Study notes, ECE 3343 EM, Northeastern Univ. Boston

Nasser M. Abbasi

3/20/93
Compiled on November 16, 2018 at 11:25am
[public]

Abstract

these are course notes for EM 1, course taken at northeastern univeristy in the winter of 1993

Contents

1 Maxwell equations 1
1.1 Maxwell time domain equations . 1
1.1.1 equation of continuity . 2
1.2 Maxwell integral form of time domain equations 2
1.3 Relation of field to circuit quantities . 2
1.4 relations of a complex domain to time domain 2
1.5 Maxwell equations in complex form . 3

2 some relations 3

1 Maxwell equations

1.1 Maxwell time domain equations

$$
\begin{aligned}
& -\nabla \times \overline{\mathcal{E}}=\frac{\partial \overline{\mathcal{I}}}{\partial t}+\overline{\mathcal{M}}^{i} \\
& \nabla \times \overline{\mathcal{H}}=\frac{\partial \overline{\mathcal{D}}}{\partial t}+\overline{\mathcal{J}}^{c}+\overline{\mathcal{J}}^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \overline{\mathcal{B}}=0 \\
& \nabla \cdot \overline{\mathcal{D}}=q
\end{aligned}
$$

1.1.1 equation of continuity
$\nabla \cdot \overline{\mathcal{J}}=-\frac{\partial q_{v}}{\partial t}$

1.2 Maxwell integral form of time domain equations

$$
\begin{array}{ll}
\oint \overline{\mathcal{E}} \cdot d \mathbf{l} & =-\frac{d}{d t} \iint \overline{\mathcal{B}} \cdot d \mathbf{s} \\
\oint \overline{\mathcal{H}} \cdot d \mathbf{l} & =\frac{d}{d t} \iint \overline{\mathcal{D}} \cdot d \mathbf{s}+\iint \overline{\mathcal{J}} \cdot d \mathbf{s} \\
\iint \overline{\mathcal{B}} \cdot d \mathbf{s} & =0 \\
\iint \overline{\mathcal{D}} \cdot d \mathbf{s} & =\iiint q_{v} d_{\tau}
\end{array}
$$

1.3 Relation of field to circuit quantities

$$
\begin{array}{ll}
v(\text { voltage in volts }) & =\int \overline{\mathcal{E}} \cdot d \mathbf{l} \\
i \text { (current in amp) } & =\iint \overline{\mathcal{J}} \cdot d \mathbf{s} \\
q \text { (chanrge in coulombs) } & =\iiint q_{v} d_{\tau} \\
\psi(\text { magnetic flux in weber }) & =\iint \overline{\mathcal{B}} \cdot d \mathbf{s} \\
\psi^{e}(\text { electric flux in coulombs }) & =\iint \overline{\mathcal{D}} \cdot d \mathbf{s} \\
u(\text { magnetomotive force in amp }) & =\int \overline{\mathcal{H}} \cdot d \mathbf{s}
\end{array}
$$

1.4 relations of a complex domain to time domain

$$
\overline{\mathcal{A}}=\sqrt{2} \operatorname{Re}\left(\mathrm{~A} e^{j \omega t}\right)
$$

1.5 Maxwell equations in complex form

$$
\begin{aligned}
-\nabla \times \mathbf{E} & =j \omega \widehat{\mu}(\omega) \mathbf{H}+\mathbf{M}^{i}=\widehat{z}(\omega) \mathbf{H}+\mathbf{M}^{i} \\
\nabla \times \mathbf{B} & =j \omega \widehat{\epsilon}(\omega) \mathbf{E}+\mathbf{J}^{c}=j \omega \widehat{\epsilon}(\omega) \mathbf{E}+\widehat{\sigma}(\omega) \mathbf{E}=(j \omega \widehat{\epsilon}(\omega)+\widehat{\sigma}(\omega)) \mathbf{E}=\widehat{y}(\omega) \mathbf{E}
\end{aligned}
$$

in free space

$$
\begin{aligned}
& \widehat{y}(\omega)=j \omega \epsilon_{o} \\
& \widehat{z}(\omega)=j \omega \mu_{o}
\end{aligned}
$$

for all frequencies and all field intensities. for non-magnetic metals

$$
\begin{gathered}
\widehat{y}(\omega)=\sigma+j \omega \epsilon_{o} \\
\widehat{z}(\omega)=j \omega \mu_{o}
\end{gathered}
$$

in ferromagnetic metals

$$
\begin{gathered}
\widehat{y}(\omega)=\sigma+j \omega \widehat{\epsilon} \\
\widehat{z}(\omega)=j \omega \widehat{\mu}
\end{gathered}
$$

in good dielectric (nonmagnetic dielectric)

$$
\begin{aligned}
& \widehat{y}(\omega)=j \omega \widehat{\epsilon} \\
& \widehat{z}(\omega)=j \omega \mu_{o}
\end{aligned}
$$

where

$$
\widehat{\epsilon}(\omega)=\epsilon^{\prime}-j \epsilon^{\prime \prime}=|\widehat{\epsilon}| e^{-j \delta}
$$

where ϵ^{\prime} called a-c capacitivity, $\epsilon^{\prime \prime}$ called dielectric loss factor, δ called dielectric loss angle. and

$$
\widehat{\mu}(\omega)=\mu^{\prime}-j \mu^{\prime \prime}=|\widehat{\mu}| e^{-j \delta_{m}}
$$

where μ^{\prime} called a-c inductitvity, $\mu^{\prime \prime}$ called magnetic loss factor, δ_{m} called magnetic loss angle.

2 some relations

$$
k=k^{\prime}-j k^{\prime \prime}
$$

where K is the wave number

$$
k=\sqrt{-\widehat{z} \widehat{y}}
$$

and

$$
\eta=\mathcal{R}+j \mathcal{X}
$$

where η is the intrinisc impedence. for air

$$
\begin{gathered}
k=\omega \sqrt{\mu \epsilon} \\
\eta=\sqrt{\frac{\mu}{\epsilon}}
\end{gathered}
$$

$\underline{\text { speed of light }}$

$$
c=\frac{1}{\sqrt{\epsilon_{o} \mu_{o}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

wave impedence, is the ratio of components of \mathbf{E} to components of \mathbf{H} interinsic wave length $\lambda=\frac{2 \pi}{k}$

