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1 Problem 3.1.1

3.1.1 For a bar with constant ¢ but with decreasing f=1—x, find w(x) and u(x) as in
equations (8-10).

Figure 1: the Problem statement
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Figure 2: Figure for 3.1.1

Starting with the differential equation for u (which is the longitudinal deformation of the bar along
the x axis)
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And using f (x) =1 - x and integrating both sides gives
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But Z—z =w, and w (1) = 0, hence the above becomes

—cle(l)-e(x)] = [(1 - g) - (x— x;)]



But ce = w, hence the above can be written as

1 2
M -wE@] =5 -x+

But w (1) = 0, hence

2
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To find u (x) , we use the relation that
d
Cd_z =w(x)

This is the same as ce = w (x), since strain e = d—z. So we integrate one more time, but this time, we
integrate from 0 to x instead from 1 to x. This is in order to pick up the essential boundary conditions
on u at x = 0, since u (1) is not known, it would be an error to use the first integration limits used

earlier above. Hence
X
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But 1 (0) = 0 since fixed there. This is the essential boundary conditions we are give. The above now
simplifies to
2
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2 Problem 3.1.2

3.1.2 For a hanging bar with constant f but weakening elasticity ¢(x)=1—x, find the
displacement u(x). The first step w = (1 — x) f is the same as in (9), but there will be stretching
even at x = | where there is no force. (The condition is w = ¢ du/dx = 0 at the free end, and
e =0 allows du/dx #0.)

Figure 3: the Problem statement

Since ce = w (x), then w (x) = (1 — x) e and since e = Z—z then
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But _%) = f, hence integrating both sides gives
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But w(1) =0, hence

w() = f1-7)

We found from above that w(x) = (1 - x) %, therefore

d
(-0 =f1-x
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Integrating one more time to find u (x)
*du
—dt = fx drt
0 dt 0 /
[uly = fx

u(x)-u() = fx
But #(0) = 0, hence

u(x) = fx

3 Problem 3.1.4

3.1.4 With the bar still free at both ends, what is the condition on the external force f in

order that — ‘;—“ = f{x), w(0) = w(1) = 0 has a solution? (Integrate both sides of the equation
X

from 0 to 1.) This corresponds in the discrete case to solving Ag y = f; there is no solution for

most f, because the left sides of the equations add to zero.

Figure 4: the Problem statement

o f, then integrating from 0 to 1, gives
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If w(1l) = 0 and w (0) = 0, then this implies

fde=0

0
1

Therefore the only possibility for solution is that f fdt = 0. For example, a constant none zero f will

0
not work, since this will result in f = 0 which is a contradiction.

4 Problem 3.1.5

315 Find the displacement for an exponential force, —u"=¢* with u(0)=u(1)=0.

Note that A + Bx is the general solution to —u”=0; it can be added to any particular
solution for the given f, and A and B can be adjusted to fit the boundary conditions.

Figure 5: the Problem statement

The general solution is u = uy, + u,. For the homogeneous solution u;, = A + Bx, now we find the
particular solution. By inspection we see that u, = —¢* satisfies the differential equation. Hence

u=A+Bx-e¢"

We now apply the boundary conditions to find A,B. At x =0,
0=A-¢
0=A-1
A=1

Therefore u =1+ Bx —¢*. At u =1 we find

0=1+B-¢
B=e-1
Hence the solution is

u=l+ke-1)x—-¢e*

5 Problem 3.1.6

3.1.6 Suppose the force f is constant but the elastic constant ¢ jumps from ¢ =1 for x < %.to
¢ =2 for x>3. Solve —dw/dx =f with w(1) =0 as before, and then solve ¢ du/dx =w with
#(0) = 0. Even if ¢ jumps, the combination w = ¢ du/dx remains smooth.

Figure 6: the Problem statement



Using —% = f, integrating both sides

—f—df—fde
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Since w (1) = 0. Now we use ce = w (x) to solve for u. Since e = %. For0<x < % we solve, using ¢ =1
o =1-0f

—dT - f(l 1) fdr
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u(x)—u(0)=f(x—x;)

But u (0) = 0, hence the solution is

x2 1
= - <x< -
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We now integrate over the second half, where ¢ = 2
=1-xf
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3
] = gf, hence (2) becomes

Zu(x):(—%x2+x—§+2)f
1 1 3
u(x) = (—1x2+§x+ﬁ)f

To verify, let us check that u (x) = g f also using the second solution above. Let x = % in the above,
we find
1 11\ 11 3
ul=|=|-=(z| +zz+=1|f
2 412 22 16

Therefore the solution u (x) is continuous and smooth at x = % where the elasticity changes. This is a
plot of the solution
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Infé3g= uf[x_J == Piecewise[{{(——x‘ =K+ —|; =S X< 1]-r {x— —,0<x« —]-]-]
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Plot[u[x], {x, 0, 1}, PlotTheme + "Detailed", Frame -+ True,
FramelLabel -+ {{"u(x)", Honel}, {"x", "Solution for problem 3.1.6"}}]

Solstion for problem 3.1.8
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Figure 7: Figure for 3.1.6



6 Problem 3.2.2

3.2.2 What function u(x) with u(0) =0 and u(l) = 0 minimizes
1 du \2
P(u) = j [g (-i‘) +x u{x‘j] dx?
0 ax

Figure 8: the Problem statement

The general form of P (u(x)) is

Al fdu @)
Pa@)= [ EC( = ) - f () u ()| dx ®
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We will use theorem proved in class that function # (x) minimizes p () iff
dnd
f C _u_v — fodx =

For any test function v (x). However, thlS test function must satisfy the essential conditions on u (x).
Therefore, since we are told u (1) = u(0) = 0, then it follows that v(1) = v(0) = 0. Now we apply

Integration by part to (1)
Pn
[ ] f vdx — f fodx =0
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i 0(0)] Cf—vdx ffvdx:O
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Since v (1) = v (0) = 0 the above reduces to

—Cfdz_vdx— ffvdx

Since v (x) is arbitrary function (other than having the same essential boundary conditions as u (x))
then the above implies

—Cdz—ﬂ =f 2)

dx?
Now we can apply this result to the problem at hand, which is to find # which minimizes

(u) —j ! d_u 2 + xu
PRy = J 2 \dx
By comparing (3) and (1), we see that C =1 and f = —x, hence from (2), we need to solve
dn__
dx2

dx ()




or

dx? =X

(4)

With the boundary conditions # (0) = #(1) = 0. The homogeneous solution to (4) is 7, (x) = Ax + B.
Let the particular solution be 1, (x) = c;x3, then applying this to (4) gives

6c1x = x

1 1 L
Hence ¢; = A and 11, (x) = gx3. Therefore the general solution is

i (x) = ity (x) + @i (x)

We now apply the essential conditions on the above. Which results in two equations to solve for A, B

Hence B=0,A = —%, and the solution is

or

7 Problem 3.2.3

1
=Ax+B+gx3
72(0)=0=B
n(1)=0 A+1
7 =0 = —
6
1
ﬂ(x):—gx+gx3
x
= (x) = 2
u(x)——g(l—x)

3.23 What function w(x) with dw/dx = x {and unknown integration constant) minimizes

Iwz
N= | — dx?
Q(w) L 5 %

With no boundary condition on w this is dual to Ex. 3.2.2.

Figure 9: the Problem statement

1
2
We need to find @ (x) which minimizes the functional Q (w (x)) = f w?dx with constraint %) = x. Since

0

we have a constraint, we need to set up a Lagrangian minimization. Hence we want to minimize

1

+x)dx

L(w,A) = w—z -A dw
W= ) 2 dx
Where A is the Lagrangian. Now we follow the standard method, but work with L instead of Q.
L((w+v),A)=Lw,A)+

OL (w, A
oL@

ox
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Hence
OL (w, A)
ox

v=L(w+v),A)—L(w,A)
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But for small variation v the term f Evzdx is always positive and can be made as small as needed.
0
Hence we ignore it, and what is left is
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Since we want =0 for a minimum, and the above must be valid for any non trivial v then

1
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1
Applying integration by parts to f)l%dx where fudv = [uv] - fvdu. Letu = A,dv = %, hence the
above becomes

1
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Assuming v (0) = v (1) = 0, then the above reduces to
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Since this is valid for any v, therefore

+d—A—O
@ dx

1
. e e . w? . . dw .
Hence the w (x) which minimizes de with constraint - =Xis

o

8 Problem 3.2.10

3.2.10 If the ends of a beam are fixed (zero boundary conditions) and the force is f = 1 with
¢ =1, solve d*u/dx* = 1 and then find M. Why does it have to be done in that order?

Figure 10: the Problem statement

For a beam, the equation of deflection is u® = 1. The solution is given by integrating 4 times resulting
in
W (x)=x+c;

2
x

' =—+4+cx+c
2

—_3+ _2+ +
u [ CrX + C
6 12 2 3

x4 X3 x2
M:24 C1€+C23+C3X+C4
Since # (0) = 0 then ¢4 = 0 and since u’ (0) = 0 then ¢3 = 0, hence
x4 X3 x2
— 40— +
u(x) = 24 (&1 6 Co— 5

Now, assuming the beam has length 1. Then on the other end, we have also u (1) = 0, then

1
+Cr=

1 1
1)=0=—
u(l) = +0c1= 5

24" 6 @)

And since also v’ (1) = 0, then
1 1
M’(1)=0=6+C1§+C2 (2)

1 1
561 = "5 hence
4
X 1 1
_ 3
—_— e —— + —_—
W= Tt gt

From (1) and (2) we can solve for c,, ¢y, giving ¢, =

2

Now we can find M (x) since M (x) = c el hence
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If we had used M = u” directly (from page 173 on text, where ¢ = 1 now), then the solution would be
Mx+cp=u'

Mx?
T+C1X+C2=M

2
At u (0) = 0 then ¢, = 0, hence MTX + c1x = u and from u (1) = 0 we obtain AE/I +cp=0o0orM= —%1. But
we are now stuck since we can’t find ¢;.

So to find M, we must first find u (x) and then find M = cu” after solving for u completely.

9 Problem 3.2.12

3.212 What is the shape of a uniform beam under zero force, f=0and ¢ = 1, if w(0) = u(1)
=0 at the ends but du/dx(0) =1 and du/dx(1) = —1? Sketch this shape.

Figure 11: the Problem statement

For a beam, the equation of deflection is u*) = 0. The solution is given by integrating 4 times resulting
in
u” (x) =1
U’ =cix+cy

x2
u’ =05 +Cx +c3

x3 x2
u :Clg +C23 + C3X +Cy

For 1 (0) = 0 gives ¢, =0 and ' (0) =1 gives c3 =1 and u (1) =0 gives 0 = c1é + CZ% +land v’ (1) = -1
gives —1 = 01% +c+1
Hence we need to solve these
1
-1= Cli + Co +1
0 ! + L +1
=Cci=+Cy=
Y6 22
For ¢4, cy. The solution is: ¢; = 0,¢c, = —2. Hence
ux)=-x2+x

A plot is



Plot[x-x"2, {x, 0, 1}, Frame » True, AspectRatio + Automatic,
FrameLabel - {{"u(x)", None}, {"x", "solution to u'""'(x)=0"}}]

solution to u™(x)=0
023 FT j : d ' i

Figure 12: Plot for 3.2.12

10 Problem 3.3.3

13

3.3.3 Discrete divergence theorem: Why is the flow across the “cut” in the figure equal to the
sum of the flows from the individual nodes 4.B,C.D? Note: This is true even if flows like
d, —dg from nodes like A are nonzero. If the current law holds and each node has zero net flow,
then the exercise says that the flow across every cut is zero.

Figure 13: the Problem statement
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11 Problem 3.3.4

3.3.4 Discrete Stokes theorem: Why is the voltage drop around the large triangle equal to
the sum of the drops around the small triangles? Note: This is true even if voltage drops like
d, +d, +dg around triangles like ABC are nonzero. If the voltage law holds and the drop
around each small triangle is zero, then the exercise says that d, +d, +d; +d, +ds +dg
=0.

Figure 14: the Problem statement

12 Problem 3.3.5

3.3.5 On a graph the analogue of the gradient is the edge-node incidence matrix A,. The
analogue of the curl is the loop-edge matrix R with a row for each independent loop and a
column for each edge. Draw a graph with four nodes and six directed edges, write down A,
and R, and confirm that R4, =0 in analogy with curl grad =0.

Figure 15: the Problem statement
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