HW1, EMA 521

by Nasser M. Abbasi

Problem 1

part a

The dimensions of A is $\frac{1}{L^{3}}$ (where L is the length dimension) and similarly for B. This makes the over expression $\frac{T}{T_{0}}$ dimensinless

part b

Let $q=\frac{T}{T_{0}}$ then for isolines it is required that $\nabla q \cdot \mathrm{ds}_{i}=0$ which implies

$$
\left(\frac{\partial q}{\partial x} i+\frac{\partial q}{\partial y} j\right) \cdot(\cos (\alpha) i+\sin (\alpha) j)=\left(\frac{\partial q}{\partial x} \cos (\alpha)+\frac{\partial q}{\partial y} \sin (\alpha)\right)=0
$$

The above simplifies to $\frac{\partial q}{\partial x}+\frac{\partial q}{\partial y} \tan (\alpha)=0$ or $\tan (\alpha)=-\frac{\frac{\partial q}{\partial x}}{\frac{\partial q}{\partial y}}$, but $\tan (\alpha)=\frac{\mathrm{dy}_{i}}{\mathrm{dx}}$, hence $\frac{\mathrm{dy}}{\mathrm{dx}}, \frac{\frac{\partial q}{\partial x}}{\frac{\partial q}{\partial y}}$. Now y_{i} is found by integration.

First the scalar field is evaluated for the constants given

$$
\begin{aligned}
& q=\left(A x^{2} y+B y^{2} x\right) ; \\
& q=q / .\{A \rightarrow 1, B \rightarrow 1\} \\
& x^{2} y+x y^{2}
\end{aligned}
$$

Now $\frac{\mathrm{dy}_{i}}{\mathrm{dx}}$ is found using the above definition

$$
\begin{aligned}
& d y i d x=-\frac{D[q, x]}{D[q, y]} \\
& -\frac{2 x y+y^{2}}{x^{2}+2 x y}
\end{aligned}
$$

y_{i} is found by integration

$$
\begin{aligned}
& \text { yi }=\text { Integrate [dyidx, } x] \\
& -y\left(\frac{\log [x]}{2}+\frac{3}{2} \log [x+2 y]\right)
\end{aligned}
$$

The lines where $\frac{T}{T_{0}}$ is constant is now plotted. The range used is $-1<\frac{T}{T_{0}}<1$ and similarly for x, y. The result is below.

20 Lines are used.

part d
The scalar field $\frac{T}{T_{0}}=x^{2} y+y^{2} x$ hence

$$
\left(x^{2} y+x y^{2}\right) / .\{x \rightarrow \sqrt{2}, y \rightarrow \sqrt{3}\} / / N
$$

7.70674

The above is dimensonless value that represents $\frac{T}{T_{0}}$ and without knowing T_{0} the temprature T can't be found.

part e

To find the slope along an arbitrary direction, the vector ds is found first. This comes from $\mathrm{ds}=v_{2}-v_{1}$ where $v_{1}=-2 i+3 j$ and $v_{2}=2 i-3 j$. Hence

$$
\begin{aligned}
\mathrm{ds} & =(2 i-3 j)-(-2 i+3 j) \\
& =4 i-6 j
\end{aligned}
$$

Therefore $\mathrm{ds}=\mathrm{dx} i+\mathrm{dy} j$ where $\mathrm{dx}=4$ and $\mathrm{dy}=-6$.
The length of $\mathrm{ds}=\sqrt{\mathrm{dx}^{2}+\mathrm{dy}^{2}}$. Now we can find $\cos (\alpha)=\frac{\mathrm{dx}}{\mathrm{ds}}$ and $\sin (\alpha)=\frac{\mathrm{dy}}{\mathrm{ds}}$. Therefore $e_{s}=\cos (\alpha) i+\sin (\alpha) j$.

$$
e_{s}=\cos (\alpha) i+\sin (\alpha) j
$$

The slope can be found using

$$
\begin{aligned}
\frac{\partial q}{\partial s} & =\nabla q \cdot e_{s} \\
& =\left(\frac{\partial q}{\partial x} i+\frac{\partial q}{\partial y} j\right) \cdot(\cos (\alpha) i+\sin (\alpha) j)
\end{aligned}
$$

The following shows the calculations

$$
\begin{aligned}
& \mathrm{v} 1=\{-2,3\} ; \\
& \mathrm{v} 2=\{2,-3\} ; \\
& \mathrm{ds}=\mathrm{v} 2-\mathrm{v} 1 \\
& \{4,-6\}
\end{aligned}
$$

```
ListLinePlot[{v1, v2}, Frame }->\mathrm{ True, ImageSize }->\mathrm{ 200,
    FrameLabel }->\mathrm{ {{y, None}, {x, "Line to find slope at"}}]
```


Unit vector along the line

$$
\begin{aligned}
& \text { es }=d s / \operatorname{Norm}[d s] \\
& \left\{\frac{2}{\sqrt{13}},-\frac{3}{\sqrt{13}}\right\}
\end{aligned}
$$

The temprature scalar field is

$$
\begin{aligned}
& q=\left(A x^{2} y+B y^{2} x\right) ; \\
& q=q / .\{A \rightarrow 1, B \rightarrow 1\} \\
& x^{2} y+x y^{2}
\end{aligned}
$$

The slope is

$$
\begin{aligned}
& \text { slope }=\{D[q, x], D[q, y]\} . e s \\
& -\frac{3\left(x^{2}+2 x y\right)}{\sqrt{13}}+\frac{2\left(2 x y+y^{2}\right)}{\sqrt{13}}
\end{aligned}
$$

Now this slope is evaluated at $x=1$ on the line ds. We first need to find the y coordinate at this location. Since we know 2 points on the line, we can find the equation of the line and solve for y

```
Clear[y, x, m, x1, y1];
m = (y2 - y1) / (x2-x1); (*slope of line*)
eq = y-y1 == m(x-x1)
y-y1 == (x-x1)(-y1+y2)
```

Now replace $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$ from the points we are given to find the equation of the line

```
\(\mathrm{eq}=\mathrm{eq} / .\left\{\mathrm{x} 1 \rightarrow \mathrm{v} 1[[1]], \mathrm{y} 1 \rightarrow \mathrm{v} 1[[2]], \mathrm{x} 2 \rightarrow \mathrm{v} 2[[1]], \mathrm{y}^{2} \rightarrow \mathrm{v} 2[[2]]\right\}\)
\(-3+y=-\frac{3}{2}(2+x)\)
```

Now that we have equation of the line, find y where $x=1$

```
ylocation = y /. First@Solve[eq / . x }->\mathrm{ 1, y]
- - 
```

Hence $x=1, y=-3 / 2$ and now the slope can be found

```
slope /. {x }->1,\textrm{y}->\textrm{ylocation}
```

$\frac{9}{2 \sqrt{13}}$

Hence the slope of the scalar field temprature along this line at the point $x=1, y=-1.5$ is

```
N[%]
1.24808
```

part f
The differential equation is found by solving $\frac{\mathrm{dy}_{i}}{\mathrm{dx}}=-\left(\frac{\frac{\partial q}{\partial y}}{\frac{\partial q}{\partial x}}\right)$

```
Clear[x, y, A, B];
q=(A x
q=q/. {A -> 1, B }->\mathrm{ 1}
x y y + x y 
```

$$
\begin{aligned}
& \mathrm{eq}=\mathrm{ym}^{\prime}[\mathrm{x}]=-\frac{\mathrm{D}[q, y]}{\mathrm{D}[q, x]} \\
& \mathrm{ym}^{\prime}[\mathrm{x}]=-\frac{x^{2}+2 \mathrm{xy}}{2 \mathrm{xy}+\mathrm{y}^{2}}
\end{aligned}
$$

The above represents the differential equation for the largest temprature change.

part g

y_{m} is replaced by $v(x) x$

$$
\begin{aligned}
& \text { eq }=\mathrm{eq} / .\left\{y \mathrm{~m}{ }^{\prime}[\mathrm{x}] \rightarrow \mathrm{D}[\mathrm{v}[\mathrm{x}] \mathrm{x}, \mathrm{x}], \mathrm{y} \rightarrow(\mathrm{v}[\mathrm{x}] \mathrm{x})\right\} \\
& \mathrm{v}[\mathrm{x}]+\mathrm{x} \mathrm{v}^{\prime}[\mathrm{x}]=-\frac{\mathrm{x}^{2}+2 \mathrm{x}^{2} v[\mathrm{x}]}{2 \mathrm{x}^{2} v[\mathrm{x}]+\mathrm{x}^{2} v[\mathrm{x}]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& v[x] / . \text { First@DSolve[eq, v[x], x]; } \\
& \text { eq }=v[x]==\% \\
& v[x]=\frac{e^{C[1]}-x-\sqrt{e^{2 C[1]}+2 e^{C[1]} x-3 x^{2}}}{2 x}
\end{aligned}
$$

Now replace $v(x)$ by y / x again in the above

```
eq = eq / . v [x] }->(y/x
\underline{y}}==\frac{\mp@subsup{e}{}{C[1]}-x-\sqrt{}{\mp@subsup{e}{}{2C[1]}+2\mp@subsup{e}{}{C[1]}x-3\mp@subsup{x}{}{2}}}{2x
```

Solve for the constant, so that all non-constant terms are on one side. This way we can obtain $f(x, y)=C$ expression

```
sol = C[1] /. First@Solve[eq, C[1]]
Log}[\frac{\mp@subsup{x}{}{2}+xy+\mp@subsup{y}{}{2}}{x+y}
```

Therefore $f\left(x, y_{m}\right)=\log \left[\frac{x^{2}+x y+y^{2}}{x+y}\right]=$ constant
part h

```
ContourPlot[sol, {x, -1, 1}, {y, -1, 1}, PlotLegends }->\mathrm{ Automatic,
    Contours }->\mathrm{ 20, PlotTheme }->\mathrm{ "Scientific", PlotRange }->\mathrm{ {-1, 1}, ImageSize }->\mathrm{ (300]
```


Problem 2

