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1 Problem 2.2.7

2.2.7 How far is it from the origin (0,0, 0) to the plane y, + 2y, + 2y, = 18? Write this
constraint as Ay = 18, and solve for y in

UT ﬂ BHﬂ

Figure 1: the Problem statement

The objective function is %lldll2 where d is the distance from origin the plane. Hence Q(y) =

% (y% +y5+ yg) The constraint R = y; + 2y, + 2y3 — 18. Therefore, the Lagrangian is
L(y,x) = Q(y) + xR
1
=5 (v + 93 +93) + x (v + 292 + 295 - 18)

Now we set up the optimization problem
JdL

— =y;+x=0
8]/1 A1
8—y2=y2+2x=0
3_L_ +2x=0
ayS Y3

JdL
Sr T2ty -18

In Matrix form

100 1)(y;) (0
01 0 2 0
Y2 _ 1)
00 1 2|lys] |0
1 2 2 0J\x 18

Comparing the above to the standard form given

I A
AT 0

(-



1

We see that A =|2|. Now we solve (1) using Gaussian elimination

2
1 0 01 10
01 0 2 01
H
001 2 00
1 220 0 2
1 0 0 1 1 0
010 2 01
Hence U = and L =
0 01 2 0 0
0 0 0 -9 1 2
1
0
0
1

N m, O O
N —m O O

S~ O

= o O O

N = O O
o

o o o =
o O = O
N = O O
o O = O
o = O O

. Therefore Lc = x or

Hence ¢; =0,c; =0,c3 =0, ¢4 =18. Now solving Ux = ¢

Hence solution is Solution is:

So the Lagrangian multiplier is

o o o

o o =

n
2

Ys
X

€1 0
| |0
c3 1o
Cy 18
)1 0
Yaf_| 0
Y3 0
X 18

-2

. Now we can calculate the distance

d= i +y3+v5
=V22 442 +42

=6



2 Problem 2.2.8

2.28 The previous question brings together several parts of mathematics if you answer it
more than once:

(i) The vector y to the nearest point on the plane must be on the perpendicular ray.
Therefore y must be a multiple of (1, 2, 2). What multiple lies on the plane y, 4+ 2y, + 2y,
= 18? What is the length of this y?

(i) Since AT =[122] has length (1 + 4 +4)!/? =3, the Schwarz inequality for inner
products gives

ATy < |A] Iyl or 18<3jy].

What is the minimum possible length || y||? Conclusion: The distance to the plane A"y = is

LfI/NAL-

Figure 2: the Problem statement

2.1 Part(i)

Let us assume that
y=kx[1,2,2]
where k is this multiple. This means y; = k,y, = 2k, y, = 2k. In other words, the vector is
v = [k, 2k, 2k]
But since the constraint is y; + 2y, + 2y; = 18 this substituting the values of each y; in the constraint
gives
k+2(2k) +2(2k) =18
9k =18

Hence

Using this k, the vector is
v = [k, 2k, 2k]
=[2,4,4]

| = Vi +v3 + 3
NEEE

=6

Hence the norm of the vector is



2.2 Part(ii)

Using
18 <3y (1)
v = 6

Therefore minimum length of y must be 6.

In (1), 18 = f from the equation ATy = f and 3 = ||A||. This means the
in=-—-—
N V]

3 Problem 2.2.9

229 In the first example of duality—“the minimum distance to points equals the
maximum distance to planes”—how do you know immediately that maximum < minimum?
In other words explain weak duality: The distance to any plane through the line is not greater
than the distance to any point on the line.

Figure 3: the Problem statement

The primal problem is minimization of Q(y) over y (unconstrained optimization), and the dual

problem is maximization of —P (x) over x. The minimum of Q (y) is the maximum of —P (x). This is
the weak duality. In this problem, the point on the line must also be on a point on the plane since
the line is constrained to be on the plane.

So the distance to the plane can not be larger than the distance to the line. The distance to the plane
is represented by —P (x) and the distance to the the line is represented by Q (y) So this leads to

~P(x) < Q(y)

4 Problem 2.2.10

2.210 Ifb=(15, 10)in the geometry example of Fig. 2.4, what are the optimal Ax and y and
what are the lengths in | Ax|*+ ||y = b}*?

Figure 4: the Problem statement

The figure mentioned in the problem is



V2

T = all
vectors with

S
i) _ L0 1 b (;E.tﬂ
2 1 =0 g . AL
[ ][}';:l ot - A 2
il S = all multiples of[ :I
Ax 1

Fig. 2.4. Projection of b onto orthogonal subspaces § and T.

Figure 5: figure mentioned in problem 2.2.10

To find distance to S, we need to solve

(distance to S)2 = mxin (Ax - b)T (Ax-b)

T

((2)  (15)) ((2) (15
= min X — X —

<1 10)) |1 10
= min (x - 10)* + 2x — 15)°

X
= min 5x% - 80x + 325

X

Hence % (59(2 — 80x + 325) =10x — 80 hence x = % = 8. Therefore
Ax =
8
2
distance to T)? = min ||b - y||” = min vy — 267y + bTb
(di ) min, o -yl min y'y -2y

T T T
- min Y1 Y1 P 15 Y1 + 15 15
ATy=O yz yz 10 yz 10 10

=2 - 30y; + y2 — 20y, + 325

To find y we need to solve

Y1

Need to minimize the above subject to ATy =0 or (2 1)(
Y2

] =0, or 2y; +y, = 0. Therefore, we setup



an optimization problem

L=Q+xR
=42 - 30y; + y2 — 20y, + 325 + x (Zyl + yz)
And
ﬂ =2y -30+2x=0
Iy - te
oL _ 2 20+x=0
P - e
JdL
Sy - Wty=0
Hence
2 0 2)(wn 30
0 2 1||y|=|20
2 1 0)\«x 0
Solving gives
| (1
v2|=|2
x 16
Hence
y -1
y2) 2
Since now we know the optimal Ax and y, we can find the lengths.
16
1Ax]| = ( ] =8v5
8
and
-1
= = 5
=[5l -
and
15
bl = =5v13
1] ( . O) e
Therefore

(895) + (¥5) = (5vi3)

325 =325

OK, verified.



5 Problem 2.2.16

2.216. In m dimensions, how far is it from the origin to the hyperplane x, + x, + -

= 1? Which point on the plane is nearest to the origin?

Figure 6: the Problem statement

2 2

o .o T T R
The constraint is x; +x, +--- +x,,, = 1 and the objective function is > lldll” = >

1
L:E(x%+x%+~-+x$n)+x(x1+x2+-~+xm—1)

Setting up
JdL
8—x1:x1+x:0
dL
8_x2=x2+x=0
JdL
8xn:x"+x:0
JdL
—=x1+x+-+x,-1=0
dx

Or in matrix form
10 1) x
01 1] x
00 1 |=
0 0 1 1||xn :
11 1 1 0)\l«x 1

Solving, for specific m to be able to see the pattern gives for m = 3

1 0 0 1)(xy 0
01 0 1 Xy _ 0
0 0 1 1{|xs 0
1 1 1 0)\x 1
Solution is:

. 1

) 2z

1

X _ 5

=11

X3 g

1

) 73

et xﬁ) Hence



so the distance is

B

So| x; =

6 Problem 2.4.1

244 Write down m, N, r, and n for the three trusses in Fig. 2.10, and establish whic'h is
statically determinate, which is statically indeterminate, and which one has a mechanism.
Describe the mechanism (the uncontrolled deformation).

Figure 7: the Problem statement

Figure 2.10 is

Fig. 2.10. Trusses with m > n (indeterminate), m = n (determinate), m<n (unstable).

Figure 8: Figure 2.10 in book

m is number of bars, and N is number of nodes. Truss is stable if m > 2N — r where r is the number
of constraints. For determining rigid motion and mechanism, we need to solve Ax = 0 and look at
the solutions.

N (nodes) | m(bar) | r | n =2N —r | determinate? m = n | indeterminate? m > n stable?
4 5 4 4 No yes stable
4 4 4 4 Yes No stable
4 3 4 4 No No mechanism

For case (3), since it is neither determinate nor indeterminate, we need to look at Ax = 0. But it is
clear that the truss in (3) will not move as a rigid body, but will deform. It is not stable. The table
below summarizes the results.
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7 Problem 2.4.4

2.4.4 For the truss in Fig. 2.10c, write down the equations ATy =1 in three unknowns
V1, V2, Vs to balance the four external forces fy, fi7, f}, fi7. Under what condition on these
forces will the equations have a solution (allowing the truss to avoid collapse)?

Figure 9: the Problem statement

f

flV 2y External
forces

1CL>f1H Y2 12,

yl y3 Internal

forces

A A
N=4m=3,r=4

Figure 10: Figure for problem 2.4.4

The A matrix is found from ATy = f. where f is a column vector of length 4 since there are 2 nodal
forces, and each has 2 components. This represents a force at each node. So we first find A”. To do
this, we resolve internal forces y to balance the external nodal forces f. We assume there are nodal
forces only on nodes 1,2 in the above diagram and that f; = f, = 0.

Clearly fi, = y; to make forces balance in the vertical direction at node 1 and that f,;, = y; for
similar reason on node 2. On node 1, assuming y, is in positive, so in tension, then —f; = y, and
+fou = Y. If we had assumed y;, is in the negative direction then we will get same result but signs
reversed.

Therefore
fiv=m
fov=1ys3
fiw =2

for =12
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Hence ATy = f becomes

AT
—_—
0 -1 0 fin
10 o™ |fw
0o 1 ol |fum
o o 1) |f
Hence
0100
A=|-1 01 0
0 001

The matrix A has rank 3 and the same for AT. For ATy = f to have solution, then f must be in the
column space of A”. For solution, (equilibrium) we need Y, f;;; = 0 and Y, f;;; = 0 and moments about
a point zero.

8 Problem 2.4.10

2.410 If we create a new node in Fig. 2.10a where the diagonals cross, is the resulting truss
statically determinate or indeterminate?

Figure 11: the Problem statement

o\

Figure 12: Figure for problem 2.4.10
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With the new truss as above, the number of bars m = 7, and the number of nodes is N = 5. The
number of constraints r = 4 (two from each support). Hence

n=2N-vr
=10-4
=6

Therefore m > n and A is not square. Hence not statically determinate.

9 Problem 2.4.11

2.4.11 I[n continuum mechanics, work is the product of stress and strain integrated over the
structure: W = jcrs dV. If a bar has uniform stress ¢ = y/4 and uniform strain ¢ = ¢/L, show
by integrating over the volume of the bar that W = ye. Then the sum over all bars is W,
= yTe; show that this equals f”x.

Figure 13: the Problem statement

Work over the first bar, of say length L, is

Wi = f(71€1dv

Y1 €
= £L£24a,4L
AL

€1
=y;— | dL
ylLlf

=e

Therefore, the sum all the truss is yie; + yoer + -+ + Y8, OF

41
Wiotal = [1/1 Yo o ym] 6:2
Cm
=y'e (1)
But
Aly=f
(amy)' = 7
yrA=fr
y'=fra’ (2)

Substituting (2) into (1) gives
Wiotal = fTA_le (3)
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But
e=Ax
Hence (3) becomes
Wigtar = fTA™ Ax
= fTx
This is an expression of the work done by external forces at nodes. So this says the internal work
equals the external work.

10 Problem 2.4.12

2.4.12 At the equilibrium x = K™ 'f, show that the strain energy U (the quadratic term in P)
equals — P, and therefore U = Q,;,.

Figure 14: the Problem statement

1

The potential energy is P (x) = 7

xTATCAx - fTx. This is minimum at ATCAx = f. Hence
P (%) = %xTATCAx - (ATCAx)Tx
= %xTATCAx —xTATCT Ax
But C = CT since diagonal matrix, then
Py (%) = —%XTATCAX
~Ppin (¥) = %xTATCAx

But strain energy is the quadratic term in P (x), which is %xTATCAx. Hence they are the same, which
is what we are asked to show.
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11 Problem 2.4.17

2417 For networks, a typical row of ASCA, (say row 1) is described on page 92: The
diagonal entry is Zc;, including all edges into node 1, and each —¢; appears along the row. It
is in column k if edge i connects nodes 1 and k. (ATCA is the same with the grounded row
and column removed.) The problem is to describe 47CA, for trusses, and the idea is to put
together the special ALCA, found in the previous exercise (a 4 by 4 matrix for each bar).

(a) Suppose bar i goes at angle 0; from node 1 to node k. By assembling the AJCA, for
each bar, show how the 2 by 2 upper left corner of AJCA, contains

Tc;c0820;  Ze;cos b;sin b,
X ¢; cos B, sin 8, T¢;sin? 0,

(b) Where do those terms appear (with minus signs) in the first two rows? All rows of
ATCA, add to zero.

Figure 15: the Problem statement

If we have a bar 1, then the elongation is due to total motion of bar two nodes due to motion of all
bar attached as was shown on page 124 of the text, which is

e1 = X1 COS 61 — X3 COS 91 + Xp sin 91 — X4 sin 91

The second bar 2 which could have one joint common with the bar 1, say (x3,x4) displacement, will
then add to these when bar 2 itself deforms. Hence for bar 2 we have

ey = X508 05 — x3 Ccos O, + xgSin 0, — x4 5in 0,

Where in the above x3,x, are kept the same as bar 1 since the joint is common. Now if bar 3 had
joint (xq,x,) common with bar 1, it will have

e3 = X1 cos O3 — xy cos O3 + X, sin 03 — xg sin O3

When assembling the Ax matrix the pattern given should result using trigonometric relations.
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