Study notes, ECE 3343 EM, Northeastern Univ. Boston

Nasser M. Abbasi

3/20/93 Compiled on November 16, 2018 at 11:24am [public]

Abstract

these are course notes for EM 1, course taken at northeastern university in the winter of 1993

Contents

1 Maxwell equations			
	1.1	Maxwell time domain equations	1
		1.1.1 equation of continuity	1
	1.2	Maxwell integral form of time domain equations	1
	1.3	Relation of field to circuit quantities	2
	1.4	relations of a complex domain to time domain	2
	1.5	Maxwell equations in complex form	2

3

2 some relations

1 Maxwell equations

1.1 Maxwell time domain equations

$$-\nabla \times \overline{\mathcal{E}} = \frac{\partial \overline{\mathcal{B}}}{\partial t} + \overline{\mathcal{M}}^{i}$$
$$\nabla \times \overline{\mathcal{H}} = \frac{\partial \overline{\mathcal{D}}}{\partial t} + \overline{\mathcal{J}}^{c} + \overline{\mathcal{J}}^{i}$$
$$\nabla \cdot \overline{\mathcal{B}} = 0$$
$$\nabla \cdot \overline{\mathcal{D}} = q$$

1.1.1 equation of continuity

$$\nabla \cdot \overline{\mathcal{J}} = -\frac{\partial q_v}{\partial t}$$

1.2 Maxwell integral form of time domain equations

$$\begin{split} \oint \overline{\mathcal{E}} \cdot d\mathbf{l} &= -\frac{d}{dt} \iint \overline{\mathcal{B}} \cdot d\mathbf{s} \\ \oint \overline{\mathcal{H}} \cdot d\mathbf{l} &= \frac{d}{dt} \iint \overline{\mathcal{D}} \cdot d\mathbf{s} + \iint \overline{\mathcal{J}} \cdot d\mathbf{s} \\ \iint \overline{\mathcal{B}} \cdot d\mathbf{s} &= 0 \\ \iint \overline{\mathcal{D}} \cdot d\mathbf{s} &= \iiint q_{\upsilon} d_{\tau} \end{split}$$

1.3 Relation of field to circuit quantities

v (voltage in volts)	=	$\int \overline{\mathcal{E}} \cdot d\mathbf{l}$
<i>i</i> (current in amp)	=	$\iint \overline{\mathcal{J}} \cdot d\mathbf{s}$
q (chan rge in coulombs)	=	$\iiint q_v d_{ au}$
$\psi \left(\text{magnetic flux in weber} \right)$	=	$\iint \overline{\mathcal{B}} \cdot d\mathbf{s}$
ψ^e (electric flux in coulombs)	=	$\iint \overline{\mathcal{D}} \cdot d\mathbf{s}$
<i>u</i> (magnetomotive force in amp)	=	$\int \overline{\mathcal{H}} \cdot d\mathbf{s}$

1.4 relations of a complex domain to time domain

$$\overline{\mathcal{A}} = \sqrt{2}Re\left(\mathbf{A}e^{j\omega t}\right)$$

1.5 Maxwell equations in complex form

$$-\nabla \times \mathbf{E} = j\omega \widehat{\mu}(\omega) \mathbf{H} + \mathbf{M}^{i} = \widehat{z}(\omega) \mathbf{H} + \mathbf{M}^{i}$$

$$\nabla \times \mathbf{B} = j\omega\widehat{\epsilon}(\omega)\mathbf{E} + \mathbf{J}^{c} = j\omega\widehat{\epsilon}(\omega)\mathbf{E} + \widehat{\sigma}(\omega)\mathbf{E} = (j\omega\widehat{\epsilon}(\omega) + \widehat{\sigma}(\omega))\mathbf{E} = \widehat{y}(\omega)\mathbf{E}$$

in free space

$$\widehat{y}(\omega) = j\omega\epsilon_o$$
$$\widehat{z}(\omega) = j\omega\mu_o$$

for all frequencies and all field intensities.

for non-magnetic metals

$$\widehat{y}(\omega) = \sigma + j\omega\epsilon_o$$
$$\widehat{z}(\omega) = j\omega\mu_o$$

in ferromagnetic metals

 $\widehat{y}(\omega) = \sigma + j\omega\widehat{\epsilon}$ $\widehat{z}(\omega) = j\omega\widehat{\mu}$

in good dielectric (nonmagnetic dielectric)

$$\widehat{y}(\omega) = j\omega\widehat{\epsilon}$$
$$\widehat{z}(\omega) = j\omega\mu_{o}$$

where

$$\widehat{\epsilon}(\omega) = \epsilon^{'} - j\epsilon^{''} = |\widehat{\epsilon}| e^{-j\delta}$$

where ϵ' called a-c capacitivity, ϵ'' called dielectric loss factor, δ called dielectric loss angle. and

$$\widehat{\mu}(\omega) = \mu^{'} - j\mu^{''} = |\widehat{\mu}| \ e^{-j\delta_{m}}$$

where $\mu^{'}$ called a-c inductivity, $\mu^{''}$ called magnetic loss factor, δ_m called magnetic loss angle.

2 some relations

where K is the <u>wave number</u>

$$k = k' - jk''$$
$$k = \sqrt{-\widehat{z}\widehat{y}}$$

and

$$\eta = \mathcal{R} + j \mathcal{X}$$

where η is the intrinisc impedence. for air

$$k = \omega \sqrt{\mu \epsilon}$$
$$\eta = \sqrt{\frac{\mu}{\epsilon}}$$

speed of light

$$c = \frac{1}{\sqrt{\epsilon_o \mu_o}} = 3 \times 10^8 m/s$$

 $\underline{\text{wave impedence}}$, is the ratio of components of E to components of H

interinsic wave length $\lambda = \frac{2\pi}{k}$