Final exam, ECE 3341 Stochastic processes, Northeastern Univ. Boston

Nasser M. Abbasi

Contents

1 problem 1	1

3 problem 3 5

| 4 problem 4 |
| :--- | :--- |

5 problem 5 11

6 problem 6 14

7 problem 7 15

1 problem 1

part a

$$
\begin{aligned}
\mu_{Y}(n) & =E\left[Y_{n}\right] \\
& =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E\left[X_{i}\right]
\end{aligned}
$$

but $E\left[X_{i}\right]=1 \cdot P\left\{X_{i}=1\right\}+0 \cdot P\left\{X_{i}=0\right\}=p$

$$
\begin{aligned}
\mu_{Y}(n) & =\sum_{i=1}^{n} p \\
& =n p
\end{aligned}
$$

SO

$$
\mu_{Y}(n)=n \mathrm{n}
$$

I'll find now a general expressing for $E\left[Y_{m} Y_{n}\right]$ that I need to use in this problem.

$$
\begin{aligned}
Y_{m} Y_{n} & =\left(\sum_{j=1}^{m} X_{j}\right)\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\left(X_{1}+X_{2}+\cdots+X_{m}\right)\left(X_{1}+X_{2}+\cdots+X_{n}\right) \\
& =X_{1} X_{1}+X_{1} X_{2}+\cdots+X_{1} X_{n} \\
& +X_{2} X_{1}+X_{2} X_{2}+\cdots+X_{2} X_{n} \\
& +X_{3} X_{1}+X_{3} X_{2}+\cdots+X_{3} X_{n} \\
& +\cdots \\
& +X_{m} X_{1}+X_{m} X_{2}+\cdots+X_{m} X_{n}
\end{aligned}
$$

so, there are m rows, and n columns. also note that $E\left[X_{i} X_{i}\right]=E\left[X_{i}^{2}\right]=0 \cdot(1-p)+1^{2} \cdot p=p$
and since $X_{1}, X_{2}, X_{3}, \cdots$ are all independent with each others. then $E\left[X_{i} X_{j}\right]=E\left[X_{i}\right] E\left[X_{j}\right]=$ $p \cdot p=p^{2}$
now, if $m<n$ then there are m pairs of $X_{i} X_{i}$ and there are $(m \cdot(n-1))$.
if $n<m$, then are n pairs of $X_{i} X_{i}$ and there are $(n \cdot(m-1))$.
so, the general case is then

$$
\mathrm{E}\left[Y_{m} Y_{n}\right]=\min (m, n)(\max (m, n)-1) \mathrm{p}+\min (m, n) \mathrm{p}^{2}
$$

i.e. if

$$
\mathrm{m}<\mathrm{n} \Rightarrow \mathrm{E}\left[Y_{m} Y_{n}\right]=\mathrm{m}(n-1) \mathrm{p}+\mathrm{mp}^{2}
$$

if

$$
\mathrm{m}>\mathrm{n} \Rightarrow \mathrm{E}\left[Y_{m} Y_{n}\right]=\mathrm{n}(m-1) \mathrm{p}+\mathrm{np}^{2}
$$

when

$$
\mathrm{m}=\mathrm{n} \Rightarrow \mathrm{E}\left[Y_{n} Y_{n}\right]=\mathrm{E}\left[Y_{n}^{2}\right]=\mathrm{n}(n-1) \mathrm{p}+\mathrm{np}^{2}
$$

now,

$$
\begin{aligned}
\sigma_{Y}^{2}(n) & =E\left[Y_{n}^{2}\right]-E^{2}\left[Y_{n}\right] \\
& =n(n-1) p+n p^{2}-(n p)^{2}
\end{aligned}
$$

SO

$$
\begin{aligned}
\sigma_{Y}^{2}(n) & =n(n-1) p+n p^{2}-n^{2} p^{2} \\
= & n(n-1) p+n p^{2}(1-n) \\
= & (n-1)\left(n p-n p^{2}\right) \\
& =n p(n-1)(1-p)
\end{aligned}
$$

SO

$$
\sigma_{Y}^{2}(n)=\operatorname{np}(n-1)(1-p)
$$

part b

$$
\begin{aligned}
K_{Y}(m, n) & =E\left[Y_{m} X_{n}^{*}\right]-\mu_{Y}(m) \mu_{X}(n) \\
& =\min (m, n)(\max (m, n)-1) p+\min (m, n) p^{2}-(m p)(n p)
\end{aligned}
$$

SO

$$
K_{Y}(m, n)=\min (m, n)(\max (m, n)-1) p+\min (m, n) p^{2}-m n p
$$

i.e.

$$
\begin{gathered}
m<n \Rightarrow K_{Y}(m, n)=m(n-1) p+m p^{2}-m n p=m p(p-1) \\
n<m \Rightarrow K_{Y}(m, n)=n(m-1) p+n p^{2}-m n p=n p(p-1)
\end{gathered}
$$

so

$$
\mathrm{K}_{Y}(m, n)=\min (m, n) \mathrm{p}(p-1)
$$

part c

$$
\begin{aligned}
\sigma_{A}^{2} & =E\left[A^{2}\right]-E^{2}[A] \\
& =E\left[\left(Y_{m}-Y_{n}\right)^{2}\right]-E^{2}\left[Y_{m}-Y_{n}\right] \\
& =E\left[Y_{m}^{2}+Y_{n}^{2}-2 Y_{m} Y_{n}\right]-\left(E\left[Y_{m}\right]-E\left[Y_{n}\right]\right)^{2} \\
& =E\left[Y_{m}^{2}\right]+E\left[Y_{n}^{2}\right]-2 E\left[Y_{m} Y_{n}\right]-\left(E^{2}\left[Y_{m}\right]+E^{2}\left[Y_{n}\right]-2 E\left[Y_{m}\right] E\left[Y_{n}\right]\right) \\
& =E\left[Y_{m}^{2}\right]+E\left[Y_{n}^{2}\right]-2 E\left[Y_{m} Y_{n}\right]-E^{2}\left[Y_{m}\right]-E^{2}\left[Y_{n}\right]+2 E\left[Y_{m}\right] E\left[Y_{n}\right] \\
& =\left(E\left[Y_{m}^{2}\right]-E^{2}\left[Y_{m}\right]\right)+\left(E\left[Y_{n}^{2}\right]-E^{2}\left[Y_{n}\right]\right)-2 E\left[Y_{m} Y_{n}\right]+2 E\left[Y_{m}\right] E\left[Y_{n}\right] \\
& =\sigma_{y}^{2}(m)+\sigma_{y}^{2}(n)-2 E\left[Y_{m} Y_{n}\right]+2 E\left[Y_{m}\right] E\left[Y_{n}\right]
\end{aligned}
$$

now, since X_{i} are all independent with each others, then $E\left[Y_{m} Y_{n}\right]=E\left[Y_{m}\right] E\left[Y_{n}\right]$, only if $E\left[X_{i}\right] E\left[X_{i}\right]=E\left[X_{i} X_{i}\right]$
for all i. $E\left[X_{i}\right] E\left[X_{i}\right]=p^{2}$ and $E\left[X_{i} X_{i}\right]=p$, so Y_{m} a nd Y_{n} are not independent with each others even though X_{i}, X_{j} are. so the general expression becomes:
$\sigma_{A}^{2}=n p(n-1)(1-p)+m p(m-1)(1-p)-2\left[\min (m, n)(\max (m, n)-1) p+\min (m, n) p^{2}\right]+$ $2 n m p^{2}$
so

$$
\begin{aligned}
m<n \Rightarrow & \sigma_{A}^{2}=n p(n-1)(1-p)+m p(m-1)(1-p)-2\left[m(n-1) p+m p^{2}\right]+2 n m p^{2} \\
& =n^{2}\left(p-p^{2}\right)+n\left(p^{2}-p\right)+m^{2}\left(p-p^{2}\right)+m\left(p-p^{2}\right)+2 n m\left(p^{2}-p\right)
\end{aligned}
$$

and

$$
\begin{aligned}
n<m & \Rightarrow \sigma_{A}^{2}=n p(n-1)(1-p)+m p(m-1)(1-p)-2\left[n(m-1) p+n p^{2}\right]+2 n m p^{2} \\
& =n^{2}\left(p-p^{2}\right)+n\left(p-p^{2}\right)+m^{2}\left(p-p^{2}\right)+m\left(p^{2}-p\right)+2 n m\left(p^{2}-p\right)
\end{aligned}
$$

and

$$
n=m \Rightarrow \sigma_{A}^{2}=0
$$

I can simplify this more by writing

$$
\gamma=p-p^{2}
$$

$$
m<n \Rightarrow \sigma_{A}^{2}=n^{2} \gamma-n \gamma+\gamma m^{2}-\gamma m+2 \gamma n m
$$

and

$$
n<m \Rightarrow \sigma_{A}^{2}=\gamma n^{2}+\gamma n+\gamma m^{2}+\gamma m+2 \gamma n m
$$

so, finally

$$
\mathrm{m}<\mathrm{n} \Rightarrow \sigma_{A}^{2}=\gamma\left(n^{2}+m^{2}+2 n m\right)-\gamma(n+m)
$$

and

$$
\mathrm{n}<\mathrm{m} \Rightarrow \sigma_{A}^{2}=\gamma\left(n^{2}+m^{2}+2 n m\right)+\gamma(n+m)
$$

where

$$
\gamma=p-p^{2}
$$

2 problem 2

$$
\begin{aligned}
& R_{X}(l)=5 \delta(l) \\
& S_{X}(\omega)=5 \\
& S_{Y}(\omega)=5 \\
& R_{X, Y}(l)=2 \delta(l) \\
& S_{X Y}(\omega)=2 \\
& h_{1}(n)=u(n+2)-u(n-3)=\{1,1,1,1,1\} \\
& H_{1}(j \omega)=\frac{\sin \left(\frac{5}{2} \omega\right)}{\sin \left(\frac{\omega}{2}\right)} \\
& h_{2}(n)=[2-|n|] h_{1}(n)=\{1,2,1\} \\
& H_{2}(j \omega)=2(1+\cos \omega) \\
& h_{3}(n)=\left(\frac{1}{2}\right)^{|n|}=\left\{\cdots, \frac{1}{4}, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{4}, \cdots\right\} \\
& H_{3}(j \omega)=\frac{1-\left(\frac{1}{2}\right)^{2}}{1-2 \frac{1}{2} \cos \omega+\left(\frac{1}{2}\right)^{2}}=\frac{\frac{3}{4}}{\frac{3}{2}-\cos \omega}=\frac{3}{6-4 \cos \omega} \\
& R_{U}(l)=R_{X}(l) * h_{1}(l) * h_{3}(l) * h_{1}^{*}(-l) * h_{3}^{*}(-l) \\
& + \\
& R_{Y}(l) * h_{2}(l) * h_{3}(l) * h_{2}^{*}(-l) * h_{3}^{*}(-l) \\
& + \\
& R_{X Y}(l) * h_{3}(l) * h_{3}^{*}(-l) \\
& S_{U}(\omega)=S_{X}(\omega)\left|H_{1}(j \omega)\right|^{2}\left|H_{3}(j \omega)\right|^{2} \\
& + \\
& S_{Y}(\omega)\left|H_{2}(j \omega)\right|^{2}\left|H_{3}(j \omega)\right|^{2} \\
& S_{X Y}(\omega)\left|H_{3}(j \omega)\right|^{2} \\
& =5\left|\frac{\sin \left(\frac{5}{2} \omega\right)}{\sin \left(\frac{\omega}{2}\right)}\right|^{2}\left|\frac{3}{6-4 \cos \omega}\right|^{2} \\
& 5|2(1+\cos \omega)|^{2}\left|\frac{3}{6-4 \cos \omega}\right|^{2} \\
& + \\
& 2\left|\frac{3}{6-4 \cos \omega}\right|^{2}
\end{aligned}
$$

$$
S_{U}(\omega)=5\left|\frac{\sin \left(\frac{5}{2} \omega\right)}{\sin \left(\frac{\omega}{2}\right)}\right|^{2}\left|\frac{3}{6-4 \cos \omega}\right|^{2}+5|2(1+\cos \omega)|^{2}\left|\frac{3}{6-4 \cos \omega}\right|^{2}+2\left|\frac{3}{6-4 \cos \omega}\right|^{2}
$$

SO

$$
S_{U}(\omega)=-\frac{9}{4} \frac{57+80 \cos (\omega)+20 \cos (3 \omega)+40 \cos (2 \omega)+10 \cos (4 \omega)}{-2 \cos (2 \omega)+12 \cos (\omega)-11}
$$

3 problem 3

part a

let the time average of X_{n} be \widehat{M}, where

$$
\widehat{M} \equiv \frac{1}{N} \sum_{n=1}^{N} X_{n} \quad 0 \leq n<\infty
$$

the mean of \widehat{M} is the ensemble mean of process X_{n}, i.e.

$$
E[\widehat{M}]=E\left[X_{n}\right]=\mu_{X}
$$

so, if the variance of \widehat{M} is small, then we can say that the time average of R.P. X_{n} converges to the ensemble average of X_{n}. that is, we say that X_{n} is ergodic in the mean.
so, the condition I need to look for is to see if the variance of \widehat{M} goes to zero as N goes very large.
i.e. if

$$
\lim _{N \nearrow \infty} \sigma_{\widehat{M}}^{2} \longrightarrow 0
$$

then X_{n} is ergodic in the mean.
since \widehat{M} is a random variable, the convergence above is in the mean square sense.
Now, I find expression to this condition:

$$
\begin{aligned}
\sigma_{\widehat{M}}^{2} & =E\left[|\widehat{M}-E[\widehat{M}]|^{2}\right] \\
& =E\left[\left|\widehat{M}-\mu_{X}\right|^{2}\right]
\end{aligned}
$$

but

$$
\widehat{M}-\mu_{X}=\left(\frac{1}{N} \sum_{n=1}^{N} X_{n}\right)-\mu_{X}
$$

but

$$
\begin{aligned}
\frac{1}{N} \sum_{n=1}^{N} X_{n} & =\frac{1}{N}\left(X_{1}+X_{2}+X_{3}+\cdots+X_{N}+\left(N \cdot \mu_{X}-N \cdot \mu_{X}\right)\right) \\
& =\frac{1}{N}\left(\left(X_{1}-\mu_{X}\right)+\left(X_{2}-\mu_{X}\right)+\cdots+\left(X_{N}-\mu_{X}\right)+\left(N \cdot \mu_{X}\right)\right) \\
& =\frac{1}{N}\left(\left(X_{1}-\mu_{X}\right)+\left(X_{2}-\mu_{X}\right)+\cdots+\left(X_{N}-\mu_{X}\right)\right)+\mu_{X} \\
& =\left(\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu_{X}\right)+\mu_{X}
\end{aligned}
$$

so, substitute the above in equation (2) we get:

$$
\widehat{M}-\mu_{X}=\left(\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu_{X}\right)+\mu_{X}-\mu_{X}=\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu_{X}
$$

so

$$
\begin{aligned}
\sigma_{\widehat{M}}^{2} & =E\left[\left|\widehat{M}-\mu_{X}\right|^{2}\right] \\
& =E\left[\left|\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu_{X}\right|^{2}\right] \\
& =\frac{1}{N^{2}} E\left[\left|\sum_{n=1}^{N} X_{n}-\mu_{X}\right|^{2}\right] \\
& =\frac{1}{N^{2}} E\left[\sum_{n_{1}=1, n_{2}=1}^{N}\left(X_{n_{1}}-\mu_{X}\right)\left(X_{n_{2}}-\mu_{X}\right)^{*}\right] \\
& =\frac{1}{N^{2}} \sum_{n_{1}, n_{2}=1}^{N} E\left[\left(X_{n_{1}}-\mu_{X}\right)\left(X_{n_{2}}^{*}-\mu_{X}\right)\right]
\end{aligned}
$$

since M.S. limit and $E[\cdot]$ operator can commute. so:

$$
\sigma_{\widehat{M}}^{2}=\frac{1}{N^{2}} \sum_{n_{1}, n_{2}=1}^{N} K_{X}\left(n_{1}-n_{2}\right)
$$

since the process is stationary.
so my condition can be stated as

$$
\lim _{N \rightarrow>\infty} \sigma_{\widehat{M}}^{2}=\lim _{N->\infty} \frac{1}{N^{2}} \sum_{\substack{n_{1}=1 \\ n_{2}=1}}^{N} K_{X}\left(n_{1}-n_{2}\right) \longrightarrow 0
$$

so, if the above goes to zero in the limit as indicated, then one can say that X_{n} is M.S. ergodic in the mean.

This in addition to the condition stated above, that

$$
\mathrm{E}[\widehat{M}] \equiv \mathrm{E}\left[\frac{1}{N} \sum_{n}=1^{N} X_{n}\right]=\mathrm{E}\left[X_{n}\right]
$$

To simplify the condition in equation (3) above:
I need to find the sum $\sum_{\substack{n_{1}=1 \\ n_{2}=1}}^{N} K_{X}\left[n_{1}-n_{2}\right]$
fix $n_{2}=1$,then partial sum $=K_{X}[1-1]+K_{X}[2-1]+K_{X}[3-1]+\cdots+K_{X}[N-1]$
fix $n_{2}=2$,then partial sum $=K_{X}[1-2]+K_{X}[2-2]+K_{X}[3-2]+\cdots+K_{X}[N-2]$
fix $n_{2}=3$,then partial sum $=K_{X}[1-3]+K_{X}[2-3]+K_{X}[3-3]+\cdots+K_{X}[N-3]$
fix $n_{2}=N$,then partial sum $=K_{X}[1-N]+K_{X}[2-N]+K_{X}[3-N]+\cdots+K_{X}[N-N]$
so, the above total sum is
$\left(K_{X}[0]+K_{X}[1]+K_{X}[2]+\cdots+K_{X}[N-1]\right)+\left(K_{X}[-1]+K_{X}[0]+K_{X}[1]+\cdots+K_{X}[N-2]\right)+$ $\ldots\left(K_{X}[1-N]+K_{X}[2-N]+K_{X}[3-N]+\cdots+K_{X}[0]\right)$
so $\sum_{\substack{n_{1}=1 \\ n_{2}=1}}^{N} K_{X}\left[n_{1}-n_{2}\right]=N \cdot K_{X}[0]+(N-1)\left(K_{X}[1]+K_{X}[-1]\right)+(N-2)\left(K_{X}[-2]+K_{X}[2]\right)+$
$(N-3)\left(K_{X}[-3]+K_{X}[3]\right)+\cdots+(1)\left(K_{X}[-(N-1)]+K_{X}[N-1]\right)$
so

$$
\frac{1}{N^{2}} \sum_{\substack{n_{1}=1 \\ n_{2}=1}}^{N} K_{X}\left[n_{1}-n_{2}\right]=\frac{1}{N} \sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) K_{X}[n]
$$

4 problem 4

part a

$X(t)$, for $t>0$, takes in 2 values, $\{1,-1\}$, so
$E[X(t)]=(1 \cdot P\{X(t)=1\}+(-1) \cdot P\{X(t)=-1\})=P\{X(t)=1\}-P\{X(t)=-1\}$
but

$$
\begin{equation*}
P\{X(t)=1\}=P\left\{(-1)^{N(t)}=1\right\} \tag{1}
\end{equation*}
$$

but $P\left\{(-1)^{N(t)}=1\right\}$ is the same as the probability that $N(t)$ takes in even values, because when $N(t)$ takes in even values, then $(-1)^{N(t)}$ will have value of 1 .
so, $P\left\{(-1)^{N(t)}=1\right\}=P\{N(t)=$ even values $\}$
but the probability that $N(t)$ takes in even values $=P\{N(t)=2\}+P\{N(t)=4\}+P\{N(t)=6\}+$ \cdots This is because since the times of arrivals are independent from each others in a poisson process.
then $P\left\{(-1)^{N(t)}=1\right\}=P\{N(t)=$ even values $\}=P_{t}(2)+P_{t}(4)+P_{t}(6)+\cdots=\sum_{n=0}^{\infty} P_{t}(2 n)$
Similarly,

$$
P\{X(t)=-1\}=P\left\{(-1)^{N(t)}=-1\right\}
$$

again, similar to above argument, $P\left\{(-1)^{N(t)}=-1\right\}$ is the same as the probability that $N(t)$ takes in odd values, because when $N(t)$ takes in odd values, then $(-1)^{N(t)}$ will have value of -1.
so $P\left\{(-1)^{N(t)}=1\right\}=P\{N(t)=$ odd values $\}$
but the probability that $N(t)$ takes in odd values $=P\{N(t)=1\}+P\{N(t)=3\}+P\{N(t)=5\}+$ then $P\left\{(-1)^{N(t)}=1\right\}=P\{N(t)=$ odd values $\}=P_{t}(1)+P_{t}(3)+P_{t}(5)+\cdots=\sum_{n}=1^{\infty} \mathrm{P}_{t}(2 n-1)$ so, substituting in equation 1 above, we see

$$
\begin{equation*}
E[X(t)]=P\{X(t)=1\}-P\{X(t)=-1\}=\sum_{n=0}^{\infty} P_{t}(2 n)-\sum_{n=1}^{\infty} P_{t}(2 n-1) \tag{1}
\end{equation*}
$$

but

$$
\begin{aligned}
\sum_{n=0}^{\infty} P_{t}(2 n) & =P_{t}(0)+P_{t}(2)+P_{t}(4)+\cdots \\
& =\frac{(\lambda t)^{0}}{0!} e^{-\lambda t}+\frac{(\lambda t)^{2}}{2!} e^{-\lambda t}+\frac{(\lambda t)^{4}}{4!} e^{-\lambda t}+\cdots \\
& =e^{-\lambda t}\left(\frac{(\lambda t)^{0}}{0!}+\frac{(\lambda t)^{2}}{2!}+\frac{(\lambda t)^{4}}{4!}+\cdots\right) \\
& =e^{-\lambda t} \cosh \lambda t
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty} P_{t}(2 n-1) & =P_{t}(1)+P_{t}(3)+P_{t}(5)+\cdots \\
& =\frac{(\lambda t)^{1}}{1!} e^{-\lambda t}+\frac{(\lambda t)^{3}}{3!} e^{-\lambda t}+\frac{(\lambda t)^{5}}{5!} e^{-\lambda t}+\cdots \\
& =e^{-\lambda t}\left(\frac{(\lambda t)^{1}}{1!}+\frac{(\lambda t)^{3}}{3!}+\frac{(\lambda t)^{5}}{5!}+\cdots\right) \\
& =e^{-\lambda t} \sinh \lambda t
\end{aligned}
$$

so, equation 2 above becomes

$$
\begin{align*}
\mu_{X}(t) & =\sum_{n=0}^{\infty} P_{t}(2 n)-\sum_{n=1}^{\infty} P_{t}(2 n-1) \\
& =e^{-\lambda t} \cosh \lambda t-e^{-\lambda t} \sinh \lambda t \\
& =e^{-\lambda t}(\cosh \lambda t-\sinh \lambda t) \tag{3}
\end{align*}
$$

now, $e^{-x}=\cosh x-\sinh x$ so let $y \equiv-\lambda t$ so

$$
e^{-\lambda t}=\cosh \lambda t-\sinh \lambda t
$$

we see immediately that equation (3) becomes

$$
\mu_{X}(t)=\mathrm{e}^{-\lambda t} \mathrm{e}^{-\lambda t}=\mathrm{e}^{-2 \lambda t} \quad t>0
$$

part b

first, let $t_{1}-t_{2}=\tau>0$. now

$$
\begin{align*}
R_{X}\left(t_{1}, t_{2}\right)= & E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
= & (1) \cdot P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\} \\
& +(-1) \cdot P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=1\right\} \\
& +(-1) \cdot P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=-1\right\} \\
& +(1) P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=-1\right\} \tag{5}
\end{align*}
$$

now, using the relation that $P\{A \mid B\}=\frac{P\{A, B\}}{P\{B\}}$, then

$$
\begin{align*}
P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\} & =P\left\{X\left(t_{1}\right)=1 \mid X\left(t_{2}\right)=1\right\} \cdot P\left\{X\left(t_{2}\right)=1\right\} \\
& =P\left\{(-1)^{N\left(t_{1}\right)}=1 \mid(-1)^{N\left(t_{2}\right)}=1\right\} \cdot P\left\{(-1)^{N\left(t_{2}\right)}=1\right\} \\
& =P\left\{N\left(t_{1}\right)=\text { even } \mid N\left(t_{2}\right)=\text { even }\right\} \cdot P\left\{N\left(t_{2}\right)=\text { even }\right\} \tag{6}
\end{align*}
$$

now, when $X\left(t_{2}\right)=1$, then for $X\left(t_{1}\right)$ to have value of 1 , means that even number of points are between t_{2} and t_{1}, where the point, is the point of time when $X(t)$ switches between $1,-1$.
so $P\left\{X\left(t_{1}\right)=1 \mid X\left(t_{2}\right)=1\right\}=P\left\{\right.$ there is even number of points between t_{2} and $\left.t_{1}\right\}$
But from part a, we find that P \{there is even number of points between 0 and $t\}=$ probability that $X(t)$ takes in a value of 1 at time t.
this means that probability that $X(t)$ takes in a value of 1 at time t is the same as talking about the probability that there are even number of points between 0 and t.
so, now I can say that P \{there is even number of points between 0 and $t\}=\sum_{n=0}^{\infty} P_{t}(2 n)=$ $e^{-\lambda t} \cosh \lambda t$
when $t_{1}-t_{2}=\tau \geq 0$, I can write the above by replacing t with τ as
$P\left\{\right.$ there is even number of points between t_{1} and $\left.t_{2}\right\}=\sum_{n=0}^{\infty} P_{t_{1}-t_{2}}(2 n)=e^{-\lambda \tau} \cosh \lambda \tau$
in other words,

$$
P\left\{X\left(t_{1}\right)=1 \mid X\left(t_{2}\right)=1\right\}=e^{-\lambda \tau} \cosh \lambda \tau
$$

and, from part a, we know that
$P\left\{X\left(t_{2}\right)=1\right\}=P\left\{\right.$ there is even number of points between 0 and $\left.t_{2}\right\}=e^{-\lambda t_{2}} \cosh \lambda t_{2}$

$$
P\left\{X\left(t_{2}\right)=1\right\}=e^{-\lambda t_{2}} \cosh \lambda t_{2}
$$

so, substitute the above 2 relations in equation (6) gives:

$$
\begin{equation*}
P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\}=e^{-} \lambda \tau \cosh \lambda \tau e^{-} \lambda t_{2} \cosh \lambda t_{2} \tag{7}
\end{equation*}
$$

similarly,

$$
P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=1\right\}=P\left\{X\left(t_{1}\right)=-1 \mid X\left(t_{2}\right)=1\right\} \cdot P\left\{X\left(t_{2}\right)=1\right\}
$$

but again $P\left\{X\left(t_{1}\right)=-1 \mid X\left(t_{2}\right)=1\right\} \equiv P\left\{\right.$ there is odd number of points between t_{1} and $\left.t_{2}\right\}$ but $P\{$ there is odd number of points between 0 and $t\}=\sum_{n=1}^{\infty} P_{t}(2 n-1)=e^{-\lambda t} \sinh \lambda t$ so this means that the $P\left\{\right.$ there is odd number of points between t_{1} and $\left.t_{2}\right\}=\sum_{n=1}^{\infty} P_{t_{1}-t_{2}}(2 n-1)=$ $e^{-\lambda \tau} \sinh \lambda \tau$
and $P\left\{X\left(t_{2}\right)=1\right\}=P$ there is even number of points between 0 and $\left.t_{2}\right\}=\sum_{n=0}^{\infty} P_{t_{2}}(2 n)=$ $e^{-\lambda t_{2}} \lambda t_{2}$
so,
$P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=1\right\}=P\left\{N\left(t_{1}\right)=\right.$ odd $\mid N\left(t_{2}\right)=$ even $\} \cdot P\left\{N\left(t_{2}\right)=\right.$ even $\}=e^{-\lambda \tau} \sinh \lambda \tau e^{-\lambda t_{2}} \cosh \lambda t_{2}$ i.e.

$$
\begin{equation*}
P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=1\right\}=e^{-} \lambda \tau \sinh \lambda \tau e^{-} \lambda t_{2} \cosh \lambda t_{2} \tag{8}
\end{equation*}
$$

similarly, i find

$$
\begin{equation*}
P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=-1\right\}=e^{-} \lambda \tau \sinh \lambda \tau e^{-} \lambda t_{2} \sinh \lambda t_{2} \tag{9}
\end{equation*}
$$

and finally

$$
\begin{equation*}
P\left\{X\left(t_{1}\right)=-1, X\left(t_{2}\right)=-1\right\}=e^{-} \lambda \tau \cosh \lambda \tau e^{-} \lambda t_{2} \sinh \lambda t_{2} \tag{10}
\end{equation*}
$$

so, from equation (5), substitute in it equations 7,8,9,10, I get

$$
\begin{aligned}
R_{X}\left(t_{1}, t_{2}\right)= & e^{-\lambda \tau} \cosh \lambda \tau e^{-\lambda t_{2}} \cosh \lambda t_{2} \\
& -e^{-\lambda \tau} \sinh \lambda \tau e^{-\lambda t_{2}} \cosh \lambda t_{2} \\
& -e^{-\lambda \tau} \sinh \lambda \tau e^{-\lambda t_{2}} \sinh \lambda t_{2} \\
& +e^{-\lambda \tau} \cosh \lambda \tau e^{-\lambda t_{2}} \sinh \lambda t_{2}
\end{aligned}
$$

so,
$R_{X}\left(t_{1}, t_{2}\right)=e^{-\lambda \tau} e^{-\lambda t_{2}}\left(\cosh \lambda \tau \cosh \lambda t_{2}-\sinh \lambda \tau \cosh \lambda t_{2}-\sinh \lambda \tau \sinh \lambda t_{2}+\cosh \lambda \tau \sinh \lambda t_{2}\right)$

$$
\begin{equation*}
=e^{-\lambda \tau} e^{-\lambda t_{2}}\left(\cosh \lambda \tau\left(\cosh \lambda t_{2}+\sinh \lambda t_{2}\right)-\sinh \lambda \tau\left(\cosh \lambda t_{2}+\sinh \lambda t_{2}\right)\right) \tag{11}
\end{equation*}
$$

but,

$$
\begin{aligned}
& e^{x}=\cosh x+\sinh x \\
& e^{-x}=\cosh x-\sinh x
\end{aligned}
$$

so, equation (11) becomes
$R_{X}\left(t_{1}, t_{2}\right)=e^{-\lambda \tau} e^{-\lambda t_{2}}\left(\cosh \lambda \tau\left(e^{\lambda t_{2}}\right)-\sinh \lambda \tau\left(e^{\lambda t_{2}}\right)\right)=e^{-\lambda \tau}(\cosh \lambda \tau-\sinh \lambda \tau)=e^{-\lambda \tau} e^{-\lambda \tau}=e^{-2 \lambda \tau}$
i.e. for $t_{1}>t_{2} \geq 0$, and $\tau=t_{1}-t_{2}$,

$$
R_{X}\left(t_{1}, t_{2}\right)=e^{-} 2 \lambda\left(t_{1}-t_{2}\right.
$$

similarly, one can let $t_{2}>t_{1}>0$, and $\tau=t_{2}-t_{1}$ and that would lead to

$$
R_{X}\left(t_{2}, t_{1}\right)=e^{-} 2 \lambda\left(t_{2}-t_{1}\right)
$$

so, from the above we see that

$$
\mathrm{R}_{X}\left(t_{1}, t_{2}\right)=\mathrm{e}^{-} 2 \lambda\left|t_{1}-t_{2}\right| \quad \mathrm{t}_{1}, \mathrm{t}_{2} \geq 0
$$

since $\mu_{X}(t)$ is a function of t, then $X(t)$ is a non-stationary process, so $X(t)$ is M.S. continuous at time t iff $R_{X}\left(t_{1}, t_{2}\right)$ is continuous at time $t_{1}=t_{2} \equiv t$.
so $R_{X}(t, t)=e^{-2 \lambda|t-t|}=1$
so $X(t)$ is M.S. continuous.
R.P. $X(t)$ has M.S. derivative at time t iff $R_{X}\left(t_{1}, t_{2}\right)$ has a second order mixed derivative when $t_{1}=t_{2} \equiv t$.

$$
\frac{\partial R_{X}\left(t_{1}, t_{2}\right)}{\partial t_{1}}=\frac{\partial}{\partial t_{1}}\left(e ^ { 2 \lambda (t _ { 1 } - t _ { 2 }) } u (- (t _ { 1 } - t _ { 2 }) + e ^ { - 2 \lambda (t _ { 1 } - t _ { 2 }) } u (t _ { 1 } - t _ { 2 })) \left\{\begin{array}{ll}
\frac{1}{2 \lambda} e^{2 \lambda\left(t_{1}-t_{2}\right)} & t_{2}>t_{1} \\
-\frac{1}{2 \lambda} e^{-2 \lambda\left(t_{1}-t_{2}\right)} & t_{1}>t_{2}
\end{array}\right.\right.
$$

and

$$
\frac{\partial^{2} R_{X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}=\frac{\partial}{\partial t_{2}}\left\{\begin{array}{ll}
\frac{1}{2 \lambda} e^{2 \lambda\left(t_{1}-t_{2}\right)} & t_{2}>t_{1} \\
-\frac{1}{2 \lambda} e^{-2 \lambda\left(t_{1}-t_{2}\right)} & t_{1}>t_{2}
\end{array}= \begin{cases}-\frac{1}{4 \lambda^{2}} e^{2 \lambda\left(t_{1}-t_{2}\right)} & t_{2}>t_{1} \\
-\frac{1}{4 \lambda^{2}} e^{2 \lambda\left(t_{1}-t_{2}\right)} & t_{1}>t_{2}\end{cases}\right.
$$

at the line $t_{1}=t_{2}$, i.e. $\tau=0$ we get

$$
\frac{\partial^{2} R_{X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}=-\frac{1}{4 \lambda^{2}}
$$

so

$$
\lim _{\tau \searrow 0}\left(-\frac{1}{4 \lambda^{2}}\right)=\left(-\frac{1}{4 \lambda^{2}}\right)
$$

so, the limit exist, so $X(t)$ is M.S. diferetiable.

5 problem 5

$X(t)$ uncorrelated means $R_{X}\left(t_{1}, t_{2}\right)=0$ for $t_{1} \neq t_{2}$, in other words, $R_{X}(\tau)=0$ for $\tau \neq 0$. also note that $X(t)$ and $N(t)$ are orthogonal since they are uncorrelated with zero-mean.

$$
K_{X}\left(t_{1}, t_{2}\right)=\sigma_{X}^{2}\left(t_{1}\right) \delta\left(t_{1}-t_{2}\right)=e^{-\left|t_{1}\right|} \delta\left(t_{1}-t_{2}\right)
$$

so, since $X(t)$ is a zero-mean process, then

$$
R_{X}\left(t_{1}, t_{2}\right)=e^{-\left|t_{1}\right|} \delta\left(t_{1}-t_{2}\right)
$$

let

$$
h(t)=h_{1}(t) * h_{2}(t)
$$

where L_{i} means the time variable of the operator L is t_{i}, and L^{*} is the adjoint operator whose impulse response is $h^{*}(t, \tau)$.

$$
\begin{aligned}
h(t) & =h_{1}(t) * h_{2}(t) \\
H(\omega) & =H_{1}(\omega) H_{2}(\omega) \\
& =\frac{1}{1+j \omega} \frac{2}{2+j \omega} \\
& =\frac{2}{1+j \omega}-\frac{2}{2+j \omega} \\
h(t) & =F^{-1}\left\{\frac{2}{1+j \omega}-\frac{2}{2+j \omega}\right\}
\end{aligned}
$$

$$
\mathrm{h}(t)=2\left(e^{-} t-e^{-} 2 t\right) \mathrm{u}(t)
$$

SO

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & =L_{2}^{*}\left\{R_{X}\left(t_{1}, t_{2}\right)\right\} \\
& =\int_{-\infty}^{\infty} h^{*}(\alpha) R_{X}\left(t_{1} ; t_{2}-\alpha\right) d \alpha \\
& =\int_{-\infty}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right) u(\alpha) e^{-\left|t_{1}\right|} \delta\left(t_{1}-\left(t_{2}-\alpha\right)\right) d \alpha \\
& =\int_{0}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right) e^{-\left|t_{1}\right|} \delta\left(t_{1}-\left(t_{2}-\alpha\right)\right) d \alpha
\end{aligned}
$$

when $t_{2}-\alpha=t_{1} \Longrightarrow \alpha=t_{2}-t_{1}>0$ then the above integral has a value of

$$
R_{X Y}\left(t_{1}, t_{2}\right)=2\left(e^{-\left(t_{2}-t_{1}\right)}-e^{-2\left(t_{2}-t_{1}\right)}\right) e^{-\left|t_{1}\right|} u\left(t_{2}-t_{1}\right)
$$

or

$$
\mathrm{R}_{X} Y\left(t_{1}, t_{2}\right)=2\left(e^{-}\left(t_{2}-t_{1}\right)-e^{-} 2\left(t_{2}-t_{1}\right)\right) \mathrm{e}^{-}\left|t_{1}\right| \mathrm{u}\left(t_{2}-t_{1}\right)
$$

now, I find $R_{1 Y Y}$ due to contribution from $R_{X Y}$ and find $R_{2 Y Y}$ due to contribution from $R_{N Y}$ and add them to get final $R_{Y Y}=R_{1 Y Y}+R_{2 Y Y}($ since $N \perp X)$
now, Find contribution due to $R_{X Y}$

$$
\begin{aligned}
R_{1 Y Y}\left(t_{1}, t_{2}\right) & =L_{1}\left\{R_{X Y}\left(t_{1}, t_{2}\right)\right\} \\
& =\int_{-\infty}^{\infty} h(\alpha) R_{X Y}\left(t_{1}-\alpha ; t_{2}\right) d \alpha \\
& =\int_{-\infty}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right) u(\alpha)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{-\left|t_{1}-\alpha\right|} u\left(t_{2}-\left(t_{1}-\alpha\right)\right)\right] d \alpha
\end{aligned}
$$

the above integral is exist only for $\alpha>0$, else it is zero, so

$$
R_{1 Y Y}\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{-\left|t_{1}-\alpha\right|} u\left(t_{2}-\left(t_{1}-\alpha\right)\right)\right] d \alpha
$$

now, when $t_{2}-\left(t_{1}-\alpha\right)>0 \Rightarrow t_{2}-t_{1}+\alpha>0 \Rightarrow \alpha>t_{1}-t_{2}>0 \Rightarrow t_{1}-t_{2}>0$
so $u\left(t_{2}-\left(t_{1}-\alpha\right)\right)=u\left(t_{1}-t_{2}\right)$
then

$$
\begin{equation*}
R_{1 Y Y}\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{-\left|t_{1}-\alpha\right|} u\left(t_{1}-t_{2}\right)\right] d \alpha \tag{2}
\end{equation*}
$$

now

$$
e^{-\left|t_{1}-\alpha\right|}=e^{t_{1}-\alpha} u\left(-t_{1}+\alpha\right)+e^{-t_{1}+\alpha} u\left(t_{1}-\alpha\right)
$$

so if $t_{1}<0$ then, since $\alpha>0$ then

$$
\int_{0}^{\infty} e^{-\left|t_{1}-\alpha\right|} d \alpha=\int_{0}^{\infty} e^{t_{1}-\alpha} d \alpha
$$

and, when $t_{1}>0$

$$
\int_{0}^{\infty} e^{-\left|t_{1}-\alpha\right|} d \alpha=\int_{0}^{t_{1}} e^{-t_{1}+\alpha} d \alpha+\int_{t_{1}}^{\infty} e^{t_{1}-\alpha} d \alpha
$$

so , equation (1) can be written in 2 parts as
when $t_{2}<t_{1}$ and $t_{1}<0$ then

$$
\begin{aligned}
& R_{1} Y Y\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{t_{1}-\alpha}\right] d \alpha \\
& R_{1} Y Y\left(t_{1}, t_{2}\right)=\frac{1}{3} \mathrm{e}^{2} t_{1}-t_{2}-\frac{1}{5} \mathrm{e}^{3} t_{1}-2 t_{2}
\end{aligned}
$$

when $t_{2}<t_{1}$ and $t_{1}>0$ then

$$
\begin{align*}
R_{1} Y Y\left(t_{1}, t_{2}\right)= & \int_{0}^{t_{1}} 2\left(e^{-\alpha}-e^{-2 \alpha}\right)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{-t_{1}+\alpha}\right] d \alpha \\
& +\int_{t_{1}}^{\infty} 2\left(e^{-\alpha}-e^{-2 \alpha}\right)\left[2\left(e^{-\left(t_{2}-\left(t_{1}-\alpha\right)\right)}-e^{-2\left(t_{2}-\left(t_{1}-\alpha\right)\right)}\right) e^{t_{1}-\alpha}\right] d \alpha \tag{3}\\
= & -\frac{8}{3} \mathrm{e}^{-} t_{1}-t_{2}+\mathrm{e}^{-} t_{1}-2 t_{2}+\mathrm{e}^{-} t_{1}-t_{2}-\frac{8}{15} \mathrm{e}^{-} 2 t_{1}-2 t_{2}+2 \mathrm{e}^{-} t_{2}-\frac{2}{3} \mathrm{e}^{-} 2 t_{2}+t_{1}
\end{align*}
$$

so, combine the above 2 expression in boxes, we get for when $t_{2}<t_{1}$

$$
\begin{aligned}
R_{1 Y Y}\left(t_{1}, t_{2}\right)= & \left(\frac{1}{3} e^{2 t_{1}-t_{2}}-\frac{1}{5} e^{3 t_{1}-2 t_{2}}\right) u\left(-t_{1}\right) \\
& +\left(-\frac{8}{3} e^{-t_{1}-t_{2}}+e^{-t_{1}-2 t_{2}}+e^{-t_{1}-t_{2}}-\frac{8}{15} e^{-2 t_{1}-2 t_{2}}+2 e^{-t_{2}}-\frac{2}{3} e^{-2 t_{2}+t_{1}}\right) u\left(t_{1}\right)
\end{aligned}
$$

part b

For white noise,

$$
S_{N}(\omega)=\sigma_{N}^{2}=5
$$

so

$$
S_{N Y}(\omega)=S_{N}(\omega) H_{2}^{*}(j \omega)=5 \frac{2}{2+j \omega}=\frac{10}{2+j \omega}
$$

so

$$
R_{N Y}(\tau)=10 F^{-1}\left\{S_{N Y}(\omega)\right\}=10 e^{-2 \tau} u(\tau)
$$

or we can write this by saying $\tau=t_{1}-t_{2}$ then

$$
\mathrm{R}_{N} Y\left(t_{1}-t_{2}\right)=10 \mathrm{e}^{-} 2\left(t_{1}-t_{2}\right) \mathrm{u}\left(t_{1}-t_{2}\right)
$$

Now,

$$
S_{2 Y Y}(\omega)=S_{X}(\omega)\left|H_{2}(j \omega)\right|^{2}
$$

but

$$
H_{2}(j \omega)=\frac{2}{2+j \omega}
$$

so

$$
\left|H_{2}(j \omega)\right|^{2}=\frac{4}{4+\omega^{2}}
$$

$$
S_{2 Y Y}(\omega)=5 \frac{4}{4+\omega^{2}}
$$

so

$$
R_{2 Y Y}(\tau)=5 e^{-} 2|\tau|
$$

so, for $t_{1}>t_{2}$ then, combine all results from part a and part b to get

$$
\begin{aligned}
R_{Y Y}\left(t_{1}, t_{2}\right)= & R_{1 Y Y}\left(t_{1}, t_{2}\right)+R_{2 Y Y}\left(t_{1}, t_{2}\right) \\
= & \left(\frac{1}{3} e^{2 t_{1}-t_{2}}-\frac{1}{5} e^{3 t_{1}-2 t_{2}}\right) u\left(-t_{1}\right) u\left(t_{1}-t_{2}\right) \\
& +\left(-\frac{8}{3} e^{-t_{1}-t_{2}}+e^{-t_{1}-2 t_{2}}+e^{-t_{1}-t_{2}}-\frac{8}{15} e^{-2 t_{1}-2 t_{2}}+2 e^{-t_{2}}-\frac{2}{3} e^{-2 t_{2}+t_{1}}\right) u\left(t_{1}\right) u\left(t_{1}-t_{2}\right) \\
& +5 e^{-2\left|t_{1}-t_{2}\right|}
\end{aligned}
$$

6 problem 6

since

$$
K_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(t_{1}, t_{2}\right)-\mu_{X} \mu_{X}^{*}
$$

then

$$
\begin{aligned}
& R_{X}\left(t_{1}, t_{2}\right)=25 e^{-\left|t_{1}-t_{2}\right|}+36 \\
& R_{X}\left(\tau=t_{1}-t_{2}\right)=25 e^{-|\tau|}+36
\end{aligned}
$$

- $X(t)$ is strict sense stationary:
since the auto correlation function $R_{X}\left(t_{1}, t_{2}\right)$ is a function of $\left(t_{1}-t_{2}\right)$ and since the mean is constant, then $X(t)$ is a WSS process. However to decide if it is SSS process, I need to determine if $X(t+T)$ has the same density function as $X(t)$ for any order. This I dont know from given information. so $X(t)$ is not SSS processs based on what is given.
- $X(t)$ has total average power DC of 36 watt:
find the power spectral:

$$
\begin{aligned}
S_{X}(\omega) & =\int_{-\infty}^{\infty} R_{X}(\tau) e^{-j \omega t} d \tau \\
& =\int_{-\infty}^{\infty}\left(25 e^{-|\tau|}+36\right) e^{-j \omega \tau} d \tau \\
& =36 \int_{-\infty}^{\infty} e^{-j \omega \tau} d \tau+25 \int_{-\infty}^{\infty} e^{-|\tau|} e^{-j \omega \tau} d \tau \\
& =36 \cdot 2 \pi \delta(\omega)+50 \frac{1}{1+\omega^{2}}
\end{aligned}
$$

so, let $\omega=0$, total average DC power is $72 \pi+50=276.2$ watt
so, the statment that $X(t)$ has total average DC power of 36 watt is NOT true.

- $X(t)$ is M.S. ergodic in the mean:
a stationary R.P. is M.S. ergodic in the mean iff

$$
\lim _{T \nearrow \infty} \frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|\tau|}{2 T}\right) K_{X}(\tau) d \tau \longrightarrow 0
$$

Fourier transform for triangular pulse $\left(1-\frac{|\tau|}{2 T}\right)$ is $2 T\left(\frac{\sin 2 \pi f T}{2 \pi f T}\right)^{2}$, using Parseval's theorem

$$
\begin{aligned}
\sigma_{M}^{2} & =\frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|\tau|}{2 T}\right) K_{X}(\tau) d \tau \\
& =\frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|\tau|}{2 T}\right) 25 e^{-|\tau|} d \tau \\
& =\frac{1}{2 T} \int_{-\infty}^{\infty} 2 T\left(\frac{\sin 2 \pi f T}{2 \pi f T}\right)^{2} 50 \frac{1}{1+(2 \pi f)^{2}} d f \\
& =50 \int_{-\infty}^{\infty}\left(\frac{\sin 2 \pi f T}{2 \pi f T}\right)^{2} \frac{1}{1+(2 \pi f)^{2}} d f \\
\lim _{T / \infty} \sigma_{M}^{2} & =50 \int_{-\infty}^{\infty} \lim m_{T / \infty}\left(\frac{\sin 2 \pi f T}{2 \pi f T}\right)^{2} \frac{1}{1+(2 \pi f)^{2}} d f \\
& =50 \int_{-\infty}^{\infty} 0 \cdot d f=0
\end{aligned}
$$

$$
\text { so, } X(t) \text { is M.S. ergodic in the mean. }
$$

- $X(t)$ has a periodic component:

A WSS process is a wide sense periodic if

$$
\mu_{X}(t)=\mu_{X}(t+T) \quad \forall t
$$

and the auto-covariance $K_{X}\left(t_{1}, t_{2}\right)$ is periodic.
the second condition above fails, so this is not a wide sense periodic function. This also Implies it is not M.S. period since M.S. periodicity is stronger than WS periodicity.

However, the question asks if $X(t)$ has at least one component of the process is periodic, Not if the process itself is periodic. It is possible that $X(t)$ has component that is periodic, but $X(t)$ not be periodic.
so I can't for certinity say that $X(t)$ has or not a periodic component.

- $X(t)$ has an AC power of 61 Watt:
total power $=\int_{-\infty}^{\infty} S_{X}(\omega) d \omega=\int_{-\infty}^{\infty} 36 \cdot 2 \pi \delta(\omega)+50 \frac{1}{1+\omega^{2}} d \omega=72 \pi+50 \int_{-\infty}^{\infty} \frac{1}{1+\omega^{2}} d \omega=72 \pi+50 \pi=$ 122π watt
but the DC power was found to be $(72 \pi+50)$ watt, so AC power $=122 \pi-(72 \pi+50)=50 \pi-50=$ 107.07 watt
so $X(t)$ do NOT have an AC power of 61 Watt.
- $X(t)$ has a variance of 25 :

Variance $=\sigma_{X}^{2}(t)=K_{X}(t, t) \Rightarrow K_{x}(0)=25 e^{0}=25$
so $X(t)$ has a variance of 25 is True.

7 problem 7

$$
R_{x}(\tau)=3+2 \exp \left(-4 \tau^{2}\right)
$$

part a
the power spectral density $S_{X}(\omega)$ is

$$
S_{X}(\omega)=F\left\{R_{X}(\tau)\right\}=\int_{-\infty}^{\infty} R_{X}(\tau) \exp (-j \omega \tau) d \tau
$$

so

$$
\begin{aligned}
S_{X}(\omega) & =\int_{-\infty}^{\infty}\left(3+2 \exp \left(-4 \tau^{2}\right)\right) \exp (-j \omega \tau) d \tau \\
& =\int_{-\infty}^{\infty} 3 \exp (-j \omega \tau) d \tau+2 \int_{-\infty}^{\infty} \exp \left(-4 \tau^{2}\right) \exp (-j \omega \tau) d \tau \\
& =6 \pi \delta(\omega)+\sqrt{\pi} \exp \left(-\frac{\omega^{2}}{16}\right)
\end{aligned}
$$

SO

$$
\mathrm{S}_{X}(\omega)=6 \pi \delta(\omega)+\sqrt{\pi} \exp \left(-\frac{\omega^{2}}{16}\right)
$$

Part b

$$
\begin{aligned}
\text { total power } & =\int_{-\infty}^{\infty} S_{X}(\omega) d \omega \\
& =\int_{-\infty}^{\infty}\left(6 \pi \delta(\omega)+\sqrt{\pi} \exp \left(-\frac{\omega^{2}}{16}\right)\right) d \omega \\
& =\int_{-\infty}^{\infty} 6 \pi \delta(\omega) d \omega+\int_{-\infty}^{\infty} \sqrt{\pi} \exp \left(-\frac{\omega^{2}}{16}\right) d \omega \\
& =6 \pi+4 \pi
\end{aligned}
$$

$$
\text { total power }=10 \pi
$$

now, power between $\frac{-1}{\sqrt{\pi}}$ and $\frac{1}{\sqrt{\pi}}$, call it p_{1}, is given by

$$
\begin{aligned}
p_{1} & =\int_{-\frac{1}{\sqrt{\pi}}}^{\frac{1}{\sqrt{\pi}}} S_{X}(\omega) d \omega \\
& =\int_{-\frac{1}{\sqrt{\pi}}}^{\frac{1}{\sqrt{\pi}}} 6 \pi \delta(\omega) d \omega+\int_{-\frac{1}{\sqrt{\pi}}}^{\frac{1}{\sqrt{\pi}}} \sqrt{\pi} \exp \left(-\frac{\omega^{2}}{16}\right) d \omega \\
& =6 \pi+4 \pi \operatorname{erf}\left(\frac{1}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

where

$$
\operatorname{erf}(x)=\frac{2}{\pi} \int_{0}^{x} \exp \left(-t^{2}\right) d t
$$

so, $\operatorname{erf}\left(\frac{1}{4 \sqrt{\pi}}\right)=\operatorname{erf}(0.443)=0.158$

$$
p_{1}=6 \pi+4 \pi(0.158)=20.84 \quad \text { Watt }
$$

so fraction to total power is

$$
\frac{p_{1}}{\text { total power }}=\frac{20.83}{10 \pi}=0.663 \Longrightarrow \% 66.3
$$

