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1 Using potential energy

There are two types of problems related to using potential energy. We can be given V'(x)
but not at the equilibrium point, or given V(x) at the equilibrium point. If V(x) given
is not at the equilibrium point, then we first need to find xy which is the equilibrium
point. This is done by solving V’(x) = 0. Then expand V(x) near x; using Taylor series
and obtain new V(x) which is now centered around x,.

The other type of problem, is where we need to find V(x) at equilibrium, from the
physics of the problem. See MC2 as example. For the vertical pendulum problem V(x) =

1,5, . . -

kx® —mgx. This is the potential energy at equilibrium.

We need to convert the above to V(y) = %kyz + V(0) and only now we can write
F=-V'(y) = -maw?y

From the above, w can be found.

ky = maw?y
k
w?=—
m

Remember, we can only use F = -V’(y) = -mw?y when V() has form %ky2 + V(0). Do

not use %kx2 — mgx. There should not be linear term in V(x).

V(y) should always be 0 at equilibrium. And V(y) = %mwzyz so V'(y) = mw?y
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Figure 1: How to do the Vibration problems

2 Sterling approximation

f tetdt = f ennte=tqt
0 0
_ f o(nIn(H-1) gy
0

_ f Ot
0

(1)

Where f(t) = nln(t) — t. Contribution to integral comes mostly from where f(t) is



maximum.
f'=0
n
——-1=0
t
tmax =n

Approximating f(t) around ¢,

1
f(t) = f(tmax) + (t - tmax)f,(tmax) + E(t - tmax)zf”(tmax) + -

But f'(tnax) = 0and f”(t) = —t%. Hence the above becomes

1
f(#) = f(tmax) — E(t - tmax)zi F ..

t%nax

Replacing t,.x = 1 in the above gives
£ = nlnn) ) = (¢~ mP s+
1 1

= (nln(n)—n)—i(t—n)zz+--- (2)
Substituting (2) into (1) gives

n! ~ foo e(n ln(n)—n)—%(t—n)zidt

0
~ p(nIn(n)-n) foo 6_%(t_n)2%dt
0

o0 _1 — )21
zn”e‘”f e 2 gt
0

1

V2n

Let u = t_Tn When t = 0,u = ——— and when t = o0, u = c0. And du = dt. The above
n

Van Van

now becomes -
n! = n'e™" f ) e N2n du
an
When n > 1, the lower limit of the integral — —oco. Hence

(o]
_ 2
n! = n'e ”f e\ 2ndu

-0

~ V2nn"e"\n

1
~ \2mn"2e

3 Taylor series, convergence

Used to approximate function f(x) at some x knowing its values and all its derivatives
at some point xy, called the expansion point.

F@) = f00) + (=) (x0) + 53 0 (ag) + -

3

_ X’ X

sinx = x 3!+5!+
x> x4

cosx=1-—+——--

21 4!



To find series for In(1 + x), do this

1
f1+xdx—ln(1 +2)+C

f(l—x+x2—x3+ ~)dx =In(l +x)+C
x> X3
x—E+§—--~:ln(l+x)+C x| <1
To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore
2 .3

1n(1+x):ln(1)+x—?+§—-~- x| <1

And
1
[—dr=-ma-n+c

—f(1+x+x2+x3+-~-)dx:ln(1—x)+C
2 .3
—(x+x—+x—+~-~):ln(1—x)+C
2 3
x> K8

—x—E—§+---=ln(1—x)+C |X|<1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore
x> x°
In(1 - x) :ln(l)—x—z—ﬁ +

And In(1 + 2x) series is found as follows

1 1
f1+2xdx—§1n(1+2x)+C

1
f(l =20+ (20 - (20 + ) = S In(l+2x) + C
( 2% 4x3 8t ) 1

- =4+
A

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore

2x2  4x3 8t
Inl+2x)=2InM)+2{x - —+ — — — ---
n(1 +2x) n()(x2 . 4)
And
x2 x3 00 41
e":1+x+—'+—'+---: —
2 3! pr 2
t +ﬁ+2ﬁ+
anx=x+—+ —
3 15
Some others
1 2_ .3
— =1l-x+x"—-x"+-- x| <1
1+x
1 2., .3
=l+x+x"+x"+ - x| <1
1-x

(1+x)" = Z (fl)x”

Where (Z) is binomial coefficient (fl) =

General Binomial

n!l(a-n)!"

mr-l) , mn-Dm=-2),,

1+x)"=1+nx+
2! 3!

=§ln(1+2x)+C x| <1



This works for positive and negative 7, rational or not. The sum converges only for |x| < 1.
So, for n = -1 the above becomes

1
T =l-x+x>-x>+--
And . -
T = Y "= 1+ 2x+ 322 +4x% + -
- X n=1
And

(1+x)p:1+px+p(p—1)x2

For small x the above approximates to

1+x)f =1+px

3.1 Convergence

First test, check if lim,,_,., a, goes to zero. If not, then no need to do anything. Series
does not converge. Then use ratio test. If

Ay+1
ay

<1

lim
n—oo

Then converges. if result is > 1 then diverges. If result is one, then more testing is needed.
If converges, then radius of convergence R is

R = lim il
n—=00 4y 41
|x| < R
3.2 Closed sums
= —N(N +1)

X
Do =5

i.e. the sum is N times the arithmetic mean.

Geometric series.

S=a+ar+ar*+ar + -

N
:Eark
k=0
1-—TN+1
{55

S=——
1-r

For|r| <1

4 Derivatives of inverse trig functions

To find y = arcsin(x), always write as x = sin(y). Then Z—; = cos(y) = 4/1- sinzy =
Vl—xz.ThenZ—z =

Hence

1
Vi’

o arcsin(x) = —



To find y = arccos(x), write as x = cos(y). Then Z—x = —sin(y) = —/1 —cos?y = -V1 —x2.

d
Then % = , Hence

V1-x2

— arccos(x) =

dx

To find y = arctan(x), write as x = tan(y)

cos?y + sin’y = 1 and divide both sides by cos?y, hence 1 + tan?y =

dy 1
dx 1+tan2y T 1427

1 + tan?y. Hence

dx

5 Slit interference formulas

k is wave number.

6 Identities

6.0.1 trig and Hyper trig identities

cos(i0) = cosh(0)
sin(i0) = isinh(0O)

cos2(0) + sin?() = 1

1
tan?(0) = ——— -1
an“(0) cos2(0)
= sec?(6) — 1
cos?(0) 1
+1= ——
sin?(0) sin?(6)
1 1

- -1
tan?(0)  sin?(6)
cot?(6) = csc?(0) -1
cosh?(6) - sinh?(6) = 1

sin(20) = 2sin(0) cos(6)
c0s(26) = cos?(0) — sin®(0)
=2cos?(0) -1
=1-2sin%(9)
2 tan(0)
1 — tan?(0)
sinh(26) = 2 sinh(0) cosh(6)
cosh(20) =2 cosh2(6) -1
2 tanh(0)
1+ tanhz(Q)

tan(20) =

tanh(20) =

sin(0) = cos(g - 6)

cos(0) = sin(g - 8)

d
— arctan(x) =

Yy

-1

V1 —x2

d 1
. Then = = ——, now need to use trick that
cos<y

dy
dx

Then o =

cos?y’

- Therefore

1+ x2

sin(A + B) = sin Acos B + cos Asin B
sin(A — B) = sin A cos B — cos Asin B
cos(A + B) = cos A cos B —sin Asin B
cos(A — B) = cos Acos B + sin Asin B

tan(A + B) = tan A + tan B
an ~ 1-tanAtanB

tan A + tan B
tan(A - B) = a an

1+tan AtanB

sin?(0) = %(1 — cos(20))

cos?(0) = %(l + cos(20))

1 — cos(260)
tan?(0) = —————
an“(0) 1+ cos(26)

) ) [A+B A-B
sin A +sin B = 2sin CcoSs
2 2
A-B A+ B
sin A —sin B = 2sin Ccos
2 2
A+ B A-B
cos A + cos B = 2 cos cos
2 2
_[A+B A-B
cos A — cosB = -2sin > sin >

1

sin AsinB = E(COS(A — B) — cos(A + B))
1

cos AcosB = E(cos(A — B) + cos(A + B))
1

sin AcosB = E(sin(A + B) + sin(A — B))

1
cos AsinB = E(sin(A + B) — sin(A - B))



acos(wt) + bsin(wt) = A sin(a)t + qb) laws of cosine

= Acos(wt - qb) a? = b% + c? - 2bccos A

A =Va? + b?

B 6.0.2 GAMMA function
¢ = arctan(z)

I'(n)=m-1)!
cosx +sinx = V2 sin(x + z) (n) =(m-1)
4 I'n+1)=n(mn-1)!
COSX + sinx = \/E cos(x - %) = nl'(n)

Laws of sines (a, b, c) are lengths of triangle | 6.0.3 Sterling

sides and A, B, C are facing angles. Forn> 1

a b c 1
T(n+1)=n! = V2nn" 2"

sin A - sin B - sin C
7 Integrals

7.1 Integrals from 0 to infinity

(o]
f x"e™*dx = n!
0

o0 1
x"e™dx = n! use y = ax
0 an"'].

f x3e¥dx = 3!
0

00 x3
fo e = 1)

Start by multiplying numerator and denominator by e™ using 1lTy =1+y+y?+--- which

® 3N®  nx 00 3 ,—nx iQ o o 1 % 3
becomes£ X Enzle dx or Zn=1£ x°e”™dx, then use z = nx, this gives En:l ﬁ£ ze “dx

o 1
or(3) X _; g or 31£(4)
® 4 1_(1
dx = -T| -
J etae=arfy)
1 1_ o [1_
Startby using x* = yorx = yi.thenj—z = iy(“ 1),now the integral becomes i L y(4 1)6‘?/01]/
and compare this to l; Yy Ve~*dx = T(s)
1

fe‘ﬁdx:f e 2 dx
0 0

Use same method as above. Will get 2I'(2) = 2

core = [ A s>
C(n +1)(nt) = fom exledx n>0
=T
=T
=

c(s):nz:]l; s>1

1 1
C(4):1—4+2—4+¥+"'
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= C(4)T'(4) or (31)C(4)

(e}
f x"e™*dx = n!
0

foo x e dx =T(n) = (n —1)!
0

S . (oe] x3 d ’t 00 x(471)
(6] g1ven£ oy X, Write as£ 1

f use x = asin 8
az_xz

usex =atan6
fx2+ 2

I—f xe~ % dx use u = x?
0

00 1 > 1
I= f e dx usel = — f ey = = I
0 2J o 2V a

ForI = KO x"e™dx or | = f xe ™ dx. If n is even, use the trick of I(a) = f e gy

and repeated I'(a). if n is odd, use I(a) = f xe ™ dx = — (mtegratlon by parts) and
then repeated I’ (a).

GAMMA:

I'(n) = f x" e *dx
0

( ) f xZexdx
0
1

_ 23, then = 1577 and the integral b x7 ety = [ e Qudu) =
use u = x2, then = = ~x 2 an e integra ecomes£ xX2e x—£ -e (Qudu) =

2 fo e Pdu =\
I= f xe ™ sinkx dx
0
I= f xe * cos kx dx
0

For these, we will be given I = ™ ¢=% gin kx dx and then use I (a) = LOO e ™ sin kx dx and
then do the I’(a) method.

7.2 Integrals from -infinity to infinity

f e dx = \n

f e‘”xzdxzdg a>0
f°° ot g = \ /E a>0
oo a

f X~y = | for n even, use the I’(a) method

8 Lorentz transformation

Lorentz transformation is given by

x’ B coshf —sinh@| x
ct’ - —sinh@ cosh@ ||ct
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Where 0 is called the rapidity. Also

Y= x—vt
And
v =ctanh O

9 Rotation matrices and coordinates transformations

Rotation matrix 2D

—cos 6 —-sinf
Rg =
sin@ cos@
Rotation matrix 3D
1 0 0

R.(0) =10 cosO@ -sin0
[0 sinf® cosO |
[ cos® 0 sino)
R,(O)=| 0 1 0
|-sin® 0 cos0,
[c0s6 —sin6 0
R,(0) =|sin® cosO 0
0 0 1)

This is how to find the above. First row, is the projection of x’, y’, z" on x. Second row is
projection of x’,y’,z" on y and so on.

Spherical coordinates

x = rsin 0 cos ¢
y=rsinOsing
z=rcos0

10 Matrices and linear algebra

Commutator is defined as
[M,N] = MN - NM

Where N, M are matrices.

Anti-commutator is when

[M,N], = MN + NM

Two matrices commute means MN-NM = 0. Matrices that commute share an eigenbasis.
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Properties of commutators

[A+B,C]=[A,C]+[B,C]
[A,B+ C] =[A,B] +[B,C]
[A, Al =0
[A%,B] = A[A, B] + [A, B]A
[AB,C] = A[B,C] + [A,C]B
[A, BC] = [A, BIC + B[A, C]

Matrices are generally noncommutative. i.e.

MN # NM

Matrix Inverse
A1 = L AT
|A]"

Where A, is the cofactor matrix.

Matrix inverse satisfies

ATA=T=AA"

Matrix adjoint is same as Transpose for real matrix. If Matrix is complex, then Matrix

adjoint does conjugate in addition to transposing. This is also called dagger.

S A

So dagger is just transpose but for complex, we also do conjugate after transposing. That
is all.

If A;; = Aj; then matrix is symmetric. If A;; = —Aj; then antisymmetric.

Hermitian matrix is one which At = A. If A" = — A then it is antiHermitian.

Any real symmetric matrix is always Hermitian. But for complex matrix, non-symmetric

1 —i
i 2/

Unitary matrix Is one whose dagger is same as its inverse. i.e.

can still be Hermitian. An example is

At =A"
ATA=1
Remember, dagger is just transpose followed by conjugate if complex. Example of uni-
tary matrix is % 1 ; . Determinant of a unitrary matrix must be complex number

whose magnitude is 1.

Also |Av| = o] if A is unitary. This means A maps vector of some norm, to vector which
must have same length as the original vector.

A unitary operator looks the same in any basis.

Orthogonal matrix One which satisfies

AAT =
ATA=1
Al =AT

commute means [MN] = MN — NM. Also [MN], =

00
0 0)
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Another property is that det(e;) = —1. Since they are Hermitian and unitary, then a;! =
a;.

If H is Hermitian, then U = ¢! is unitary.

When moving a number out of a BRA, make sure to complex conjugate it. For example
(3v1|vp) = 3(v1|v,). But for the ket, no need to. For example (v, |3v,) = 3(v;[v,)

item (f|QIg)* = ((QUg) 1f) = (IQTI)
item when moving operator from ket to bra, remember to dagger it. (u|Tv) = (Ttulv)

item if given set of vectors and asked to show L.L, then set up Ax = 0 system, and check
|A|. If determinant is zero, then there exist non-trivial solution, which means Linearly
dependent. Otherwise, L.I.

item if given A, then to represent it in say basis ¢;, we say A,(:'? = {ex, Ae;) = {ex|Ale;). i.e
A11 = ey, Aeq) and A, = (e1, Aey) and so on.

11 Gram-Schmidt

Let the input V4, V5, .-+, V, be a set of n linearly independent vectors. We want to use
Grame-Schmidt to obtain set of n orthonormal vectors, called v;,v,, -+, v,,. The notation
(V1,V3) is used to mean the inner product between any two vectors. The first vector v,
is easy to find777

Vi

- 1 1
VLV M)

The second
vy, = Vy —v1{vq, V)

Where v; means v, but not yet normalized. Before we normalize v}, we need to show
that (v, v5) = 0. But
(v1,05) = vy, (Vo = 01(v1, V3)))

Expanding the above gives
(01,v5) = (v1, Va) = (01,0101, V2))

But (vy, V) above is just a number. We can take it out of the second inner product term
above. The above becomes

(v1,0p) = (01, V) — 01, Vo ){vq,01)

But (vy,v1) =1, since v; is normalized vector. The above becomes

(v1,v5) = vy, Vo) = (v1, V)
=0

Now we normalized v,

&

V{05, 5)

Uy =

Now we find v3

vz = V3 — (0101, V3) + (0, V3))
_ U
V(v3,73)

U3 =

And so on.
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12 Modal analysis

given [X(t)) + M|x(t)) = 0, find the eigenvectors and eigenvalues of M. Then @ = [V;, V,]
is 2 X 2 matrix, transformation matrix. where each column is the eigenvector of M. Then
1X(t)) = @TIx(t)) and |x(t)) = @ |X(t)). The new system becomes |X(f)) + Q|X(t)) = 0
where () is now diagonal matrix with eigenvalues of M on the diagonal. Solve using this.
First transform initial conditions to X(t). Then trandform solution back to |x(t)) using
lx(£)) = P [X(£)).

13 Complex Fourier series and Fourier transform

Given f(x) which is periodic on 0 < x < L, so period is L, then Fourier series is

2n
—-—X

1 & :
flx) ~ — Z c,e T
L n=co
Where
c, = (nlf)
1 fo( ) —inzfnxd
= — x)e X
VL Jo
.n2_n

The basis are |n) = L e and L is the period.

VL

Fourier transform for non periodic f(x) is (sum above becomes integral)

1o
@ =5- [ vk

= j: " fx)e *dx

This gives rise to
1 00 - ’
S —x) = — f k=) g
27

-0

14 RLC circuit

1
V(s) = I(s)(R + Ls + a)

I(s) = %V(s)

R+L5+a

As differential equation for current

1" (t) + 2%1'(» + %I(t) =0
15 Time evaluation of spin state

H=-u-B
B
Ls.

m,

_eBh 1 0
2m,|0 -1
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eBh eBh
The eigenval reE, =—mE_=—m
e eigenvalues are E, om0 E- o,

L d
zhEIX) = H|X)

eBill O
=5 1X)
m.{0 -1

Hence
i[fq(t) _ B [w)}
Ko 2Me | xy(t)
Jisy () = ;j ()
Ty () = — 28,5 )

The solution is
1 .

1 .
X(t) = $€lw

- 1 |et
1X) = G| o

Where y = %

h h
XY =c,lSy = E) +c |5y = _E>
h
¢y =(5 = §|X>
1 1 et
REIRNAN s
V2 2 et
1,. .
— E(ezy/if + e—zyt)
= cosyt
Probability to measure S, = g att > 0is P(t) = |c+|2 = cos® yt. And

h h
X) = c,lS, = ) +elS, = =3)

h
=Sy =—51X)

11 et
=——|-1 1] _
V2 V2 et
1,. .
— E(ez)/t _ elyt)
=isinyt

Probability to measure S, = —Z att > 0is P(t) = |c_|2 = sin® yt



16 Pauli matrices, Spin matrices

Pauli matrices There are 3 of these. They are

1
ordinary vector. Important property is that 0% = [0

(i.e. AT =

01
O+ =
"1 0

There are also sometimes called a,, &

],61 )

0 —i]
) V1
1 0

01 =

b

16

Y &z Not to be confused by component x, y, z of an
= I. Also they are all Hermitians

A). This is obvious for the first and last matrix, since there are symmetric and

real (we know if a matrix is real and also symmetric, it is also Hermitian.). Another

important property is that they are unitary. i.e. A" = A1, Also any two anticommute.
This means [M, N],

= MN + NM.

[ox, ay] = 2io,

For Pauli matrices, [ol,a ] 2i ), €jk0x- Hence

[01,02] = 2io3
[o2,01] = =203
[01,03] = —2i0,
[03,01] = 2io,
[02, 03] = 2i04
[o3, 05] = —2i04

Eigenvalues of Pauli matrices can be only 1, -1.

And Pauli matrices do not commute. This means o,

1 . .
Electron 5 Spin matrices

And using [Si, Sj] =

—iﬁS?, and [52, 53]

Tr(o;) =0

Oy # 0y0y.

Spin matrix | Eigenvalues | Eigenvectors
g _nf0 T |n n A o
o210 | P2 Vil V2|1
S _ﬁ—O —1 hoon L—_i LZ
Y7210 ol |2 2 V2|1 V2|1

sl Of|n & 1 0
5= 272

0 -1 0 1

if Zk €iijk' Hence [Sl, Sz]
= Zhsl and [53, 51] =

[5.8,] =1

[, ]—-
[Sy, S.] = —iS,
[
s

[

] S,
—ihS,

y

S., S, = ihS,
S, sy] =

= lh53 and [51, 53]
—ihSZ and [53, Sz]

= —iﬁSZ and [52, Sl] =
= —ihS;. Hence
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And "
Si = —0;
2
And
012 =1
And
515+ =52 - 5% —hS,
= 12
Stg =52 Sg + 1S,
= K2

Where §2 = Zﬁzl.

Electron 1 spin matrices

Spin matrix Eigenvalues | Eigenvectors
(1] ] [
010 2 V2
Se=—[1 0 1| |1,0,-1 = 0 =
Y o V2 2
010 1 L 1
LE_ hx/i_ -E‘
a2y
0 —i 0 2 2 2
1 . __ -
Sy—$z 0 -i||10,-1 7 0 N
0 1 0 1 L 1
2 | 12l |z
1
1 -1
S;=10 0 $,0,$
0 -1 0
And
S'S, =82-82-nS,
= 12
StS_=82-52+hS,
= K2
200
Where $? = 221 =#2(0 2 0.
00 2

If we are given state vector V and asked to find expectation value when measuring along
x axis, then do (V|S,|V)
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17 Quantum mechanics cheat sheet

17.1 Hermitian operator in function spaces

If Q) is Hermitian operator, then it satisfies

(u|Qfo)* = (v|Qu)
( f u*(x)Q[v(x)]dx) - f " () Qu(x)|dx
f w()Q[o* (0)]dx = f 0 (0)Q[u(x)]dx

d

For this, the boundary terms must vanish. For example, for the operator Q2 = —i—

17.2 Dirac delta relation to integral

1 >~ .
— ipx
o(p) 27 foo erdx

17.3 Normalization condition

f U W, W, Bt = 1

17.4 Expectation (or average value)

If a system is in state of W, then we apply operator A, then the average value of the
observable quantity is the expectation integral

(4) = iy
[ weAwdx
) [ wwax
Note that f_ : W(x)W(x)dx =1 if the state wave function is already normalized.

Given an operator X, acting on W(x, t) then
XW(x,t) = x¥(x,t)

The expectation of measuring x is (assuming everything is normalized)
<X> _ f W, R, £
- [ W, W, £
= <x_>

Given system is in state ¢(x). What is the expectation value for x measurement. Is this
same as writing (X). Yes. it is

(WYlxly)

17.5 Probability

The probability that position x of particle is between x and x + dx is [\W(x, t)[°dx. Hence
W (x, ) is the probability density.

Note that
W) = [ [WweoPdx

@ = [ Wi
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Given |V) = a|W;) + b|W,) then the probabilities to measure a or b are

2
|

|a
Pa) = ———
O
bl*
P(b) = ————
O ir
17.6 Position operator X
eigenvalue/eigenfunction X|x) = x|x) Where x is eigenvalue and [x) is position vector.
(xlx") = 6(x = x')
orthonormal eigenbasis {lx)} — for —oco < x <

[ o dx =1

Vector form to function form | (x|¢’) = (x) probability at position x

Expansion of state vector i) | [¢) = f_ : X" Wx'|pydx" = f_ : Ix" Y (x")dx’

Eigenfunctions in deep well | Not defined for position operator

Operator matrix elements (x|x[x") = x’6(x — x") Operator is diagonal matrix.

17.7 Momentum operator p

eigenvalue/eigenfunction pldy) = plg,) Where p is eigenvalue and |¢,) is momentum eigenstate

(Pplpp) = 5(19 - p’)

orthonormal eigenbasis {lop)t — for —co < p < o0

I 1pXabpldp =1

Vector form to function form (xl(pp) = ¢, (x)

Expansion of state vector [¢) | |¢) = j:: |¢p><¢p|¢)dp

. . _ 1 ipx
General Eigenfunction (xlpp) = qbp(x) = o exp( P )
Operator matrix elements (xlplx") = =iho(x - x’)% Operator is not diagonal matrix.

17.8 Hamilitonian operator
H=T+V

Where T is K.E. operator and V is PE. operator. Recall that p = mvand T = %mvz. Hence

P2

T oom’
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eigenvalue/eigenfunction

)21 g, ) = E i) Where E,, is eigenvalue (energy level)

Orthonormal basis of operator

(Wr, (g, (x)) = 6(E, - Ey)

{1} — .
' I e, Y, | dE =1

forn=1,2,-- (check)

Vector form to function form

(xg,) =Yg, (%)

Expansion of state vector [i)

|1PE> = Zn |1PE,1 ><¢E,, |1P>

Eigenfunctions for deep well problem

O<x<L

2 . nmx
(xlie) = (x) = Vi snl2)

0 otherwise

_ n2ni
2mlL2?

7 =n

Operator matrix elements

K2

2m

(x|Hx') = %mvz +V(x) = 6(x - x’)(% + V(x’)) =8(x - x’)(—

N
dx—,z+V(x))

The ODE for deep well is derived as follows.

2 _hZ 4

But V = Oinsideand T = ”

2m  2m dx2’

2

dx?

Hlyb =E,

2
Hence the above becomes

2 g2

2m dx?

P(x) = E¢(x)

Y00 + o) =0

d2
EIp(x) + k2 Y(x) =0

Where k = ,/ 2;”—2E . The eigenvalues are k, from solving for boundary conditions at x = L.
Now solve as standard second order ODE, with BC ¢(0) = 0,¢(L) = 0. The solution

becomes

Px) = P(x) =

O<x<L

\/%

sin(k,,x)

0 otherwise

. nr
Where eigenvalues are k,, = /= 1,2,3,---
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18.1 Question1

Questions and answers

Problem says that the system is in some general state ¢(x) and asks what is the proba-
bility distribution to measure momentum p ?

solution

The probability is |(qbp|1/))|2. What goes in the bra is the eigenstate being measured. What

goes in the ket is the current state.

@) = [ (@i

= [ gty
= j: N Pp(0) P (x)dx
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ipx

Now, for the deep well problem for 0 < x < L, we should know that ¢,(x) = W f
mth
2 . nnx
and 1(x) will be given. For example {g(x) = LS O<x<l . Hence
0 otherwise

i = [ e 2 o
= e — SIN ——dX
b 0 V2rih L L

Now evaluate this integral and at the end take the square of the modulus. This will give
the probability distribution to measure p. The above was problem 4, in HW?7.

18.2 Question 2

Problem says that the system is in some general state {(x) and asks what is the proba-
bility distribution to measure position x ?

solution

The probability is |<x|¢)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current state.

oy = [ Z<x|x’><x'|¢>dx'
= [ - vy
- ()
Hence prob(x) = |(ly)]” = Ip()P2

18.3 Question 3

Problem says that the system is in some general state yz(x) and asks what is the proba-
bility distribution to measure position x ?

solution

The probability is |<x|¢>|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current or given eigenstate.

L
(xly) = fo G )l

_ f " 5(x = XY ()X’
0

= P(x)
Hence the probability is |¢(x)|2. Now, for the deep well problem for 0 < x < L, we know
2 nmx
=sin— 0 L
that g (1) ={ VI o T ST then
0 otherwise

Is this correct? Checked, yes correct.
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18.4 Question 4

Problem gives that the system is in some general state ¢, (x) (i.e. momentum eigenstate,
not energy eigenstate as above, due to having done momentum measurement done
before) and then problem asks what is the probability distribution to measure position
x?

solution

The probability is |<x|qbp)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current eigenstate.

L
(xlpp) = j; (X[ WX | ydx’

= fL O(x — x)p, (x")dx’
0

= pr(x)
S 2 1
Hence the probability is |qbp(x)| . we know that ¢,(x) = N i then
2
2 1
@[ = |-=e"
|¢p | m

1
- 2mh

Which is constant. So if we measure momentum first, then ask for probability of mea-
suring position x next, it will be the above. Same probability to measure any position?
Is this correct? yes.

18.5 Question 5

Problem gives that the system is in some general state ¢, (x) and asks what is the proba-
bility to measure momentum p’?

The probability of measuring momentum p’ given that system is already in state [¢,) =

b, is [(@yrlh,)| where

plop = [ @pberal,ax
= [ gy g )i
_ f_ " 0 (00, (dx

f"" 1 (—ip’x) 1 (ipx) "
= ex exp| —
Y T N = 7

1 00 i(p - p')x
= % [w exp(—h )dx

but 6(p) = % f_: e'P*dx, therefore 6(;9 - p’) = % f_: ei(p‘p')x,;lx_

Letu = %, then du = %dx. The integral becomes

h 00
<¢p’|‘{bp> = % f;oo el(p_p )udu

= o (2mo(p-p'))

=5(p-p)



19 Position, velocity and acc in different coordinates
system

In polar, just remember these

7= pe,

dr = e,dp + &ypde
L, dr
U= —
t

L dp . do

= ep—t +€¢QE

Givenr = pe,, then

And similarly for a.
7= (p=pd?)e, + (pd +2p9)e,

This is much better than the alternatives.

In Cylindrical
dép = é(Pd(P
dey = —2,d¢
de, =0

dr is different coordinates

Cartessian
dr = dx + &,dy + é,dz
Cylindrical
dr = 2,dp + eppd¢ + ,dz
Spherical

dr = &,dr + 2grd0 + 2,7 sin Od¢

v is different coordinates

Use these for finding Lagrangian.

In Cartessian
Polar

Spherical

- A

U= pe, + pbeg + psin 02,
1 1

23
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20 Gradient, Curl, divergence, Gauss flux law, Stokes

The gradient V is vector operator. In Cartessian

Voo % Lo d Lo d
=e,—+¢,—+&,—
Yox Yoy oz
of
Jx
_|9
Vf= %
of
0z
In Cylindrical
L d . d
V:ep&p+e¢p£+ezo,)z
of
ap
_|,9f
Vi=1p5
2f
0z
In spherical
V=e a+él&+é L 9
" P9p Ppdo Ppsin6dg
2f
ap
_| 1
Vf_ pdo
1 of
psin@%
For conservative force
F=-VV
ice that — [F - d7 = dr= [ dv = Iso pF-dF = 0f
Notice t at—fF- 7= fVV- 7= Jrom V= V(to)—V(from)asoSEP- 7 = 0 for
conservative force.
The curl in Cartessian
ey & &
- 9 9 9
VXF= e (9_y >
F, F, F,
In Cylinderical
e, &y &
= Jd 14 d
VxE=15 5% o
F, Fy F,

In Spherical
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= d 1 J 19

VXS penaas v
F, Fy Fg
Divergence This is scalar. see cha7b.pdf
V-F
Gauss law
From Wiki

It states that the flux of the electric field out of an arbitrary closed surface is proportional to the
electric charge enclosed by the surface.

Gauss'’s law can be used in its differential form, which states that the divergence of the electric
field is proportional to the local density of charge.

surface integral
—N—

ffz‘f-dg =fV(V-F)dV

line integral
—_——

$F-dr :L(wﬁ)m

Also divergence of the curl is zero.

Stoke’s theorem

V-(VxEF)=0
From the net

The characteristic of a conservative field is that the line integral around every simple closed
contour is zero. Since the curl is defined as a particular closed contour line integral, it follows
that curl(gradF) equals zero.

And curl of a gradient is the zero vector.

V x (VF)=0

21 Gas pressure

average speed of gas particles is v, or take avergae of the squares of each particle

velocity and then take the square root at end. Or

_ 3RT
D=—
m
Where R is the gas constant, T is gas absolute temperature and m is molar mass of each
gas particle in kg/mol.

dn
dn = f(v)dv,do,dv,

Where dn is the number denity of gas particles (how many particles per unit volume
with velocity between v and v + dv)



Average speed of particles

f vdn
f dn
_ [ [ [ of @)dv,do,do,

n
1 (o] (o] (o]
- f ) f i f _of (Moo do,

1 270 T 00 )
= EL}:O f@zo L:o vf(v)(02 sm@)dvd@dqb

1 27T T 0o
= —f do sin Qdef f(v)o’do
$=0 0=0 v=0

n

D=

= %(271)(— cos 6)6T :0 f(v)o*do

_ _%(271)(—1 1) f jo Fo)oPdo
_ 47” fv 0:0 F(0)oPdo

Pressure
dF = FldN
(vaz

At
= 2mov?dnAA

)dnAAvZAt

Hence
b [dF
AA

A
=2m f v2dn

=2m f dv, f do, f f(v)tdo,

This integral can be evaluated in spherical coordinates.

net energy density of gas

E:f%mvzdn
g [
:%mfff(v§+v§+v§)dn
] o
= gm f_Zde f_:dvyj::vgf(v)dvz
ZSmJZZdvxf_:dvyﬁwv%f(v)dvz

2
P=-E
3

Hence

And E = gnKT — P = nKT for ideal gas.

22 Table of study guide

26
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chapter

topics

ch7c.pdf

PDE’s, seperation of variables, Lagrangian method

ch7b.pdf

Position, velocity and acc in different coordinates. Gradient, Curl and
Div.

ch7a.pdf

Multivariable calculus. Jacobian. Gravitional field for shell, Pressure
and energy of gas

chéb.pdf

First order ODE’s. Second order Constant coefficients. under,over and
critical damping

chéa.pdf

Second order ODE’s. Variable coefficient. Power series methods. Her-
mite ODE.

ch5c.pdf

Function spaces. Hermitian operators. Complex Fourier series.
Fourier transform. Deep well probem

ch5b.pdf

Linear vector spaces and QM. Probability when making measure-
ments. Commutation. Schrodinger equation. Spin operators Sy, S, S..
Pauli matrices. Time evolution of spin state. Solving mass/spring prob-
lem using normal modes.

ch5a.pdf

Linear vector spaces. Linear independence. Gram-Schmidt. Linear
operators. Finding eigenvalues and eigenvectors for matrices. Coordi-
nates transformation between orthonormal basis.

ch4.pdf

Matrices and Determinants. 2D rotation matrix. Lorentz transforma-
tion. Pauli matrices. Levi-civita. Properties of determinants. Solution
to linear equations. Cramer rule. Dimensional analysis.

ch3.pdf

Complex numbers. Taylor series expansion. Solving x"* = 1. Integrals.
Completing the squares for f ~ el tin? gy Gaussian integral, N slit in-
tererence. Single slit diffraction.

ch2.pdf

Gaussian and exponential integrals. Evaluating Gaussian integral.
(o)

Evaluating L x"e*dx = n!. Zeta function. Gamma function. Ster-

ling formula.

chl.pdf

Taylor series. Convergence test. Taylor series of common functions.
Using Taylor series to find equilibrium point for small oscillations.
Pendulum.

23 Questions

1. Do all spin matrices always have same eigenvalues? this is the case for S,,S,, S,
for electron. NO. depends spin number.

2. How do we get the probability of measuring S, = “Lor Sy = g tobe %? is it because

2

there are two eigenvalues, and it is 50% each? see class notes lecture 5b. page 9.

Answer: Current state vector is |S, = ﬁ>

2/
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h
-)or

. Does the order matter? In page 5, lecture 5B, could we do C, = (S, = ZISZ =3

C. = (5. = 315, = 3) ? Resolved.

2

. Why is (V|S5,|V) gives the The statistical average of measuring S, given current
state vector is |V) ? Resolved.

. Can we just move the H operator to RHS, as in x”” + Mx = 0 instead of x”" = —Mx.
This way no need to work with negative eigenvalues? Yes.

. HW 5, last problem, I do not see how M, N share all the 3 eigenvectors. I get only
one common eigenvector. I also do not understand the comment in my solution
to refer to set of vectors as basis? What does this mean? Also, we know M, N
commute, and so they share a common basis, but the question is asking which
ones they share? Resolved.

. For Pauli matrices, [ai, G]'] = 2i )} €0k and for spin % itis [Si, Sj] = ih 3., €;jxSk- SO

what is it for spin 1? is it still [Si, S]-] =ih Ek €ikSk ? Yes.

. Ithink W(x, t) is just the eigenfunction corresponding to the eigenvalue just mea-
sured. So if the operator used is the position operator X, then it is called W(x). If
the operator used is momentum operator P, we call it ¢,(x), but should it be really
be W,(x)? If the operator is Hamiltonian H, then the eigenvalue is the energy level
E and the W is called Wg(x). Any of these are also called the wave function W(x).
Is this correct? I think so.
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