— —|k| ,ikx
f(x) o f e Me"™dk

k=—o00
0 00

1 , .
= — f ekekxdk + f e‘ke’kxdk]
27

\k=—00 0

0 )
_ 1 f O+ g 4 f (-14i0) )
n \= 0

k(~1+ix) 1%°
T ] ) (1)

-1+ix b

ok(1+ix) ]0

1+ix
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Looking at the first integral result

1+ix T 1+4ix 1+ix 14ix

k(1+ix) }0 1 -oo(1+iv) 1
Where we looked at real part of ¢*(*™ =0 so that we can make e=(*% to be zero.

Looking at the second integral result

[ek(—1+ix) ]‘X’ ooo(-1+ix) 1 1

—1+ix0_ “1+ix -1+ix -1+ix

Where we looked at real part of ¢+ =0 so that we can make ¢®"1*™ to be zero. Hence, using
the above two results in (1) gives

1 1 1
f(x)=§(1+ix_—1+ix)

1 1 1
=— — + -
2n\1+ix 1-ix

1 ((M-ix)+ (1 +ix)
‘%( (1 +ix) (1 - ix) )

1 2
T2 \1+a2

1 1

]+ x?

14 Problem 4.3.5

8.3.5 Verify Plancherel's energy equation for f=J and /= ¢~ *"/2. Infinite energy is allowed.

Figure 19: the Problem statement

14.1 Part(a)
For f(x) =06 (x)

ZNT(SZ (x)dx =2m W}g{}o fé (x) gy (x) dx
Where g, (x) is sequence of Gaus;;:m functions. The _I:OHS above becomes
27'(]0?62 (x)dx =2m 31_%10 £, (0)
But lim,,_,, g, (0) = o hence N
271])0‘62 (x)dx = o0

Now f (k) =1 for the Dirac delta. Hence

(o0

Fk) = f (1) ekx

= fe‘”‘"dx
el S , 1
_ — _— (pikoo _ ,tikoo) — _— _ —
_ [ - L = (o) = 2 (0-0) = o0

Hence verified for 6 OK.



14.2 Part(b)

2
For f(x) =e 2 then

271]0 If @) dx = 2nf

—00

e 2

dx

[ee]

=27 f e dx

&g

2
2

A

Il
A
NI w

Now f (k) for the above function is

Fk) = f F(x) ey

Hence
00 . ) (] 2 2
f|f(k)| dk:feﬁ 2| dk
[’ k2 2
:2nf 7| dx

Which is the same as before. Hence verified.

15 Problem 4.3.6

18

436 What are the half-widths W, and W, of the bell-shaped function f=e~*"* and its
transform? Show that equality holds in the uncertainty principle.

Figure 20: the Problem statement

For f(x)=¢ 2
wa - Lrreras
Lo 1f @] dx
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A 00 . 0o 2 . K2
Now f (k)= [ f(x)e™dx = [ ¢ 7 e ™dx = ¢ 2 V2m, hence

LRIl ax

2
k (o) A
[71f (off dx
) 2
f_:kze 3 | dx
f_w e 2V2m| dx

2m Loo K2e ™ dx

27 fo e dx
\/E

_a 1
Vo2
2

Hence

1 /1 1
WlWe=y2v2 =3

But uncertainty principle says that W, W, > % Hence verified OK.

16 Problem 4.3.7

437 What is the transform of xe =22 What about x%e */2, using 4L?

Figure 21: the Problem statement

16.1 Part(a)

2 2 2

Using 4L(1), let f(x) = e_%, which has f (k) = f_ : e 2 e ®™dy = \2ne 2, hence % f (x) will have the

transform ik f (k), therefore,
d
Y(Ef(x)) = (—xe 2 ) ikV2me” 2

x2 K2
Therefore xe” 2 has the transform —ikv2me 2

16.2 Part(b)

2 2

x2 R K2 x x
Let f(x) = xe” 2, which has f (k) = —ikv2me 2 from part(a). But %f (x) =e 2 —x% 2. Hence the
transform of % fx) =ik f (k). Therefore

i(e_xzz—xe 2) zk(—zk\/_e 2)
) ofect o

x2 K
But 5‘(6_2) = V2me 2, hence

K2

9‘(x2exzz) \/_eZ—kz\/_e2
) \/_62(1 K2)

Therefore

/(xez) \/_62(1 k)



17 Problem 4.3.10

20

4310 Solve the differential equation

j—:+au=5(x)

by taking Fourier transforms to find (k). What is the solution u (the Green’s function for
this equation)?

Figure 22: the Problem statement

Let i1 (k) be the Fourier transform of u (x). Using .7 (Z—Z) = ikii (k) and .7 (0) = 1, then applying

Fourier transform on the ODE gives
ik (k) + ait (k) = 1
Solving for i (k)
it (k) (a+ik) =1

Hence, from page 310 in text book, it gives the inverse Fourier transform for the above as

e™ x>0
u(x) =
0 x<0

18 Problem 4.3.21

43.21 Apply Fourier transforms to [*, e ¥ lu(y)dy — 2u(x) = f(x) to show that the
solution is u= —1f +1g, where g comes from integrating f twice. (Its transform is
g=[/liw)*) If f =e ™ find u and verify that it solves the integral equation.

Figure 23: the Problem statement

Comparing the integral equation

fe‘lx—ylu (y) dy —2u(x) = f (x)

with the one in the textbook, page 322 in example one, where the Fourier transform of

(o)

[t lu(y)ay =5 o

—00

Is given as

(@) = f (@)

1)

The only difference is that in this problem we have an extra —2u (x) term, whose Fourier transform

is —2@t (w). Hence the Fourier transform for (1) becomes

T3 (@) =20 (@) = f (@)

Solving for i (w)
2 .
ﬁ(w)(m —2) = f(w)

2—2(1+w2) .
()| —————|=f ()

1+ w?

1 2,
1@ = — 7 @)
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We need to write the above as I (w) = %lf + %g. Hence

—f @ @)

Aw)= 5 f @)+

Let f (x) = ™™, then

Flw) = f F(x) e vy

(o)

= f e~ Wlgmiwx gy

—00

0 00

- fexe—z(uxdx+ fe—xe—m)xdx

—c0 0

pX(1-iw) T°
= +
[1—1’(4)}_00
1 1
l-iw 1+iw
(1 +iw) -1 -iw)
T (1 -iw) 1+ iw)
B 2

T 1+ w?

00

e—x(1+iw)

1+iw
0

Hence using (2)
1

. 1, .
1) = S F @)+ s @)
A2 12
2 1+w? 2w?l+ w?
1
Y

Hence

Using tables u (x) = _?1 |x].

19 Problem 4.3.27

43.27 Take Fourier transforms in the equation d*G/dx* — 2a’d*G/dx* + a*G = 4§ to find
the transform G of the fundamental solution. How would it be possible to find G?

Figure 24: the Problem statement

The equation is

d*G (x) d?G (x)
e 2a° ot a*G(x) =6

Taking Fourier transform, and using ‘:175 = (ik)" § (k) hence G’ (x) = kg (k),G” (x) = —k?¢(k),G"" (x) =

(ik)4 ¢ (k) = k*g (k). Therefore the Fourier transform of the above differential equation is
k43 (k) + 2a2k23 (x) + a*g (k) = 1

Solving for § (k)
g (k) (K* + 2022 + a*) = 1
SO —
SV = a2k +
3 1
= 2
(kz + az)
To find G (x) we need to find the inverse Fourier transform.
17 .
Gx)=— 2e’k"dk

1
2n f (k2 + az)

—00



With the help of computer, I obtained the following result

A+alxl) _
Gx) = Te alx|

22



	Problem 4.1.1(d)
	Problem 4.1.2
	Part (a)
	Part(b)

	Problem 4.1.3
	Part(a)
	Part (b)

	Problem 4.1.4
	Problem 4.1.5
	Problem 4.1.8
	Problem 4.1.10
	Problem 4.1.11
	Problem 4.1.16
	Problem 4.1.19
	Problem 4.1.20
	Problem 4.1.26
	Problem 4.3.3
	Part(a)
	Part(b)

	Problem 4.3.5
	Part(a)
	Part(b)

	Problem 4.3.6
	Problem 4.3.7
	Part(a)
	Part(b)

	Problem 4.3.10
	Problem 4.3.21
	Problem 4.3.27

