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1 Problem 2.2.7

Figure 1: the Problem statement

The objective function is 1
2 ‖𝑑‖

2 where 𝑑 is the distance from origin the plane. Hence 𝑄�𝑦� =
1
2
�𝑦21 + 𝑦22 + 𝑦23�. The constraint 𝑅 = 𝑦1 + 2𝑦2 + 2𝑦3 − 18. Therefore, the Lagrangian is

𝐿 �𝑦, 𝑥� = 𝑄 �𝑦� + 𝑥𝑅

=
1
2
�𝑦21 + 𝑦22 + 𝑦23� + 𝑥 �𝑦1 + 2𝑦2 + 2𝑦3 − 18�

Now we set up the optimization problem

𝜕𝐿
𝜕𝑦1

= 𝑦1 + 𝑥 = 0

𝜕𝐿
𝜕𝑦2

= 𝑦2 + 2𝑥 = 0

𝜕𝐿
𝜕𝑦3

= 𝑦3 + 2𝑥 = 0

𝜕𝐿
𝜕𝑥

= 𝑦1 + 2𝑦2 + 2𝑦3 − 18

In Matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Comparing the above to the standard form given
⎛
⎜⎜⎜⎜⎝
𝐼 𝐴
𝐴𝑇 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
18

⎞
⎟⎟⎟⎟⎠

We see that 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Now we solve (1) using Gaussian elimination

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 2 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 2 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝑈 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Therefore 𝐿𝑐 = 𝑥 or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Hence 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑐4 = 18. Now solving 𝑈𝑥 = 𝑐
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence solution is Solution is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
4
4
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So the Lagrangian multiplier is 𝑥 = −2 . Now we can calculate the distance

𝑑 = �𝑦
2
1 + 𝑦22 + 𝑦23

= √22 + 42 + 42

= 6

2 Problem 2.2.8

Figure 2: the Problem statement

2.1 Part(i)

Let us assume that

𝑦 = 𝑘 × [1, 2, 2]

where 𝑘 is this multiple. This means 𝑦1 = 𝑘, 𝑦2 = 2𝑘, 𝑦2 = 2𝑘. In other words, the vector is

𝑦 = [𝑘, 2𝑘, 2𝑘]

But since the constraint is 𝑦1 + 2𝑦2 + 2𝑦3 = 18 this substituting the values of each 𝑦𝑖 in the constraint
gives

𝑘 + 2 (2𝑘) + 2 (2𝑘) = 18
9𝑘 = 18

Hence

𝑘 = 2

Using this 𝑘, the vector is

𝑦 = [𝑘, 2𝑘, 2𝑘]
= [2, 4, 4]

Hence the norm of the vector is

�𝑦� = �𝑦
2
1 + 𝑦22 + 𝑦23

= √22 + 42 + 42

= 6
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2.2 Part(ii)

Using

18 ≤ 3 �𝑦� (1)

�𝑦� ≥ 6

Therefore minimum length of 𝑦 must be 6.

In (1), 18 = 𝑓 from the equation 𝐴𝑇𝑦 = 𝑓 and 3 = ‖𝐴‖. This means the

𝑦𝑚𝑖𝑛 =
𝑓
‖𝐴‖

3 Problem 2.2.9

Figure 3: the Problem statement

The primal problem is minimization of 𝑄�𝑦� over 𝑦 (unconstrained optimization), and the dual

problem is maximization of −𝑃 (𝑥) over 𝑥. The minimum of 𝑄�𝑦� is the maximum of −𝑃 (𝑥). This is
the weak duality. In this problem, the point on the line must also be on a point on the plane since
the line is constrained to be on the plane.

So the distance to the plane can not be larger than the distance to the line. The distance to the
plane is represented by −𝑃 (𝑥) and the distance to the the line is represented by 𝑄�𝑦�. So this leads
to

−𝑃 (𝑥) ≤ 𝑄 �𝑦�

4 Problem 2.2.10

Figure 4: the Problem statement

The figure mentioned in the problem is
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Figure 5: figure mentioned in problem 2.2.10

To find distance to 𝑆, we need to solve

(distance to S)2 = min
𝑥
(𝐴𝑥 − 𝑏)𝑇 (𝐴𝑥 − 𝑏)

= min
𝑥

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑥 −

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑥 −

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= min
𝑥
(𝑥 − 10)2 + (2𝑥 − 15)2

= min
𝑥
5𝑥2 − 80𝑥 + 325

Hence 𝑑
𝑑𝑥
�5𝑥2 − 80𝑥 + 325� = 10𝑥 − 80 hence 𝑥 = 80

10 = 8. Therefore

𝐴𝑥 =
⎛
⎜⎜⎜⎜⎝
16
8

⎞
⎟⎟⎟⎟⎠

To find 𝑦 we need to solve

(distance to T)2 = min
𝐴𝑇𝑦=0

�𝑏 − 𝑦�2 = min
𝐴𝑇𝑦=0

𝑦𝑇𝑦 − 2𝑏𝑇𝑦 + 𝑏𝑇𝑏

= min
𝐴𝑇𝑦=0

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ − 2

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

= 𝑦21 − 30𝑦1 + 𝑦22 − 20𝑦2 + 325

Need to minimize the above subject to 𝐴𝑇𝑦 = 0 or �2 1�
⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ = 0, or 2𝑦1 + 𝑦2 = 0. Therefore, we

setup an optimization problem

𝐿 = 𝑄 + 𝑥𝑅

= 𝑦21 − 30𝑦1 + 𝑦22 − 20𝑦2 + 325 + 𝑥 �2𝑦1 + 𝑦2�

And
𝜕𝐿
𝜕𝑦1

= 2𝑦1 − 30 + 2𝑥 = 0

𝜕𝐿
𝜕𝑦2

= 2𝑦2 − 20 + 𝑥 = 0

𝜕𝐿
𝜕𝑥

= 2𝑦1 + 𝑦2 = 0

Hence
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2
0 2 1
2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30
20
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Solving gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑦 =
⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1
2

⎞
⎟⎟⎟⎟⎠

Since now we know the optimal 𝐴𝑥 and 𝑦, we can find the lengths.

‖𝐴𝑥‖ =
�
�

⎛
⎜⎜⎜⎜⎝
16
8

⎞
⎟⎟⎟⎟⎠
�
�
= 8√5

and

�𝑦� =
�
�

⎛
⎜⎜⎜⎜⎝
−1
2

⎞
⎟⎟⎟⎟⎠
�
�
= √5

and

‖𝑏‖ =
�
�

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠
�
�
= 5√13

Therefore

�8√5�
2
+ �√5�

2
= �5√13�

2

325 = 325

OK, verified.

5 Problem 2.2.16

Figure 6: the Problem statement

The constraint is 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚 = 1 and the objective function is 1
2 ‖𝑑‖

2 = 1
2
�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚�.

Hence

𝐿 =
1
2
�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚� + 𝑥 (𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 − 1)

Setting up

𝜕𝐿
𝜕𝑥1

= 𝑥1 + 𝑥 = 0

𝜕𝐿
𝜕𝑥2

= 𝑥2 + 𝑥 = 0

⋮
𝜕𝐿
𝜕𝑥𝑛

= 𝑥𝑛 + 𝑥 = 0

𝜕𝐿
𝜕𝑥

= 𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 − 1 = 0

Or in matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 1
0 1 0 ⋯ 1
0 0 1 ⋯ 1
0 0 ⋯ 1 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
⋮
𝑥𝑚
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Solving, for specific 𝑚 to be able to see the pattern gives for 𝑚 = 3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
1
3
1
3
− 1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So 𝑥𝑖 =
1
𝑚 so the distance is

�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚� =
�
𝑚�

1
𝑚�

2

= √𝑚

6 Problem 2.4.1

Figure 7: the Problem statement

Figure 2.10 is

Figure 8: Figure 2.10 in book

𝑚 is number of bars, and 𝑁 is number of nodes. Truss is stable if 𝑚 ≥ 2𝑁 − 𝑟 where 𝑟 is the number
of constraints. For determining rigid motion and mechanism, we need to solve 𝐴𝑥 = 0 and look at
the solutions.

𝑁 (nodes) 𝑚(bar) 𝑟 𝑛 = 2𝑁 − 𝑟 determinate? 𝑚 = 𝑛 indeterminate? 𝑚 > 𝑛 stable?

1 4 5 4 4 No yes stable

2 4 4 4 4 Yes No stable

3 4 3 4 4 No No mechanism

For case (3), since it is neither determinate nor indeterminate, we need to look at 𝐴𝑥 = 0. But it is
clear that the truss in (3) will not move as a rigid body, but will deform. It is not stable. The table
below summarizes the results.
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7 Problem 2.4.4

Figure 9: the Problem statement

1 2

3 4

y1

y2

y3

f 2H

f 2V External 
forces

Internal 
forces

N  4,m  3,r  4

f 1H

f 1V

Figure 10: Figure for problem 2.4.4

The 𝐴 matrix is found from 𝐴𝑇𝑦 = 𝑓. where 𝑓 is a column vector of length 4 since there are 2 nodal
forces, and each has 2 components. This represents a force at each node. So we first find 𝐴𝑇. To
do this, we resolve internal forces 𝑦 to balance the external nodal forces 𝑓. We assume there are
nodal forces only on nodes 1, 2 in the above diagram and that 𝑓3 = 𝑓4 = 0.

Clearly 𝑓1𝑉 = 𝑦1 to make forces balance in the vertical direction at node 1 and that 𝑓2𝑉 = 𝑦3 for
similar reason on node 2. On node 1, assuming 𝑦2 is in positive, so in tension, then −𝑓1𝐻 = 𝑦2 and
+𝑓2𝐻 = 𝑦2. If we had assumed 𝑦2 is in the negative direction then we will get same result but signs
reversed.

Therefore

𝑓1𝑉 = 𝑦1
𝑓2𝑉 = 𝑦3
𝑓1𝐻 = −𝑦2
𝑓2𝐻 = 𝑦2

Hence 𝐴𝑇𝑦 = 𝑓 becomes

𝐴𝑇

���������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1𝐻
𝑓1𝑉
𝑓2𝐻
𝑓2𝑉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−1 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix 𝐴 has rank 3 and the same for 𝐴𝑇. For 𝐴𝑇𝑦 = 𝑓 to have solution, then 𝑓 must be in the
column space of 𝐴𝑇. For solution, (equilibrium) we need ∑𝑓𝑖𝐻 = 0 and ∑𝑓𝑖𝑉 = 0 and moments
about a point zero.
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8 Problem 2.4.10

Figure 11: the Problem statement

Figure 12: Figure for problem 2.4.10

With the new truss as above, the number of bars 𝑚 = 7, and the number of nodes is 𝑁 = 5. The
number of constraints 𝑟 = 4 (two from each support). Hence

𝑛 = 2𝑁 − 𝑟
= 10 − 4
= 6

Therefore 𝑚 > 𝑛 and 𝐴 is not square. Hence not statically determinate.

9 Problem 2.4.11

Figure 13: the Problem statement

Work over the first bar, of say length 𝐿1 is

𝑊𝑖 = �𝜎1𝜖1𝑑𝑉

= �
𝑦1
𝐴1

𝑒1
𝐿1
𝐴1𝑑𝐿

= 𝑦1
𝑒1
𝐿1
�𝑑𝐿

= 𝑦1
𝑒1
𝐿1
𝐿1

= 𝑦1𝑒1
Therefore, the sum all the truss is 𝑦1𝑒1 + 𝑦2𝑒2 +⋯+ 𝑦𝑚𝑒𝑚 or

𝑊𝑡𝑜𝑡𝑎𝑙 = �𝑦1 𝑦2 ⋯ 𝑦𝑚�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒1
𝑒2
⋮
𝑒𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑦𝑇𝑒 (1)
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But

𝐴𝑇𝑦 = 𝑓

�𝐴𝑇𝑦�
𝑇
= 𝑓𝑇

𝑦𝑇𝐴 = 𝑓𝑇

𝑦𝑇 = 𝑓𝑇𝐴−1 (2)

Substituting (2) into (1) gives

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝐴−1𝑒 (3)

But

𝑒 = 𝐴𝑥

Hence (3) becomes

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝐴−1𝐴𝑥
= 𝑓𝑇𝑥

This is an expression of the work done by external forces at nodes. So this says the internal work
equals the external work.

10 Problem 2.4.12

Figure 14: the Problem statement

The potential energy is 𝑃 (𝑥) = 1
2𝑥

𝑇𝐴𝑇𝐶𝐴𝑥 − 𝑓𝑇𝑥. This is minimum at 𝐴𝑇𝐶𝐴𝑥 = 𝑓. Hence

𝑃min (𝑥) =
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥 − �𝐴𝑇𝐶𝐴𝑥�

𝑇
𝑥

=
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥 − 𝑥𝑇𝐴𝑇𝐶𝑇𝐴𝑥

But 𝐶 = 𝐶𝑇 since diagonal matrix, then

𝑃min (𝑥) = −
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥

−𝑃min (𝑥) =
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥

But strain energy is the quadratic term in 𝑃 (𝑥), which is 1
2𝑥

𝑇𝐴𝑇𝐶𝐴𝑥. Hence they are the same, which
is what we are asked to show.

11 Problem 2.4.17

Figure 15: the Problem statement
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If we have a bar 1, then the elongation is due to total motion of bar two nodes due to motion of all
bar attached as was shown on page 124 of the text, which is

𝑒1 = 𝑥1 cos𝜃1 − 𝑥3 cos𝜃1 + 𝑥2 sin𝜃1 − 𝑥4 sin𝜃1
The second bar 2 which could have one joint common with the bar 1, say (𝑥3, 𝑥4) displacement, will
then add to these when bar 2 itself deforms. Hence for bar 2 we have

𝑒2 = 𝑥5 cos𝜃2 − 𝑥3 cos𝜃2 + 𝑥6 sin𝜃2 − 𝑥4 sin𝜃2
Where in the above 𝑥3, 𝑥4 are kept the same as bar 1 since the joint is common. Now if bar 3 had
joint (𝑥1, 𝑥2) common with bar 1, it will have

𝑒3 = 𝑥1 cos𝜃3 − 𝑥7 cos𝜃3 + 𝑥2 sin𝜃3 − 𝑥8 sin𝜃3
When assembling the 𝐴𝑥 matrix the pattern given should result using trigonometric relations.
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