HW 4

Math 703
 methods of applied mathematics I

Fall 2014
University of Wisconsin, Madison

Nasser M. Abbasi

January 5, 2020
Compiled on January 5, 2020 at 11:24pm [public]

Contents

1 Problem 3.1.1 2
2 Problem 3.1.2 3
3 Problem 3.1.4 4
4 Problem 3.1.5 5
5 Problem 3.1.6 5
6 Problem 3.2.2 8
7 Problem 3.2.3 9
8 Problem 3.2.10 11
9 Problem 3.2.12 12
10 Problem 3.3.3 13
11 Problem 3.3.4 14
12 Problem 3.3.5 14

1 Problem 3.1.1

3.1.1 For a bar with constant c but with decreasing $f=1-x$, find $w(x)$ and $u(x)$ as in equations (8-10).

Figure 1: the Problem statement

Figure 2: Figure for 3.1.1

Starting with the differential equation for u (which is the longitudinal deformation of the bar along the x axis)

$$
-c \frac{d^{2} u}{d x^{2}}=f(x)
$$

And using $f(x)=1-x$ and integrating both sides gives

$$
\begin{aligned}
-c \int_{x}^{1} \frac{d^{2} u}{d \tau^{2}} d \tau & =\int_{x}^{1}(1-\tau) d \tau \\
-c\left[\frac{d u}{d \tau}\right]_{x}^{1} & =\left[\tau-\frac{\tau^{2}}{2}\right]_{x}^{1}
\end{aligned}
$$

But $\frac{d u}{d x}=w$, and $w(1)=0$, hence the above becomes

$$
-c[e(1)-e(x)]=\left[\left(1-\frac{1^{2}}{2}\right)-\left(x-\frac{x^{2}}{2}\right)\right]
$$

But $c e=w$, hence the above can be written as

$$
-[w(1)-w(x)]=\frac{1}{2}-x+\frac{x^{2}}{2}
$$

But $w(1)=0$, hence

$$
w(x)=\frac{1}{2}-x+\frac{x^{2}}{2}
$$

To find $u(x)$, we use the relation that

$$
c \frac{d u}{d x}=w(x)
$$

This is the same as $c e=w(x)$, since strain $e=\frac{d u}{d x}$. So we integrate one more time, but this time, we integrate from 0 to x instead from 1 to x. This is in order to pick up the essential boundary conditions on u at $x=0$, since $u(1)$ is not known, it would be an error to use the first integration limits used earlier above. Hence

$$
\begin{aligned}
\int_{0}^{x} c \frac{d u}{d \tau} d \tau & =\int_{0}^{x} w(\tau) d \tau \\
c \int_{0}^{x} \frac{d u}{d \tau} d \tau & =\int_{0}^{x} \frac{1}{2}-\tau+\frac{\tau^{2}}{2} d \tau \\
c[u]_{0}^{x} & =\left[\left(\frac{\tau}{2}-\frac{\tau^{2}}{2}+\frac{\tau^{3}}{6}\right)\right]_{0}^{x} \\
c(u(x)-u(0)) & =\left(\frac{x}{2}-\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)
\end{aligned}
$$

But $u(0)=0$ since fixed there. This is the essential boundary conditions we are give. The above now simplifies to

$$
u(x)=\frac{1}{c}\left(\frac{x}{2}-\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)
$$

2 Problem 3.1.2

3.1.2 For a hanging bar with constant f but weakening elasticity $c(x)=1-x$, find the displacement $u(x)$. The first step $w=(1-x) f$ is the same as in (9), but there will be stretching even at $x=1$ where there is no force. (The condition is $w=c d u / d x=0$ at the free end, and $c=0$ allows $d u / d x \neq 0$.)

Figure 3: the Problem statement

Since $c e=w(x)$, then $w(x)=(1-x) e$ and since $e=\frac{d u}{d x}$ then

$$
w(x)=(1-x) \frac{d u}{d x}
$$

But $-\frac{d w}{d x}=f$, hence integrating both sides gives

$$
\begin{aligned}
-\int_{x}^{1} \frac{d w}{d \tau} d \tau & =\int_{x}^{1} f d \tau \\
-[w]_{x}^{1} & =f \int_{x}^{1} d \tau \\
-(w(1)-w(x))= & f(1-x)
\end{aligned}
$$

But $w(1)=0$, hence

$$
w(x)=f(1-x)
$$

We found from above that $w(x)=(1-x) \frac{d u}{d x}$, therefore

$$
\begin{aligned}
(1-x) \frac{d u}{d x} & =f(1-x) \\
\frac{d u}{d x} & =f
\end{aligned}
$$

Integrating one more time to find $u(x)$

$$
\begin{aligned}
\int_{0}^{x} \frac{d u}{d \tau} d \tau & =\int_{0}^{x} f d \tau \\
{[u]_{0}^{x} } & =f x \\
u(x)-u(0) & =f x
\end{aligned}
$$

But $u(0)=0$, hence

$$
u(x)=f x
$$

3 Problem 3.1.4

3.1.4 With the bar still free at both ends, what is the condition on the external force f in order that $-\frac{d w}{d x}=f(x), w(0)=w(1)=0$ has a solution? (Integrate both sides of the equation from 0 to 1.) This corresponds in the discrete case to solving $A_{0}^{T} y=f$; there is no solution for most f, because the left sides of the equations add to zero.

Figure 4: the Problem statement

Since $-\frac{d w}{d x}=f$, then integrating from 0 to 1 , gives

$$
\begin{aligned}
-\int_{0}^{1} \frac{d w}{d \tau} d \tau & =\int_{0}^{1} f d \tau \\
-[w(1)-w(0)] & =\int_{0}^{1} f d \tau
\end{aligned}
$$

If $w(1)=0$ and $w(0)=0$, then this implies

$$
\int_{0}^{1} f d \tau=0
$$

Therefore the only possibility for solution is that $\int_{0}^{1} f d \tau=0$. For example, a constant none zero f will not work, since this will result in $f=0$ which is a contradiction.

4 Problem 3.1.5

3.1.5 Find the displacement for an exponential force, $-u^{\prime \prime}=e^{x}$ with $u(0)=u(1)=0$.

Note that $A+B x$ is the general solution to $-u^{\prime \prime}=0$; it can be added to any particular solution for the given f, and A and B can be adjusted to fit the boundary conditions.

Figure 5: the Problem statement

The general solution is $u=u_{h}+u_{p}$. For the homogeneous solution $u_{h}=A+B x$, now we find the particular solution. By inspection we see that $u_{p}=-e^{x}$ satisfies the differential equation. Hence

$$
u=A+B x-e^{x}
$$

We now apply the boundary conditions to find A, B. At $x=0$,

$$
\begin{aligned}
0 & =A-e^{0} \\
0 & =A-1 \\
A & =1
\end{aligned}
$$

Therefore $u=1+B x-e^{x}$. At $u=1$ we find

$$
\begin{aligned}
& 0=1+B-e^{1} \\
& B=e-1
\end{aligned}
$$

Hence the solution is

$$
u=1+(e-1) x-e^{x}
$$

5 Problem 3.1.6

3.1.6 Suppose the force f is constant but the elastic constant c jumps from $c=1$ for $x \leq \frac{1}{2}$ to $c=2$ for $x>\frac{1}{2}$. Solve $-d w / d x=f$ with $w(1)=0$ as before, and then solve $c d u / d x=w$ with $u(0)=0$. Even if c jumps, the combination $w=c d u / d x$ remains smooth.

Figure 6: the Problem statement

Using $-\frac{d w}{d x}=f$, integrating both sides

$$
\begin{aligned}
-\int_{x}^{1} \frac{d w}{d \tau} d \tau & =\int_{x}^{1} f d \tau \\
-[w(\tau)]_{x}^{1} & =(1-x) f \\
-(w(1)-w(x)) & =(1-x) f \\
w(x) & =(1-x) f
\end{aligned}
$$

Since $w(1)=0$. Now we use $c e=w(x)$ to solve for u. Since $e=\frac{d u}{d x}$. For $0 \leq x \leq \frac{1}{2}$ we solve, using $c=1$

$$
\begin{aligned}
c \frac{d u}{d x} & =(1-x) f \\
\int_{0}^{x} \frac{d u}{d \tau} d \tau & =\int_{0}^{x}(1-\tau) f d \tau \\
{[u(\tau)]_{0}^{x} } & =f\left[\tau-\frac{\tau^{2}}{2}\right]_{0}^{x} \\
u(x)-u(0) & =f\left(x-\frac{x^{2}}{2}\right)
\end{aligned}
$$

But $u(0)=0$, hence the solution is

$$
\begin{equation*}
u(x)=f\left(x-\frac{x^{2}}{2}\right) \quad 0 \leq x \leq \frac{1}{2} \tag{1}
\end{equation*}
$$

We now integrate over the second half, where $c=2$

$$
\begin{align*}
c \frac{d u}{d x} & =(1-x) f \\
\int_{\frac{1}{2}}^{x} 2 \frac{d u}{d \tau} d \tau & =\int_{\frac{1}{2}}^{x}(1-\tau) f d \tau \\
2[u(\tau)]_{\frac{1}{2}}^{x} & =f\left[\tau-\frac{\tau^{2}}{2}\right]_{\frac{1}{2}}^{x} \\
2\left(u(x)-u\left(\frac{1}{2}\right)\right) & =f\left(\left(x-\frac{x^{2}}{2}\right)-\left(\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}\right)\right) \\
2 u(x)-2 u\left(\frac{1}{2}\right) & =f\left(-\frac{1}{2} x^{2}+x-\frac{3}{8}\right) \tag{2}
\end{align*}
$$

To find $u\left(\frac{1}{2}\right)$ we use the earlier solution (1) above $u\left(\frac{1}{2}\right)=f\left(\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}\right)=\frac{3}{8} f$, hence (2) becomes

$$
\begin{aligned}
2 u(x)-\frac{3}{4} f & =\left(-\frac{1}{2} x^{2}+x-\frac{3}{8}\right) f \\
2 u(x) & =\left(-\frac{1}{2} x^{2}+x-\frac{3}{8}+\frac{3}{4}\right) f \\
u(x) & =\left(-\frac{1}{4} x^{2}+\frac{1}{2} x+\frac{3}{16}\right) f
\end{aligned}
$$

To verify, let us check that $u(x)=\frac{3}{8} f$ also using the second solution above. Let $x=\frac{1}{2}$ in the above, we find

$$
\begin{aligned}
u\left(\frac{1}{2}\right) & =\left(-\frac{1}{4}\left(\frac{1}{2}\right)^{2}+\frac{1}{2} \frac{1}{2}+\frac{3}{16}\right) f \\
& =\frac{3}{8}
\end{aligned}
$$

Therefore the solution $u(x)$ is continuous and smooth at $x=\frac{1}{2}$ where the elasticity changes. This is a plot of the solution

Figure 7: Figure for 3.1.6

6 Problem 3.2.2

3.2.2 What function $u(x)$ with $u(0)=0$ and $u(1)=0$ minimizes

$$
P(u)=\int_{0}^{1}\left[\frac{1}{2}\left(\frac{d u}{d x}\right)^{2}+x u(x)\right] d x ?
$$

Figure 8: the Problem statement

The general form of $P(u(x))$ is

$$
\begin{equation*}
P(u(x))=\int_{0}^{1}\left[\frac{1}{2} C\left(\frac{d u(x)}{d x}\right)^{2}-f(x) u(x)\right] d x \tag{1}
\end{equation*}
$$

We will use theorem proved in class that function $\bar{u}(x)$ minimizes $p(\bar{u})$ iff

$$
\int_{0}^{1} C \frac{d \bar{u}}{d x} \frac{d v}{d x}-f v d x=0
$$

For any test function $v(x)$. However, this test function must satisfy the essential conditions on $u(x)$. Therefore, since we are told $u(1)=u(0)=0$, then it follows that $v(1)=v(0)=0$. Now we apply Integration by part to (1)

$$
\begin{array}{r}
{\left[C \frac{d \bar{u}}{d x} v\right]_{0}^{1}-C \int_{0}^{1} \frac{d^{2} \bar{u}}{d x^{2}} v d x-\int_{0}^{1} f v d x=0} \\
C\left[\left.\frac{d \bar{u}}{d x}\right|_{x=1} v(1)-\left.\frac{d \bar{u}}{d x}\right|_{x=0} ^{1} v(0)\right]-C \int_{0}^{1} \frac{d^{2} \bar{u}}{d x^{2}} v d x-\int_{0}^{1} f v d x=0
\end{array}
$$

Since $v(1)=v(0)=0$ the above reduces to

$$
-C \int_{0}^{1} \frac{d^{2} \bar{u}}{d x^{2}} v d x=\int_{0}^{1} f v d x
$$

Since $v(x)$ is arbitrary function (other than having the same essential boundary conditions as $u(x)$) then the above implies

$$
\begin{equation*}
-C \frac{d^{2} \bar{u}}{d x^{2}}=f \tag{2}
\end{equation*}
$$

Now we can apply this result to the problem at hand, which is to find \bar{u} which minimizes

$$
\begin{equation*}
p(u)=\int_{0}^{1}\left[\frac{1}{2}\left(\frac{d u}{d x}\right)^{2}+x u\right] d x \tag{3}
\end{equation*}
$$

By comparing (3) and (1), we see that $C=1$ and $f=-x$, hence from (2), we need to solve

$$
-\frac{d^{2} \bar{u}}{d x^{2}}=-x
$$

or

$$
\begin{equation*}
\frac{d^{2} \bar{u}}{d x^{2}}=x \tag{4}
\end{equation*}
$$

With the boundary conditions $\bar{u}(0)=\bar{u}(1)=0$. The homogeneous solution to (4) is $\bar{u}_{h}(x)=A x+B$. Let the particular solution be $\bar{u}_{p}(x)=c_{1} x^{3}$, then applying this to (4) gives

$$
6 c_{1} x=x
$$

Hence $c_{1}=\frac{1}{6}$ and $\bar{u}_{p}(x)=\frac{1}{6} x^{3}$. Therefore the general solution is

$$
\begin{aligned}
\bar{u}(x) & =\bar{u}_{h}(x)+\bar{u}_{p}(x) \\
& =A x+B+\frac{1}{6} x^{3}
\end{aligned}
$$

We now apply the essential conditions on the above. Which results in two equations to solve for A, B

$$
\begin{aligned}
& \bar{u}(0)=0=B \\
& \bar{u}(1)=0=A+\frac{1}{6}
\end{aligned}
$$

Hence $B=0, A=-\frac{1}{6}$, and the solution is

$$
\bar{u}(x)=-\frac{1}{6} x+\frac{1}{6} x^{3}
$$

or

$$
\bar{u}(x)=-\frac{x}{6}\left(1-x^{2}\right)
$$

7 Problem 3.2.3

3.2.3 What function $w(x)$ with $d w / d x=x$ (and unknown integration constant) minimizes

$$
Q(w)=\int_{0}^{1} \frac{w^{2}}{2} d x ?
$$

With no boundary condition on w this is dual to Ex. 3.2.2.

Figure 9: the Problem statement
We need to find $\bar{w}(x)$ which minimizes the functional $Q(w(x))=\int_{0}^{1} \frac{w^{2}}{2} d x$ with constraint $\frac{d w}{d x}=x$. Since we have a constraint, we need to set up a Lagrangian minimization. Hence we want to minimize

$$
L(w, \lambda)=\int_{0}^{1} \frac{w^{2}}{2}-\lambda\left(\frac{d w}{d x}+x\right) d x
$$

Where λ is the Lagrangian. Now we follow the standard method, but work with L instead of Q.

$$
L((w+v), \lambda)=L(w, \lambda)+\frac{\delta L(w, \lambda)}{\delta x} v+\cdots
$$

Hence

$$
\begin{aligned}
\frac{\delta L(w, \lambda)}{\delta x} v & =L((w+v), \lambda)-L(w, \lambda) \\
& =\int_{0}^{1} \frac{(w+v)^{2}}{2}-\lambda\left(\frac{d(w+v)}{d x}+x\right) d x-\int_{0}^{1} \frac{w^{2}}{2}-\lambda\left(\frac{d w}{d x}+x\right) d x \\
& =\int_{0}^{1} \frac{1}{2}\left(w^{2}+v^{2}+2 v w\right)-\lambda\left(\frac{d w}{d x}+\frac{d v}{d x}+x\right)-\frac{w^{2}}{2}+\lambda\left(\frac{d w}{d x}+x\right) d x \\
& =\int_{0}^{1} \frac{1}{2}\left(v^{2}+2 v w\right)-\lambda \frac{d v}{d x} d x \\
& =\int_{0}^{1} \frac{1}{2} v^{2} d x+\int_{0}^{1}\left(v w-\lambda \frac{d v}{d x}\right) d x
\end{aligned}
$$

But for small variation v the term $\int_{0}^{1} \frac{1}{2} v^{2} d x$ is always positive and can be made as small as needed. Hence we ignore it, and what is left is

$$
\frac{\delta L(w, \lambda)}{\delta x} v=\int_{0}^{1}\left(v w-\lambda \frac{d v}{d x}\right) d x
$$

Since we want $\frac{\delta L(w, \lambda)}{\delta x}=0$ for a minimum, and the above must be valid for any non trivial v then

$$
\int_{0}^{1}\left(v w-\lambda \frac{d v}{d x}\right) d x=0
$$

Applying integration by parts to $\int_{0}^{1} \lambda \frac{d v}{d x} d x$ where $\int u d v=[u v]-\int v d u$. Let $u=\lambda, d v=\frac{d v}{d x}$, hence the above becomes

$$
\begin{aligned}
0 & =\int_{0}^{1}\left(v w-\lambda \frac{d v}{d x}\right) d x \\
& =\int_{0}^{1} v w d x-\overbrace{\int_{0}^{1} \lambda \frac{d v}{d x} d x}^{\text {by parts }} \\
& =\int_{0}^{1} v w d x-\left[(\lambda v)_{0}^{1}-\int_{0}^{1} \frac{d \lambda}{d x} v d x\right]
\end{aligned}
$$

Assuming $v(0)=v(1)=0$, then the above reduces to

$$
\begin{aligned}
& \int_{0}^{1} v w+\frac{d \lambda}{d x} v d x=0 \\
& \int_{0}^{1}\left(w+\frac{d \lambda}{d x}\right) v d x=0
\end{aligned}
$$

Since this is valid for any v, therefore

$$
w+\frac{d \lambda}{d x}=0
$$

Hence the $w(x)$ which minimizes $\int_{0}^{1} \frac{w^{2}}{2} d x$ with constraint $\frac{d w}{d x}=x$ is

$$
w(x)=-\frac{d \lambda}{d x}
$$

8 Problem 3.2.10

3.2.10 If the ends of a beam are fixed (zero boundary conditions) and the force is $f=1$ with $c=1$, solve $d^{4} u / d x^{4}=1$ and then find M. Why does it have to be done in that order?

Figure 10: the Problem statement

For a beam, the equation of deflection is $u^{(4)}=1$. The solution is given by integrating 4 times resulting in

$$
\begin{aligned}
u^{\prime \prime \prime}(x) & =x+c_{1} \\
u^{\prime \prime} & =\frac{x^{2}}{2}+c_{1} x+c_{2} \\
u^{\prime} & =\frac{x^{3}}{6}+c_{1} \frac{x^{2}}{2}+c_{2} x+c_{3} \\
u & =\frac{x^{4}}{24}+c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}
\end{aligned}
$$

Since $u(0)=0$ then $c_{4}=0$ and since $u^{\prime}(0)=0$ then $c_{3}=0$, hence

$$
u(x)=\frac{x^{4}}{24}+c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}
$$

Now, assuming the beam has length 1 . Then on the other end, we have also $u(1)=0$, then

$$
\begin{equation*}
u(1)=0=\frac{1}{24}+c_{1} \frac{1}{6}+c_{2} \frac{1}{2} \tag{1}
\end{equation*}
$$

And since also $u^{\prime}(1)=0$, then

$$
\begin{equation*}
u^{\prime}(1)=0=\frac{1}{6}+c_{1} \frac{1}{2}+c_{2} \tag{2}
\end{equation*}
$$

From (1) and (2) we can solve for c_{2}, c_{1}, giving $c_{2}=\frac{1}{12}, c_{1}=-\frac{1}{2}$, hence

$$
u(x)=\frac{x^{4}}{24}-\frac{1}{12} x^{3}+\frac{1}{24} x^{2}
$$

Now we can find $M(x)$ since $M(x)=c \frac{d^{2} u}{d x^{2}}$, hence

$$
M(x)=\frac{x^{2}}{2}-\frac{1}{2} x+\frac{1}{12}
$$

If we had used $M=u^{\prime \prime}$ directly (from page 173 on text, where $c=1$ now), then the solution would be

$$
\begin{aligned}
M x+c_{1} & =u^{\prime} \\
\frac{M x^{2}}{2}+c_{1} x+c_{2} & =u
\end{aligned}
$$

At $u(0)=0$ then $c_{2}=0$, hence $\frac{M x^{2}}{2}+c_{1} x=u$ and from $u(1)=0$ we obtain $\frac{M}{2}+c_{1}=0$ or $M=-\frac{c_{1}}{2}$. But we are now stuck since we can't find c_{1}.
So to find M, we must first find $u(x)$ and then find $M=c u^{\prime \prime}$ after solving for u completely.

9 Problem 3.2.12

3.2.12 What is the shape of a uniform beam under zero force, $f=0$ and $c=1$, if $u(0)=u(1)$ $=0$ at the ends but $d u / d x(0)=1$ and $d u / d x(1)=-1$? Sketch this shape.

Figure 11: the Problem statement

For a beam, the equation of deflection is $u^{(4)}=0$. The solution is given by integrating 4 times resulting in

$$
\begin{aligned}
u^{\prime \prime \prime}(x) & =c_{1} \\
u^{\prime \prime} & =c_{1} x+c_{2} \\
u^{\prime} & =c_{1} \frac{x^{2}}{2}+c_{2} x+c_{3} \\
u & =c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}
\end{aligned}
$$

For $u(0)=0$ gives $c_{4}=0$ and $u^{\prime}(0)=1$ gives $c_{3}=1$ and $u(1)=0$ gives $0=c_{1} \frac{1}{6}+c_{2} \frac{1}{2}+1$ and $u^{\prime}(1)=-1$ gives $-1=c_{1} \frac{1}{2}+c_{2}+1$
Hence we need to solve these

$$
\begin{aligned}
-1 & =c_{1} \frac{1}{2}+c_{2}+1 \\
0 & =c_{1} \frac{1}{6}+c_{2} \frac{1}{2}+1
\end{aligned}
$$

For c_{1}, c_{2}. The solution is: $c_{1}=0, c_{2}=-2$. Hence

$$
u(x)=-x^{2}+x
$$

A plot is

Figure 12: Plot for 3.2.12

10 Problem 3.3.3

3.3.3 Discrete divergence theorem: Why is the flow across the "cut" in the figure equal to the sum of the flows from the individual nodes A, B, C, D ? Note: This is true even if flows like $d_{1}-d_{6}$ from nodes like A are nonzero. If the current law holds and each node has zero net flow, then the exercise says that the flow across every cut is zero.

Figure 13: the Problem statement

11 Problem 3.3.4

3.3.4 Discrete Stokes theorem: Why is the voltage drop around the large triangle equal to the sum of the drops around the small triangles? Note: This is true even if voltage drops like $d_{1}+d_{7}+d_{6}$ around triangles like $A B C$ are nonzero. If the voltage law holds and the drop around each small triangle is zero, then the exercise says that $d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}$ $=0$.

Figure 14: the Problem statement

12 Problem 3.3.5

3.3.5 On a graph the analogue of the gradient is the edge-node incidence matrix A_{0}. The analogue of the curl is the loop-edge matrix R with a row for each independent loop and a column for each edge. Draw a graph with four nodes and six directed edges, write down A_{0} and R, and confirm that $R A_{0}=0$ in analogy with curl grad $=0$.

Figure 15: the Problem statement

