ECE 3341 formulas (Stochastic processes) Northeastern Univ. Boston

Nasser M. Abbasi

Contents

1 Statistical averages 1

1 Statistical averages

expectation, the expected or mean

$$
E[X] \equiv \mu_{x}=\int_{-\infty}^{\infty} x f_{x}(x) d x
$$

if x is discrete then

$$
E[X] \equiv \mu_{x}=\sum_{n} x_{n} P_{x}\left(x_{n}\right)
$$

for a normalized system, i.e. total weight $=1$, then μ_{x} can be considered to be the center of gravity.
expected value of $Y=G(x)$

$$
\begin{gathered}
E[g(x)] \equiv \mu_{y}=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{-\infty}^{\infty} g(x) f_{Y}(y) d y \\
\mu_{y}=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
\end{gathered}
$$

theorm

$$
\begin{gathered}
f_{Y}(y)=\frac{f_{X}\left(x=g^{-1}(y)\right)}{\left|g^{\prime}(x)\right|} \\
d y=\left|g^{\prime}(x)\right| d x
\end{gathered}
$$

conditonal expectation

$$
E[Y \mid B] \equiv \int_{-\infty}^{\infty} y f_{Y \mid B}(y \mid b) d y
$$

moments, nth moment
$n^{\text {th }}$ moment of X denoted by ϵ_{n}

$$
\begin{array}{lll}
& \quad \epsilon_{n} \equiv \int_{-\infty}^{\infty} x^{n} f_{X}(x) d x \\
\epsilon_{0} & =1 & \\
\epsilon_{1}=\mu_{x} & & \\
\epsilon_{2}=E\left[X^{2}\right] & & \text { mean value } \\
& & \text { mean squared value }
\end{array}
$$

central moments

$$
\begin{aligned}
& m_{n} \equiv \int_{-\infty}^{\infty}\left(u-\mu_{x}\right)^{n} f_{X}(x) d x \\
m_{0} & =1 \\
m_{1} & =0 \\
m_{2} & =E\left[\left\{X-\mu_{X}\right\}^{2}\right] \quad \text { spread or variance }=\sigma_{x}^{2} \\
m_{3}= & E\left[\left\{X-\mu_{X}\right\}^{3}\right] \quad \text { skew }
\end{aligned}
$$

standard deviation

$$
\sigma_{x}=\sqrt{m_{2}}
$$

realtionships between moments

$$
\sigma^{2}=m_{2}=\epsilon_{2}-\epsilon_{1}^{2}=E\left[X^{2}\right]-\{E[X]\}^{2}
$$

2 Random sequences

mean sequence

$$
\mu_{X}(n) \equiv E\left[X_{n}\right]=\int_{-\infty}^{\infty} x_{n} f\left(x_{n}\right) d x_{n}
$$

autocorrelation Bisequence

$$
R_{X}(m, n) \equiv E\left[X_{m} X_{n}^{*}\right]=\iint x_{m} x_{n}^{*} f\left(x_{m}, x_{n}\right) d x_{m} d x_{n}
$$

Auto covariance Bisequence

$$
K_{X}(m, n) \equiv E\left[\left\{X_{m}-\mu_{X}(m)\right\}\left\{X_{m}^{*}-\mu_{X}^{*}(m)\right\}\right]
$$

relation

$$
K_{X}(m, n)=R_{X}(m, n)-\mu_{X}(m) \mu_{X}^{*}(n)
$$

definitions
uncorrelated random sequence

$$
\begin{aligned}
& \text { if } \\
& \begin{aligned}
K_{x}(m, n) & =0 \quad \forall m, n \quad m \neq n \\
& =\sigma_{x}^{2} \quad
\end{aligned} \quad m=n
\end{aligned}
$$

or

$$
\mathbf{R}_{\mathbf{X}}(\mathbf{m}, \mathbf{n})=\mu_{\mathbf{X}}(\mathbf{m}) \mu_{\mathbf{X}}^{*}(\mathbf{n}) \quad \forall \mathbf{m}, \mathbf{n} \quad \mathbf{m} \neq \mathbf{n}
$$

then the sequence is called uncorrelated random sequence

orthogonal random sequence

if

$$
\begin{aligned}
R_{X}(m, n) & =0 & \forall m, n \quad m \neq n \\
& =E\left[x_{n}^{2}\right] & m=n
\end{aligned}
$$

then the sequence is called an orthogonal random sequence

Gausian random sequence

if all kth order distributions of a random sequence X_{n} are jointly Gaussian then it is called a Gaussian random seq.

strict sense stationary SSS

if the kth order probability functions do not depend on the index n, then it is SSS.

Wide sense stationary WSS

if the mean function is constant and the autocorrelation (covariance) is shift-invariant then it is WSS.
i.e.

$$
\mu_{x}(n)=\mu_{x}
$$

and

$$
R_{X}(m, n)=R_{X}(m-n)
$$

usefull identity

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

when adding 2 i.i.d R.V., their f's convolve and their characterstic functions is multiplied if X is an i.i.d, then at each n it is the same $R V$, and they are independent $R V$'s

convolution

for a discrete, linear time invariant

$$
\begin{gathered}
y(n)=\sum_{m=-\infty}^{\infty} h(n-m) u(m) \\
y=h * u
\end{gathered}
$$

for a continouse liner time invariant

$$
\begin{gathered}
y(t)=\int_{-\infty}^{\infty} h(t-\tau) u(\tau) d \tau \\
y=h * u
\end{gathered}
$$

