My study notes

PHYS 3041

 Mathematical Methods for PhysicistsSpring 2021
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Using potential energy 3
2 Sterling approximation 5
3 Taylor series, convergence 6
3.1 Convergence 8
3.2 Closed sums 8
4 Derivatives of inverse trig functions 8
5 Slit interference formulas 9
6 Identities 9
6.0.1 trig and Hyper trig identities 9
6.0.2 GAMMA function 10
6.0.3 Sterling 10
7 Integrals 11
7.1 Integrals from 0 to infinity 11
7.2 Integrals from -infinity to infinity 13
8 Lorentz transformation 13
9 Rotation matrices and coordinates transformations 13
10 Matrices and linear algebra 14
11 Gram-Schmidt 16
12 Modal analysis 17
13 Complex Fourier series and Fourier transform 17
14 RLC circuit 18
15 Time evaluation of spin state 18
16 Pauli matrices, Spin matrices 19
17 Quantum mechanics cheat sheet 23
17.1 Hermitian operator in function spaces 23
17.2 Dirac delta relation to integral 23
17.3 Normalization condition 23
17.4 Expectation (or average value) 23
17.5 Probability 24
17.6 Position operator \hat{x} 24
17.7 Momentum operator \hat{p} 24
17.8 Hamilitonian operator \hat{H} 25
18 Questions and answers 26
18.1 Question 1 26
18.2 Question 2 27
18.3 Question 3 27
18.4 Question 4 28
18.5 Question 5 28
19 Position, velocity and acc in different coordinates system 29
20 Gradient, Curl, divergence, Gauss flux law, Stokes 31
21 Gas pressure 33
22 Table of study guide 35
23 Questions 36
24 Appendix 38

1 Using potential energy

There are two types of problems related to using potential energy. We can be given $V(x)$ but not at the equilibrium point, or given $V(x)$ at the equilibrium point. If $V(x)$ given is not at the equilibrium point, then we first need to find x_{0} which is the equilibrium point. This is done by solving $V^{\prime}(x)=0$. Then expand $V(x)$ near x_{0} using Taylor series and obtain new $V(x)$ which is now centered around x_{0}.

The other type of problem, is where we need to find $V(x)$ at equilibrium, from the physics of the problem. See MC2 as example. For the vertical pendulum problem $V(x)=\frac{1}{2} k x^{2}-$ $m g x$. This is the potential energy at equilibrium.
We need to convert the above to $V(y)=\frac{1}{2} k y^{2}+V(0)$ and only now we can write

$$
F=-V^{\prime}(y)=-m \omega^{2} y
$$

From the above, ω can be found.

$$
\begin{aligned}
k y & =m \omega^{2} y \\
\omega^{2} & =\frac{k}{m}
\end{aligned}
$$

Remember, we can only use $F=-V^{\prime}(y)=-m \omega^{2} y$ when $V(y)$ has form $\frac{1}{2} k y^{2}+V(0)$. Do not use $\frac{1}{2} k x^{2}-m g x$. There should not be linear term in $V(x)$.
$V(y)$ should always be 0 at equilibrium. And $V(y)=\frac{1}{2} m \omega^{2} y^{2}$ so $V^{\prime}(y)=m \omega^{2} y$

$$
\Delta=\frac{m a}{K}
$$

$$
\Delta=\frac{m g}{k}
$$

$$
\text { this is The } \frac{\text { elcostic P.E.ib }}{\text { The spris. }}
$$

Fisis , he
ornibrim
pasinom
s) $V(y)=\frac{1}{2} k y^{2}+X(0)$ potental at $y=0$, whizh is use This to cbtain eqration to motion.

$$
\begin{aligned}
V^{\prime}(y) & =m \omega^{2} y \\
k y & =m \omega^{2} y \\
\omega^{2} & =\frac{k}{m} \Rightarrow \omega=\sqrt{\frac{k}{m}}
\end{aligned}
$$

 vertialdisplant

2 Sterling approximation

$$
\begin{align*}
\int_{0}^{\infty} t^{n} e^{-t} d t & =n! \\
\int_{0}^{\infty} t^{n} e^{-t} d t & =\int_{0}^{\infty} e^{n \ln t} e^{-t} d t \\
& =\int_{0}^{\infty} e^{(n \ln (t)-t)} d t \\
& =\int_{0}^{\infty} e^{f(t)} d t \tag{1}
\end{align*}
$$

Where $f(t)=n \ln (t)-t$. Contribution to integral comes mostly from where $f(t)$ is maximum.

$$
\begin{aligned}
f^{\prime}(t) & =0 \\
\frac{n}{t}-1 & =0 \\
t_{\max } & =n
\end{aligned}
$$

Approximating $f(t)$ around t_{0}

$$
f(t)=f\left(t_{\max }\right)+\left(t-t_{\max }\right) f^{\prime}\left(t_{\max }\right)+\frac{1}{2}\left(t-t_{\max }\right)^{2} f^{\prime \prime}\left(t_{\max }\right)+\cdots
$$

But $f^{\prime}\left(t_{\max }\right)=0$ and $f^{\prime \prime}(t)=-\frac{n}{t^{2}}$. Hence the above becomes

$$
f(t)=f\left(t_{\max }\right)-\frac{1}{2}\left(t-t_{\max }\right)^{2} \frac{n}{t_{\max }^{2}}+\cdots
$$

Replacing $t_{\max }=n$ in the above gives

$$
\begin{align*}
f(t) & =(n \ln (n)-n)-\frac{1}{2}(t-n)^{2} \frac{n}{n^{2}}+\cdots \\
& =(n \ln (n)-n)-\frac{1}{2}(t-n)^{2} \frac{1}{n}+\cdots \tag{2}
\end{align*}
$$

Substituting (2) into (1) gives

$$
\begin{aligned}
n! & \approx \int_{0}^{\infty} e^{(n \ln (n)-n)-\frac{1}{2}(t-n)^{2} \frac{1}{n}} d t \\
& \approx e^{(n \ln (n)-n)} \int_{0}^{\infty} e^{-\frac{1}{2}(t-n)^{2} \frac{1}{n}} d t \\
& \approx n^{n} e^{-n} \int_{0}^{\infty} e^{-\frac{1}{2}(t-n)^{2} \frac{1}{n}} d t
\end{aligned}
$$

Let $u=\frac{t-n}{\sqrt{2 n}}$. When $t=0, u=-\frac{n}{\sqrt{2 n}}$ and when $t=\infty, u=\infty$. And $d u=\frac{1}{\sqrt{2 n}} d t$. The above now becomes

$$
n!\approx n^{n} e^{-n} \int_{-\frac{n}{\sqrt{2 n}}}^{\infty} e^{-u^{2}} \sqrt{2 n} d u
$$

When $n \gg 1$, the lower limit of the integral $\rightarrow-\infty$. Hence

$$
\begin{aligned}
n! & \approx n^{n} e^{-n} \int_{-\infty}^{\infty} e^{-u^{2}} \sqrt{2 n} d u \\
& \approx \sqrt{2 n} n^{n} e^{-n} \sqrt{\pi} \\
& \approx \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
\end{aligned}
$$

3 Taylor series, convergence

Used to approximate function $f(x)$ at some x knowing its values and all its derivatives at some point x_{0}, called the expansion point.

$$
\begin{gathered}
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right)+\cdots \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
\end{gathered}
$$

To find series for $\ln (1+x)$, do this

$$
\begin{aligned}
\int \frac{1}{1+x} d x & =\ln (1+x)+C \\
\int\left(1-x+x^{2}-x^{3}+\cdots\right) d x & =\ln (1+x)+C \\
x-\frac{x^{2}}{2}+\frac{x^{3}}{3!}-\cdots & =\ln (1+x)+C \quad|x|<1
\end{aligned}
$$

To find C, let $x=0$. Hence $0=\ln (1)+C$. So $C=-\ln (1)$. Therefore

$$
\ln (1+x)=\ln (1)+x-\frac{x^{2}}{2}+\frac{x^{3}}{3!}-\cdots \quad|x|<1
$$

And

$$
\begin{aligned}
& \int \frac{1}{1-x} d x=-\ln (1-x)+C \\
&-\int\left(1+x+x^{2}+x^{3}+\cdots\right) d x=\ln (1-x)+C \\
&-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)=\ln (1-x)+C \\
&-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+\cdots=\ln (1-x)+C \quad|x|<1
\end{aligned}
$$

To find C, let $x=0$. Hence $0=\ln (1)+C$. So $C=-\ln (1)$. Therefore

$$
\ln (1-x)=\ln (1)-x-\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\cdots
$$

And $\ln (1+2 x)$ series is found as follows

$$
\begin{aligned}
\int \frac{1}{1+2 x} d x & =\frac{1}{2} \ln (1+2 x)+C \\
\int\left(1-2 x+(2 x)^{2}-(2 x)^{3}+\cdots\right) d x & =\frac{1}{2} \ln (1+2 x)+C \\
\left(x-\frac{2 x^{2}}{2}+\frac{4 x^{3}}{3}-\frac{8 x^{4}}{4} \cdots\right) & =\frac{1}{2} \ln (1+2 x)+C \quad|x|<1
\end{aligned}
$$

To find C, let $x=0$. Hence $0=\ln (1)+C$. So $C=-\ln (1)$. Therefore

$$
\ln (1+2 x)=2 \ln (1)+2\left(x-\frac{2 x^{2}}{2}+\frac{4 x^{3}}{3}-\frac{8 x^{4}}{4} \cdots\right)
$$

And

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\tan x & =x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\cdots
\end{aligned}
$$

Some others

$$
\begin{array}{rlrl}
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+\cdots & & |x|<1 \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots & & |x|<1 \\
(1+x)^{a} & =\sum\binom{a}{n} x^{n} &
\end{array}
$$

Where $\binom{a}{n}$ is binomial coefficient $\binom{a}{n}=\frac{a!}{n!(a-n)!}$. General Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

This works for positive and negative n, rational or not. The sum converges only for $|x|<1$.
So, for $n=-1$ the above becomes

$$
\frac{1}{(1+x)}=1-x+x^{2}-x^{3}+\cdots
$$

And

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

And

$$
(1+x)^{p}=1+p x+p(p-1) x^{2} \cdots
$$

For small x the above approximates to

$$
(1+x)^{p}=1+p x
$$

3.1 Convergence

First test, check if $\lim _{n \rightarrow \infty} a_{n}$ goes to zero. If not, then no need to do anything. Series does not converge. Then use ratio test. If

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

Then converges. if result is >1 then diverges. If result is one, then more testing is needed. If converges, then radius of convergence R is

$$
\begin{aligned}
& R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \\
&|x|<R
\end{aligned}
$$

3.2 Closed sums

$$
\begin{aligned}
& \sum_{n=1}^{N} n=\frac{1}{2} N(N+1) \\
& \sum_{n=1}^{N} a_{n}=N\left(\frac{a_{1}+a_{N}}{2}\right)
\end{aligned}
$$

i.e. the sum is N times the arithmetic mean.

Geometric series.

$$
\begin{aligned}
S & =a+a r+a r^{2}+a r^{3}+\cdots \\
& =\sum_{k=0}^{N} a r^{k} \\
& =a\left(\frac{1-r^{N+1}}{1-r}\right)
\end{aligned}
$$

For $|r|<1$

$$
S=\frac{a}{1-r}
$$

4 Derivatives of inverse trig functions

To find $\underline{y=\arcsin (x)}$, always write as $x=\sin (y)$. Then $\frac{d x}{d y}=\cos (y)=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}}$. Then $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$, Hence

$$
\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}
$$

To find $y=\arccos (x)$, write as $x=\cos (y)$. Then $\frac{d x}{d y}=-\sin (y)=-\sqrt{1-\cos ^{2} y}=-\sqrt{1-x^{2}}$. Then $\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$, Hence

$$
\frac{d}{d x} \arccos (x)=\frac{-1}{\sqrt{1-x^{2}}}
$$

To find $\underline{y=\arctan (x)}$, write as $x=\tan (y)$. Then $\frac{d x}{d y}=\frac{1}{\cos ^{2} y}$, now need to use trick that $\cos ^{2} y+\sin ^{2} y=1$ and divide both sides by $\cos ^{2} y$, hence $1+\tan ^{2} y=\frac{1}{\cos ^{2} y}$. Then $\frac{d x}{d y}=$ $1+\tan ^{2} y$. Hence $\frac{d y}{d x}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}}$. Therefore

$$
\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}
$$

5 Slit interference formulas

k is wave number.

$$
k=\frac{2 \pi}{\lambda}
$$

6 Identities

6.0.1 trig and Hyper trig identities

$$
\cos (i \theta)=\cosh (\theta)
$$

$$
\sin (i \theta)=i \sinh (\theta)
$$

$$
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

$$
\tan ^{2}(\theta)=\frac{1}{\cos ^{2}(\theta)}-1
$$

$$
=\sec ^{2}(\theta)-1
$$

$$
\frac{\cos ^{2}(\theta)}{\sin ^{2}(\theta)}+1=\frac{1}{\sin ^{2}(\theta)}
$$

$$
\frac{1}{\tan ^{2}(\theta)}=\frac{1}{\sin ^{2}(\theta)}-1
$$

$$
\cot ^{2}(\theta)=\csc ^{2}(\theta)-1
$$

$$
\cosh ^{2}(\theta)-\sinh ^{2}(\theta)=1
$$

$$
\begin{aligned}
\sin (2 \theta) & =2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta) & =\cos ^{2}(\theta)-\sin ^{2}(\theta) \\
& =2 \cos ^{2}(\theta)-1 \\
& =1-2 \sin ^{2}(\theta) \\
\tan (2 \theta) & =\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)} \\
\sinh (2 \theta) & =2 \sinh (\theta) \cosh (\theta) \\
\cosh (2 \theta) & =2 \cosh ^{2}(\theta)-1 \\
\tanh (2 \theta) & =\frac{2 \tanh (\theta)}{1+\tanh ^{2}(\theta)}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\sin (A-B) & =\sin A \cos B-\cos A \sin B \\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\tan (A-B) & =\frac{\tan A+\tan B}{1+\tan A \tan B} \\
\sin ^{2}(\theta) & =\frac{1}{2}(1-\cos (2 \theta)) \\
\cos ^{2}(\theta) & =\frac{1}{2}(1+\cos (2 \theta)) \\
\tan 2(\theta) & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\
\sin A+\sin B & =2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
\sin A-\sin B & =2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right) \\
\cos A+\cos B & =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
\cos A-\cos B & =-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
\sin A \sin B & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\cos A \cos B & =\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\
\sin A \cos B & =\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\
\cos A \sin B & =\frac{1}{2}(\sin (A+B)-\sin (A-B)) \\
\sin (A+B
\end{array}\right)
$$

$$
\begin{aligned}
a \cos (\omega t)+b \sin (\omega t) & =A \sin (\omega t+\phi) \\
& =A \cos (\omega t-\phi) \\
A & =\sqrt{a^{2}+b^{2}} \\
\phi & =\arctan \left(\frac{B}{A}\right) \\
\cos x+\sin x & =\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \\
\cos x+\sin x & =\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)
\end{aligned}
$$

Laws of sines (a, b, c) are lengths of triangle sides and A, B, C are facing angles.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

laws of cosine

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

6.0.2 GAMMA function

$$
\begin{aligned}
\Gamma(n) & =(n-1)! \\
\Gamma(n+1) & =n(n-1)! \\
& =n \Gamma(n)
\end{aligned}
$$

6.0.3 Sterling

For $n \gg 1$

$$
\Gamma(n+1)=n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

7 Integrals

7.1 Integrals from 0 to infinity

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-x} d x=n! \\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=n!\frac{1}{a^{n+1}} \quad \text { use } y=a x \\
& \int_{0}^{\infty} x^{3} e^{-x} d x=3! \\
& \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x=3!\xi(4)
\end{aligned}
$$

Start by multiplying numerator and denominator by e^{-x} using $\frac{1}{1-y}=1+y+y^{2}+\cdots$ which becomes $\int_{0}^{\infty} x^{3} \sum_{n=1}^{\infty} e^{-n x} d x$ or $\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{3} e^{-n x} d x$, then use $z=n x$, this gives $\sum_{n=1}^{\infty} \frac{1}{n^{4}} \int_{0}^{\infty} z^{3} e^{-z} d x$ or (3!) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ or 3! $\xi(4)$

$$
\int_{0}^{\infty} e^{-x^{4}} d x=\frac{1}{4} \Gamma\left(\frac{1}{4}\right)
$$

Start by using $x^{4}=y$ or $x=y^{\frac{1}{4}}$. then $\frac{d y}{d x}=\frac{1}{4} y^{\left(\frac{1}{4}-1\right)}$, now the integral becomes $\frac{1}{4} \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y$ and compare this to $\int_{0}^{\infty} y^{(s-1)} e^{-x} d x=\Gamma(s)$

$$
\int_{0}^{\infty} e^{-\sqrt{x}} d x=\int_{0}^{\infty} e^{-x^{\frac{1}{2}}} d x
$$

Use same method as above. Will get $2 \Gamma(2)=2$

$$
\begin{array}{rlr}
\zeta(s) \Gamma(s) & =\int_{0}^{\infty} \frac{x^{(s-1)}}{e^{x}-1} d x \quad s>1 \\
\zeta(n+1)(n!) & =\int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x \quad n>0 \\
\zeta(2) & =\frac{\pi^{2}}{6} \\
\zeta(4) & =\frac{\pi^{4}}{90} \\
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad s>1 \\
\zeta(4) & =\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots
\end{array}
$$

So given $\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x$, write as $\int_{0}^{\infty} \frac{x^{(4-1)}}{e^{x}-1} d x=\zeta(4) \Gamma(4)$ or $(3!) \zeta(4)$

$$
\begin{gathered}
\int_{0}^{\infty} x^{n} e^{-x} d x=n! \\
\int_{0}^{\infty} x^{1-n} e^{-x} d x=\Gamma(n)=(n-1)! \\
I=\int \frac{d x}{\sqrt{a^{2}-x^{2}}} \quad \text { use } x=a \sin \theta \\
I=\int \frac{d x}{x^{2}+a^{2}} \quad \text { use } x=a \tan \theta \\
I=\int_{0}^{\infty} x e^{-a x^{2}} d x \quad \text { use } u=x^{2} \\
I=\int_{0}^{\infty} e^{-a x^{2}} d x \quad \text { use } I=\frac{1}{2} \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}
\end{gathered}
$$

For $I=\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x$ or $I=\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x$. If n is even, use the trick of $I(a)=\int_{-\infty}^{\infty} e^{-a x^{2}} d x$ and repeated $I^{\prime}(a)$. if n is odd, use $I(a)=\int_{-\infty}^{\infty} x e^{-a x^{2}} d x=\frac{1}{2 a}$ (integration by parts) and then repeated $I^{\prime}(a)$.
GAMMA:

$$
\begin{aligned}
\Gamma(n) & =\int_{0}^{\infty} x^{n-1} e^{-x} d x \\
\Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty} x^{\frac{-1}{2}} e^{-x} d x
\end{aligned}
$$

use $u=x^{\frac{1}{2}}$, then $\frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}}$ and the integral becomes $\int_{0}^{\infty} x^{\frac{-1}{2}} e^{-x} d x=\int_{0}^{\infty} \frac{1}{u} e^{-u^{2}}(2 u d u)=$ $2 \int_{0}^{\infty} e^{-u^{2}} d u=\sqrt{\pi}$

$$
\begin{aligned}
& I=\int_{0}^{\infty} x e^{-a x} \sin k x d x \\
& I=\int_{0}^{\infty} x e^{-a x} \cos k x d x
\end{aligned}
$$

For these, we will be given $I=\int_{0}^{\infty} e^{-a x} \sin k x d x$ and then use $I(a)=\int_{0}^{\infty} e^{-a x} \sin k x d x$ and then do the $I^{\prime}(a)$ method.

7.2 Integrals from -infinity to infinity

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-x^{2}} d x & =\sqrt{\pi} \\
\int_{-\infty}^{\infty} e^{-a x^{2}} d x & =\sqrt{\frac{\pi}{a}} \quad a>0 \\
\int_{-\infty}^{\infty} e^{-a(x+b)^{2}} d x & =\sqrt{\frac{\pi}{a}} \quad a>0 \\
\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x & =I \quad \text { for } n \text { even, use the } I^{\prime}(a) \text { method }
\end{aligned}
$$

8 Lorentz transformation

$\underline{\text { Lorentz transformation is given by }}$

$$
\binom{x^{\prime}}{c t^{\prime}}=\left(\begin{array}{cc}
\cosh \theta & -\sinh \theta \\
-\sinh \theta & \cosh \theta
\end{array}\right)\binom{x}{c t}
$$

Where θ is called the rapidity. Also

$$
\begin{aligned}
x^{\prime} & =\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
t^{\prime} & =\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

And

$$
v=c \tanh \theta
$$

9 Rotation matrices and coordinates transformations

$\underline{\text { Rotation matrix 2D }}$

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Rotation matrix 3D

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

This is how to find the above. First row, is the projection of $x^{\prime}, y^{\prime}, z^{\prime}$ on x. Second row is projection of $x^{\prime}, y^{\prime}, z^{\prime}$ on y and so on.
$\underline{\text { Spherical coordinates }}$

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

10 Matrices and linear algebra

Commutator is defined as

$$
[M, N]=M N-N M
$$

Where N, M are matrices.
Anti-commutator is when

$$
[M, N]_{+}=M N+N M
$$

Two matrices commute means $M N-N M=0$. Matrices that commute share an eigenbasis.
Properties of commutators

$$
\begin{aligned}
{[A+B, C] } & =[A, C]+[B, C] \\
{[A, B+C] } & =[A, B]+[B, C] \\
{[A, A] } & =0 \\
{\left[A^{2}, B\right] } & =A[A, B]+[A, B] A \\
{[A B, C] } & =A[B, C]+[A, C] B \\
{[A, B C] } & =[A, B] C+B[A, C]
\end{aligned}
$$

Matrices are generally noncommutative. i.e.

$$
M N \neq N M
$$

Matrix Inverse

$$
A^{-1}=\frac{1}{|A|} A_{c}^{T}
$$

Where A_{c} is the cofactor matrix.
Matrix inverse satisfies

$$
A^{-1} A=I=A A^{-1}
$$

Matrix adjoint is same as Transpose for real matrix. If Matrix is complex, then Matrix adjoint does conjugate in addition to transposing. This is also called dagger.

$$
A_{i j}^{\dagger}=A_{j i}^{*}
$$

So dagger is just transpose but for complex, we also do conjugate after transposing. That is all.

If $A_{i j}=A_{j i}$ then matrix is symmetric. If $A_{i j}=-A_{j i}$ then antisymmetric.
Hermitian matrix is one which $A^{\dagger}=A$. If $A^{\dagger}=-A$ then it is antiHermitian.
Any real symmetric matrix is always Hermitian. But for complex matrix, non-symmetric can still be Hermitian. An example is $\left(\begin{array}{cc}1 & -i \\ i & 2\end{array}\right)$.
Unitary matrix Is one whose dagger is same as its inverse. i.e.

$$
\begin{aligned}
A^{+} & =A^{-1} \\
A^{\dagger} A & =I
\end{aligned}
$$

Remember, dagger is just transpose followed by conjugate if complex. Example of unitary matrix is $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$. Determinant of a unitrary matrix must be complex number whose magnitude is 1.

Also $|A v|=|v|$ if A is unitary. This means A maps vector of some norm, to vector which must have same length as the original vector.
A unitary operator looks the same in any basis.
Orthogonal matrix One which satisfies

$$
\begin{aligned}
A A^{T} & =I \\
A^{T} A & =I \\
A^{-1} & =A^{T}
\end{aligned}
$$

Another property is that $\operatorname{det}\left(\alpha_{i}\right)=-1$. Since they are Hermitian and unitary, then $\alpha_{i}^{-1}=\alpha_{i}$. If H is Hermitian, then $U=e^{i H}$ is unitary.

When moving a number out of a BRA, make sure to complex conjugate it. For example $\left\langle 3 v_{1} \mid v_{2}\right\rangle=3^{*}\left\langle v_{1} \mid v_{2}\right\rangle$. But for the ket, no need to. For example $\left\langle v_{1} \mid 3 v_{2}\right\rangle=3\left\langle v_{1} \mid v_{2}\right\rangle$
item $\langle f| \Omega|g\rangle^{*}=\left\langle(\Omega \mid g)^{*} \mid f\right\rangle=\langle g| \Omega^{\dagger}|f\rangle$
item when moving operator from ket to bra, remember to dagger it. $\langle u \mid T v\rangle=\left\langle T^{\dagger} u \mid v\right\rangle$
item if given set of vectors and asked to show L.I., then set up $A x=0$ system, and check $|A|$. If determinant is zero, then there exist non-trivial solution, which means Linearly dependent. Otherwise, L.I.
$\underline{\text { item }}$ if given A, then to represent it in say basis e_{i}, we say $A_{k i}^{(e)}=\left\langle e_{k}, A e_{i}\right\rangle=\left\langle e_{k}\right| A\left|e_{i}\right\rangle$. i.e $A_{1,1}=\left\langle e_{1}, A e_{1}\right\rangle$ and $A_{1,2}=\left\langle e_{1}, A e_{2}\right\rangle$ and so on.

11 Gram-Schmidt

Let the input $V_{1}, V_{2}, \cdots, V_{n}$ be a set of n linearly independent vectors. We want to use Grame-Schmidt to obtain set of n orthonormal vectors, called $v_{1}, v_{2}, \cdots, v_{n}$. The notation $\left\langle V_{1}, V_{2}\right\rangle$ is used to mean the inner product between any two vectors. The first vector v_{1} is easy to find777

$$
\begin{equation*}
v_{1}=\frac{V_{1}}{\sqrt{\left\langle V_{1}, V_{1}\right\rangle}} \tag{1}
\end{equation*}
$$

The second

$$
v_{2}^{\prime}=V_{2}-v_{1}\left\langle v_{1}, V_{2}\right\rangle
$$

Where v_{2}^{\prime} means v_{2} but not yet normalized. Before we normalize v_{2}^{\prime}, we need to show that $\left\langle v_{1}, v_{2}^{\prime}\right\rangle=0$. But

$$
\left\langle v_{1}, v_{2}^{\prime}\right\rangle=\left\langle v_{1},\left(V_{2}-v_{1}\left\langle v_{1}, V_{2}\right\rangle\right)\right\rangle
$$

Expanding the above gives

$$
\left\langle v_{1}, v_{2}^{\prime}\right\rangle=\left\langle v_{1}, V_{2}\right\rangle-\left\langle v_{1}, v_{1}\left\langle v_{1}, V_{2}\right\rangle\right\rangle
$$

But $\left\langle v_{1}, V_{2}\right\rangle$ above is just a number. We can take it out of the second inner product term above. The above becomes

$$
\left\langle v_{1}, v_{2}^{\prime}\right\rangle=\left\langle v_{1}, V_{2}\right\rangle-\left\langle v_{1}, V_{2}\right\rangle\left\langle v_{1}, v_{1}\right\rangle
$$

But $\left\langle v_{1}, v_{1}\right\rangle=1$, since v_{1} is normalized vector. The above becomes

$$
\begin{aligned}
\left\langle v_{1}, v_{2}^{\prime}\right\rangle & =\left\langle v_{1}, V_{2}\right\rangle-\left\langle v_{1}, V_{2}\right\rangle \\
& =0
\end{aligned}
$$

Now we normalized v_{2}^{\prime}

$$
v_{2}=\frac{v_{2}^{\prime}}{\sqrt{\left\langle v_{2}^{\prime}, v_{2}^{\prime}\right\rangle}}
$$

Now we find v_{3}

$$
\begin{aligned}
& v_{3}^{\prime}=V_{3}-\left(v_{1}\left\langle v_{1}, V_{3}\right\rangle+v_{2}\left\langle v_{2}, V_{3}\right\rangle\right) \\
& v_{3}=\frac{v_{3}^{\prime}}{\sqrt{\left\langle v_{3}^{\prime}, v_{3}^{\prime}\right\rangle}}
\end{aligned}
$$

And so on.

12 Modal analysis

given $|\ddot{x}(t)\rangle+M|x(t)\rangle=0$, find the eigenvectors and eigenvalues of M. Then $\Phi=\left[V_{2}, V_{2}\right]$ is 2×2 matrix, transformation matrix. where each column is the eigenvector of M. Then $|X(t)\rangle=\Phi^{T}|x(t)\rangle$ and $|x(t)\rangle=\Phi|X(t)\rangle$. The new system becomes $|\ddot{X}(t)\rangle+\Omega|X(t)\rangle=0$ where Ω is now diagonal matrix with eigenvalues of M on the diagonal. Solve using this. First transform initial conditions to $X(t)$. Then trandform solution back to $|x(t)\rangle$ using $|x(t)\rangle=\Phi$ $|X(t)\rangle$.

13 Complex Fourier series and Fourier transform

Given $f(x)$ which is periodic on $0<x<L$, so period is L, then Fourier series is

$$
f(x) \sim \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} c_{n} e^{i n \frac{2 \pi}{L} x}
$$

Where

$$
\begin{aligned}
c_{n} & =\langle n \mid f\rangle \\
& =\frac{1}{\sqrt{L}} \int_{0}^{L} f(x) e^{-i n \frac{2 \pi}{L} x} d x
\end{aligned}
$$

The basis are $|n\rangle=\frac{1}{\sqrt{L}} e^{-i n \frac{2 \pi}{L} x}$ and L is the period.
Fourier transform for non periodic $f(x)$ is (sum above becomes integral)

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} c_{k} e^{i k x} d k \\
c_{k} & =\int_{-\infty}^{\infty} f(x) e^{-i k x} d x
\end{aligned}
$$

This gives rise to

$$
\delta\left(x-x^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} d k
$$

14 RLC circuit

$$
\begin{aligned}
& V(s)=I(s)\left(R+L s+\frac{1}{C s}\right) \\
& I(s)=\frac{1}{R+L s+\frac{1}{C s}} V(s)
\end{aligned}
$$

As differential equation for current

$$
I^{\prime \prime}(t)+2 \frac{R}{2 L} I^{\prime}(t)+\frac{1}{L C} I(t)=0
$$

15 Time evaluation of spin state

$$
\begin{aligned}
H & =-\mu \cdot B \\
& =\frac{e B}{m_{e}} S_{z} \\
& =\frac{e B \hbar}{2 m_{e}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

The eigenvalues are $E_{+}=\frac{e B \hbar}{2 m_{e}} m, E_{-}=-\frac{e B \hbar}{2 m_{e}} m$

$$
\begin{aligned}
i \hbar \frac{d}{d t}|X\rangle & =H|X\rangle \\
& =\frac{e B \hbar}{2 m_{e}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)|X\rangle
\end{aligned}
$$

Hence

$$
\begin{aligned}
i\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] & =\frac{e B}{2 m_{e}}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \\
\hbar \dot{x}_{1}(t) & =\frac{e B}{2 m_{e}} x_{1}(t) \\
\hbar \dot{x}_{2}(t) & =-\frac{e B}{2 m_{e}} x_{2}(t)
\end{aligned}
$$

The solution is

$$
\begin{aligned}
& x_{1}(t)=\frac{1}{\sqrt{2}} e^{-i \gamma t} \\
& x_{2}(t)=\frac{1}{\sqrt{2}} e^{i \gamma t}
\end{aligned}
$$

Or

$$
|X\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
e^{-i \gamma t} \\
e^{i \gamma t}
\end{array}\right]
$$

Where $\gamma=\frac{e B}{2 m_{e}}$

$$
\begin{aligned}
|X\rangle & =c_{+}\left|S_{x}=\frac{\hbar}{2}\right\rangle+c_{-}\left|S_{x}=-\frac{\hbar}{2}\right\rangle \\
c_{+} & =\left\langle\left. S_{x}=\frac{\hbar}{2} \right\rvert\, X\right\rangle \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
e^{-i \gamma t} \\
e^{i \gamma t}
\end{array}\right] \\
& =\frac{1}{2}\left(e^{i \gamma t}+e^{-i \gamma t}\right) \\
& =\cos \gamma t
\end{aligned}
$$

Probability to measure $S_{x}=\frac{\hbar}{2}$ at $t>0$ is $P(t)=\left|c_{+}\right|^{2}=\cos ^{2} \gamma t$. And

$$
\begin{aligned}
|X\rangle & =c_{+}\left|S_{x}=\frac{\hbar}{2}\right\rangle+c_{-}\left|S_{x}=-\frac{\hbar}{2}\right\rangle \\
c_{-} & =\left\langle\left. S_{x}=-\frac{\hbar}{2} \right\rvert\, X\right\rangle \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{c}
e^{-i \gamma t} \\
e^{i \gamma t}
\end{array}\right] \\
& =\frac{1}{2}\left(e^{i \gamma t}-e^{i \gamma t}\right) \\
& =i \sin \gamma t
\end{aligned}
$$

Probability to measure $S_{x}=-\frac{\hbar}{2}$ at $t>0$ is $P(t)=\left|c_{-}\right|^{2}=\sin ^{2} \gamma t$

16 Pauli matrices, Spin matrices

Pauli matrices There are 3 of these. They are

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{1}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

There are also sometimes called $\alpha_{x}, \alpha_{y}, \alpha_{z}$. Not to be confused by component x, y, z of an ordinary vector. Important property is that $\sigma_{i}^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$. Also they are all Hermitians (i.e. $A^{\dagger}=A$). This is obvious for the first and last matrix, since there are symmetric and real (we know if a matrix is real and also symmetric, it is also Hermitian.). Another important property is that they are unitary. i.e. $A^{+}=A^{-1}$. Also any two anticommute. This means $[M, N]_{+}=M N+N M$.

$$
\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}
$$

For Pauli matrices, $\left[\sigma_{i}, \sigma_{j}\right]=2 i \sum \epsilon_{i j k} \sigma_{k}$. Hence

$$
\begin{aligned}
& {\left[\sigma_{1}, \sigma_{2}\right]=2 i \sigma_{3}} \\
& {\left[\sigma_{2}, \sigma_{1}\right]=-2 i \sigma_{3}} \\
& {\left[\sigma_{1}, \sigma_{3}\right]=-2 i \sigma_{2}} \\
& {\left[\sigma_{3}, \sigma_{1}\right]=2 i \sigma_{2}} \\
& {\left[\sigma_{2}, \sigma_{3}\right]=2 i \sigma_{1}} \\
& {\left[\sigma_{3}, \sigma_{2}\right]=-2 i \sigma_{1}}
\end{aligned}
$$

Eigenvalues of Pauli matrices can be only 1,-1.

$$
\operatorname{Tr}\left(\sigma_{i}\right)=0
$$

And Pauli matrices do not commute. This means $\sigma_{x} \sigma_{y} \neq \sigma_{y} \sigma_{x}$.
$\underline{\text { Electron } \frac{1}{2} \text { spin matrices }}$

Spin matrix	Eigenvalues	Eigenvectors
$S_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\frac{\hbar}{2},-\frac{\hbar}{2}$	$\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
$S_{y}=\frac{\hbar}{2}\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$	$\frac{\hbar}{2},-\frac{\hbar}{2}$	$\frac{1}{\sqrt{2}}\left[\begin{array}{c}-i \\ 1\end{array}\right] \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}i \\ 1\end{array}\right]$
$S_{z}=\frac{\hbar}{2}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$	$\frac{\hbar}{2},-\frac{\hbar}{2}$	$\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad\left[\begin{array}{l}0 \\ 1\end{array}\right]$

And using $\left[S_{i}, S_{j}\right]=i \hbar \Sigma_{k} \epsilon_{i j k} S_{k}$. Hence $\left[S_{1}, S_{2}\right]=i \hbar S_{3}$ and $\left[S_{1}, S_{3}\right]=-i \hbar S_{2}$ and $\left[S_{2}, S_{1}\right]=$
$-i \hbar S_{3}$ and $\left[S_{2}, S_{3}\right]=i \hbar S_{1}$ and $\left[S_{3}, S_{1}\right]=-i \hbar S_{2}$ and $\left[S_{3}, S_{2}\right]=-i \hbar S_{1}$. Hence

$$
\begin{aligned}
& {\left[S_{x}, S_{y}\right]=i \hbar S_{z}} \\
& {\left[S_{y}, S_{x}\right]=-i \hbar S_{z}} \\
& {\left[S_{x}, S_{z}\right]=-i \hbar S_{y}} \\
& {\left[S_{z}, S_{x}\right]=i \hbar S_{y}} \\
& {\left[S_{y}, S_{z}\right]=i \hbar S_{x}} \\
& {\left[S_{z}, S_{y}\right]=-i \hbar S_{x}}
\end{aligned}
$$

And

$$
S_{i}=\frac{\hbar}{2} \sigma_{i}
$$

And

$$
\sigma_{i}^{2}=I
$$

And

$$
\begin{aligned}
S_{+}^{\dagger} S_{+} & =S^{2}-S_{z}^{2}-\hbar S_{z} \\
& =\hbar^{2} \\
S_{-}^{+} S_{-} & =S^{2}-S_{z}^{2}+\hbar S_{z} \\
& =\hbar^{2}
\end{aligned}
$$

Where $S^{2}=\frac{3}{4} \hbar^{2} I$.
$\underline{\text { Electron } 1 \text { spin matrices }}$

Spin matrix	Eigenvalues	Eigenvectors
$S_{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$	1,0,-1	$\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2}\end{array}\right]\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right] \quad\left[\begin{array}{c}\frac{1}{2} \\ \frac{-1}{\sqrt{2}} \\ \frac{1}{2}\end{array}\right]$
$S_{y}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0\end{array}\right]$	1,0,-1	$\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{i}{\sqrt{2}} \\ \frac{1}{2}\end{array}\right] \quad\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right] \quad\left[\begin{array}{c}-\frac{1}{2} \\ \frac{i}{\sqrt{2}} \\ \frac{1}{2}\end{array}\right]$
$S_{z}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$	$\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}$	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \quad\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

And

$$
\begin{aligned}
S_{+}^{\dagger} S_{+} & =S^{2}-S_{z}^{2}-\hbar S_{z} \\
& =\hbar^{2} \\
S_{-}^{\dagger} S_{-} & =S^{2}-S_{z}^{2}+\hbar S_{z} \\
& =\hbar^{2}
\end{aligned}
$$

Where $S^{2}=2 \hbar^{2} I=\hbar^{2}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
If we are given state vector V and asked to find expectation value when measuring along $\overline{x \text { axis, then do }}\langle V| S_{x}|V\rangle$

17 Quantum mechanics cheat sheet

17.1 Hermitian operator in function spaces

If Ω is Hermitian operator, then it satisfies

$$
\begin{aligned}
\langle u| \Omega|v\rangle^{*} & =\langle v| \Omega|u\rangle \\
\left(\int u^{*}(x) \Omega[v(x)] d x\right)^{*} & =\int v^{*}(x) \Omega[u(x)] d x \\
\int u(x) \Omega\left[v^{*}(x)\right] d x & =\int v^{*}(x) \Omega[u(x)] d x
\end{aligned}
$$

For this, the boundary terms must vanish. For example, for the operator $\Omega=-i \frac{d}{d x}$

17.2 Dirac delta relation to integral

$$
\delta(p)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i p x} d x
$$

17.3 Normalization condition

$$
\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d t=1
$$

17.4 Expectation (or average value)

If a system is in state of Ψ, then we apply operator \hat{A}, then the average value of the observable quantity is the expectation integral

$$
\begin{aligned}
\langle\hat{A}\rangle & =\langle\psi| \hat{A}|\psi\rangle \\
& =\frac{\int_{-\infty}^{\infty} \Psi^{*} \hat{A} \Psi d x}{\int_{-\infty}^{\infty} \Psi \Psi d x}
\end{aligned}
$$

Note that $\int_{-\infty}^{\infty} \Psi(x) \Psi(x) d x=1$ if the state wave function is already normalized.
Given an operator \hat{X}, acting on $\Psi(x, t)$ then

$$
\hat{X} \Psi(x, t)=x \Psi(x, t)
$$

The expectation of measuring x is (assuming everything is normalized)

$$
\begin{aligned}
\langle\hat{X}\rangle & =\int_{-\infty}^{\infty} \Psi^{*}(x, t) \hat{X} \Psi(x, t) d x \\
& =\int_{-\infty}^{\infty} \Psi^{*}(x, t) x \Psi(x, t) d x \\
& =\langle x\rangle
\end{aligned}
$$

Given system is in state $\psi(x)$. What is the expectation value for x measurement. Is this same as writing $\langle X\rangle$. Yes. it is

$$
\langle\psi| x|\psi\rangle
$$

17.5 Probability

The probability that position x of particle is between x and $x+d x$ is $|\Psi(x, t)|^{2} d x$. Hence $|\Psi(x, t)|^{2}$ is the probability density.

Note that

$$
\begin{aligned}
\langle\Psi \mid \Psi\rangle & =\int_{-\infty}^{\infty}|\Psi(x)|^{2} d x \\
\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle & =\int_{-\infty}^{\infty} \Psi_{1}^{*}(x) \Psi_{2}(x) d x
\end{aligned}
$$

Given $|\Psi\rangle=a\left|\Psi_{1}\right\rangle+b\left|\Psi_{2}\right\rangle$ then the probabilities to measure a or b are

$$
\begin{aligned}
& P(a)=\frac{|a|^{2}}{|a|^{2}+|b|^{2}} \\
& P(b)=\frac{|b|^{2}}{|a|^{2}+|b|^{2}}
\end{aligned}
$$

17.6 Position operator \hat{x}

eigenvalue/eigenfunction	$\hat{x}\|x\rangle=x\|x\rangle$ Where x is eigenvalue and $\|x\rangle$ is position vector.
orthonormal eigenbasis	$\{\|x\rangle\rangle \rightarrow\left\{\begin{array}{c\|}\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) \\ \int_{-\infty}^{\infty}\|x\rangle\langle x\| d x=1\end{array}\right.$ for $-\infty<x<\infty$
Vector form to function form	$\langle x \mid \psi\rangle \equiv \psi(x)$ probability at position x
Expansion of state vector $\|\psi\rangle$	$\|\psi\rangle=\int_{-\infty}^{\infty}\left\|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle d x^{\prime}=\int_{-\infty}^{\infty}\left\|x^{\prime}\right\rangle \psi\left(x^{\prime}\right) d x^{\prime}$
Eigenfunctions in deep well	Not defined for position operator
Operator matrix elements	$\langle x\| \hat{x}\left\|x^{\prime}\right\rangle=x^{\prime} \delta\left(x-x^{\prime}\right)$ Operator is diagonal matrix.

17.7 Momentum operator \hat{p}

eigenvalue/eigenfunction	$\hat{p}\left\|\phi_{p}\right\rangle=p\left\|\phi_{p}\right\rangle$ Where p is eigenvalue and $\left\|\phi_{p}\right\rangle$ is momentum eigenstate
orthonormal eigenbasis	$\left\{\left\|\phi_{p}\right\rangle\right\} \rightarrow\left\{\begin{array}{c\|}\left\langle\phi_{p} \mid \phi_{p^{\prime}}\right\rangle=\delta\left(p-p^{\prime}\right) \\ \int_{-\infty}^{\infty}\left\|\phi_{p}\right\rangle\left\langle\phi_{p}\right\| d p=1\end{array}\right.$ for $-\infty<p<\infty$
Vector form to function form	$\left\langle x \mid \phi_{p}\right\rangle \equiv \phi_{p}(x)$
Expansion of state vector $\|\psi\rangle$	$\|\psi\rangle=\int_{-\infty}^{\infty}\left\|\phi_{p}\right\rangle\left\langle\phi_{p} \mid \psi\right\rangle d p$
General Eigenfunction	$\left\langle x \mid \phi_{p}\right\rangle \equiv \phi_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x}{\hbar}\right)$
Operator matrix elements	$\langle x\| \hat{p}\left\|x^{\prime}\right\rangle=-i \hbar \delta\left(x-x^{\prime}\right) \frac{d}{d x^{\prime}}$ Operator is not diagonal matrix.

17.8 Hamilitonian operator \hat{H}

$$
\hat{H}=\hat{T}+\hat{V}
$$

Where \hat{T} is K.E. operator and \hat{V} is P.E. operator. Recall that $p=m v$ and $T=\frac{1}{2} m v^{2}$. Hence $\hat{T}=\frac{\hat{p}^{2}}{2 m}$.

eigenvalue/eigenfunction	$\hat{H}\left\|\psi_{E_{n}}\right\rangle=E_{n}\left\|\psi_{E}\right\rangle$ Where E_{n} is eigenvalue (energy level)
Orthonormal basis of operator	$\left\{\left\|\psi_{E_{n}}\right\rangle\right\} \rightarrow\left\{\begin{array}{c}\left\langle\psi_{E_{n}}(x) \mid \psi_{E_{m}}(x)\right\rangle=\delta\left(E_{n}-E_{m}\right) \\ \int_{-\infty}^{\infty}\left\|\psi_{E_{n}}\right\rangle\left\langle\psi_{E_{n}}\right\| d E=1 \quad \text { for } n=1,2, \cdots \text { (check) }\end{array}\right.$
Vector form to function form	$\left\langle x \mid \psi_{E_{n}}\right\rangle \equiv \psi_{E_{n}}(x)$
Expansion of state vector $\|\psi\rangle$	$\left\|\psi_{E}\right\rangle=\Sigma_{n}\left\|\psi_{E_{n}}\right\rangle\left\langle\psi_{E_{n}} \mid \psi\right\rangle$
Eigenfunctions for deep well problem	$\left\langle x \mid \psi_{E}\right\rangle=\psi(x)=\left\{\begin{array}{c}\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad \begin{array}{r}0<x<L \quad, E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \\ 0\end{array} \\ \hline \text { otherwise }\end{array}\right.$
Operator matrix elements	$\langle x\| \hat{H}\left\|x^{\prime}\right\rangle=\frac{1}{2} m v^{2}+V(x)=\delta\left(x-x^{\prime}\right)\left(\frac{\hat{p}^{2}}{2 m}+\hat{V}\left(x^{\prime}\right)\right)=\delta\left(x-x^{\prime}\right)\left(\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{\frac{x^{\prime 2}}{2}}+\hat{V}\left(x^{\prime}\right)\right)$

The ODE for deep well is derived as follows.

$$
\begin{aligned}
\hat{H} \psi & =E_{n} \psi \\
(\hat{T}+\hat{V}) \psi & =E_{n} \psi
\end{aligned}
$$

But $\hat{V}=0$ inside and $\hat{T}=\frac{\hat{p}^{2}}{2 m}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$. Hence the above becomes

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x) & =E \psi(x) \\
\frac{d^{2}}{d x^{2}} \psi(x)+\frac{2 m E}{\hbar^{2}} \psi(x) & =0 \\
\frac{d^{2}}{d x^{2}} \psi(x)+k^{2} \psi(x) & =0
\end{aligned}
$$

Where $k=\sqrt{\frac{2 m E}{\hbar^{2}}}$. The eigenvalues are k_{n} from solving for boundary conditions at $x=L$. Now solve as standard second order ODE, with BC $\psi(0)=0, \psi(L)=0$. The solution becomes

$$
\psi(x)=\psi(x)=\left\{\begin{array}{cl}
\sqrt{\frac{2}{L}} \sin \left(k_{n} x\right) & 0<x<L \\
0 & \text { otherwise }
\end{array}\right.
$$

Where eigenvalues are $k_{n}=\frac{n \pi}{L}, n=1,2,3, \cdots$

18 Questions and answers

18.1 Question 1

Problem says that the system is in some general state $\psi(x)$ and asks what is the probability distribution to measure momentum p ?
solution
The probability is $\left|\left\langle\phi_{p} \mid \psi\right\rangle\right|^{2}$. What goes in the bra is the eigenstate being measured. What goes in the ket is the current state.

$$
\begin{aligned}
\left\langle\phi_{p} \mid \psi\right\rangle & =\int_{-\infty}^{\infty}\left\langle\phi_{p} \mid x\right\rangle\langle x \mid \psi\rangle d x \\
& =\int_{-\infty}^{\infty}\left\langle x \mid \phi_{p}\right\rangle^{*}\langle x \mid \psi\rangle d x \\
& =\int_{-\infty}^{\infty} \phi_{p}^{*}(x) \psi(x) d x
\end{aligned}
$$

Now, for the deep well problem for $0<x<L$, we should know that $\phi_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p x}{\hbar}}$ and $\psi(x)$ will be given. For example $\psi_{E}(x)=\left\{\begin{array}{cc}\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} & 0<x<L \\ 0 & \text { otherwise }\end{array}\right.$.Hence

$$
\left\langle\phi_{p} \mid \psi\right\rangle=\int_{0}^{L} \frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{-i p x}{\hbar}} \sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} d x
$$

Now evaluate this integral and at the end take the square of the modulus. This will give the probability distribution to measure p. The above was problem 4, in HW7.

18.2 Question 2

Problem says that the system is in some general state $\psi(x)$ and asks what is the probability distribution to measure position x ?

solution

The probability is $|\langle x \mid \psi\rangle|^{2}$. What goes in the bra is the eigenstate being measured. What goes in the ket is the current state.

$$
\begin{aligned}
\langle x \mid \psi\rangle & =\int_{-\infty}^{\infty}\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle d x^{\prime} \\
& \left.=\int_{-\infty}^{\infty} \delta\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right)\right\rangle d x \\
& =\psi(x)
\end{aligned}
$$

Hence $\operatorname{prob}(x)=|\langle x \mid \psi\rangle|^{2}=|\psi(x)|^{2}$

18.3 Question 3

Problem says that the system is in some general state $\psi_{E}(x)$ and asks what is the probability distribution to measure position x ?
solution
The probability is $|\langle x \mid \psi\rangle|^{2}$. What goes in the bra is the eigenstate being measured. What goes in the ket is the current or given eigenstate.

$$
\begin{aligned}
\langle x \mid \psi\rangle & =\int_{0}^{L}\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle d x^{\prime} \\
& =\int_{0}^{L} \delta\left(x-x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime} \\
& =\psi(x)
\end{aligned}
$$

Hence the probability is $|\psi(x)|^{2}$. Now, for the deep well problem for $0<x<L$, we know

$$
\text { that } \psi_{E_{n}}(x)=\left\{\begin{array}{cl}
\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} & 0<x<L \\
0 & \text { otherwise }
\end{array} \text { then } \quad \begin{array}{rl}
\left|\psi_{E_{n}}(x)\right|^{2} & =\left|\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}\right|^{2} \\
& =\frac{2}{L} \sin ^{2}\left(\frac{n \pi x}{L}\right)
\end{array}\right.
$$

Is this correct? Checked, yes correct.

18.4 Question 4

Problem gives that the system is in some general state $\phi_{p}(x)$ (i.e. momentum eigenstate, not energy eigenstate as above, due to having done momentum measurement done before) and then problem asks what is the probability distribution to measure position x ?
solution
The probability is $\left|\left\langle x \mid \phi_{p}\right\rangle\right|^{2}$. What goes in the bra is the eigenstate being measured. What goes in the ket is the current eigenstate.

$$
\begin{aligned}
\left\langle x \mid \phi_{p}\right\rangle & =\int_{0}^{L}\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \phi_{p}\right\rangle d x^{\prime} \\
& =\int_{0}^{L} \delta\left(x-x^{\prime}\right) \phi_{p}\left(x^{\prime}\right) d x^{\prime} \\
& =\phi_{p}(x)
\end{aligned}
$$

Hence the probability is $\left|\phi_{p}(x)\right|^{2}$. we know that $\phi_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p x}{\hbar}}$ then

$$
\begin{aligned}
\left|\phi_{p}(x)\right|^{2} & =\left|\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p x}{\hbar}}\right|^{2} \\
& =\frac{1}{2 \pi \hbar}
\end{aligned}
$$

Which is constant. So if we measure momentum first, then ask for probability of measuring position x next, it will be the above. Same probability to measure any position? Is this correct? yes.

18.5 Question 5

Problem gives that the system is in some general state $\phi_{p}(x)$ and asks what is the probability to measure momentum p^{\prime} ?

The probability of measuring momentum p^{\prime} given that system is already in state $\left|\psi_{p}\right\rangle \equiv$ $\left|\phi_{p}\right\rangle$ is $\left|\left\langle\phi_{p^{\prime}} \mid \phi_{p}\right\rangle\right|^{2}$ where

$$
\begin{aligned}
\left\langle\phi_{p^{\prime}} \mid \phi_{p}\right\rangle & =\int_{-\infty}^{\infty}\left\langle\phi_{p^{\prime}} \mid x\right\rangle\left\langle x \mid \phi_{p}\right\rangle d x \\
& =\int_{-\infty}^{\infty}\left\langle x \mid \phi_{p^{\prime}}\right\rangle^{*}\left\langle x \mid \phi_{p}\right\rangle d x \\
& =\int_{-\infty}^{\infty} \phi_{p^{\prime}}^{*}(x) \phi_{p}(x) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{-i p^{\prime} x}{\hbar}\right) \frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x}{\hbar}\right) d x \\
& =\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} \exp \left(\frac{i\left(p-p^{\prime}\right) x}{\hbar}\right) d x
\end{aligned}
$$

but $\delta(p)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i p x} d x$, therefore $\delta\left(p-p^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x} d x$.
Let $u=\frac{x}{\hbar}$, then $d u=\frac{1}{\hbar} d x$. The integral becomes

$$
\begin{aligned}
\left\langle\phi_{p^{\prime}} \mid \phi_{p}\right\rangle & =\frac{\hbar}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) u} d u \\
& =\frac{1}{2 \pi}\left(2 \pi \delta\left(p-p^{\prime}\right)\right) \\
& =\delta\left(p-p^{\prime}\right)
\end{aligned}
$$

19 Position, velocity and acc in different coordinates system

In polar, just remember these

$$
\begin{aligned}
\vec{r} & =\rho \hat{e}_{\rho} \\
d \vec{r} & =\hat{e}_{\rho} d \rho+\hat{e}_{\phi} \rho d \phi \\
\vec{v} & =\frac{d \vec{r}}{d t} \\
& =\hat{e}_{\rho} \frac{d \rho}{d t}+\hat{e}_{\phi} \rho \frac{d \phi}{d t} \\
\frac{d}{d t} \hat{e}_{\rho} & =\dot{\phi} \hat{e}_{\phi} \\
\frac{d}{d t} \hat{e}_{\phi} & =-\dot{\phi} \hat{e}_{\rho}
\end{aligned}
$$

Given $\vec{r}=\rho \hat{e}_{\rho}$, then

$$
\begin{aligned}
\vec{v} & =\dot{\rho} \hat{e}_{\rho}+\rho \frac{d}{d t} \hat{e}_{\rho} \\
& =\dot{\rho} \hat{e}_{\rho}+\rho \dot{\phi} \hat{e}_{\phi}
\end{aligned}
$$

And similarly for \vec{a}.

$$
\vec{a}=\left(\ddot{\rho}-\rho \dot{\phi}^{2}\right) \hat{e}_{\rho}+(\rho \ddot{\phi}+2 \dot{\rho} \dot{\phi}) \hat{e}_{\phi}
$$

This is much better than the alternatives.
In Cylindrical

$$
\begin{aligned}
d \hat{e}_{\rho} & =\hat{e}_{\phi} d \phi \\
d \hat{e}_{\phi} & =-\hat{e}_{\rho} d \phi \\
d \hat{e}_{z} & =0
\end{aligned}
$$

$\underline{d r}$ is different coordinates
Cartessian

$$
d r=\hat{e}_{x} d x+\hat{e}_{y} d y+\hat{e}_{z} d z
$$

Cylindrical

$$
d r=\hat{e}_{\rho} d \rho+\hat{e}_{\phi} \rho d \phi+\hat{e}_{z} d z
$$

Spherical

$$
d r=\hat{e}_{r} d r+\hat{e}_{\theta} r d \theta+\hat{e}_{\phi} r \sin \theta d \phi
$$

v is different coordinates
Use these for finding Lagrangian.
In Cartessian

$$
\vec{v}=\dot{x} \hat{e}_{x}+\dot{y} \hat{e}_{y}+\dot{z} \hat{e}_{z}
$$

Polar

$$
\vec{v}=\dot{\rho} \hat{e}_{\rho}+\rho \dot{\phi} \hat{e}_{\phi}
$$

Spherical

$$
\begin{aligned}
\vec{v} & =\dot{\rho} \hat{e}_{\rho}+\rho \dot{\theta} \hat{e}_{\theta}+\rho \sin \theta \dot{\phi} \hat{e}_{\phi} \\
\nabla V(\rho, \theta, \phi) & =\hat{e}_{\rho} V_{r}+\hat{e}_{\theta} \frac{1}{\rho} V_{\theta}+\hat{e}_{\phi} \frac{1}{\rho \sin \theta} V_{\phi}
\end{aligned}
$$

20 Gradient, Curl, divergence, Gauss flux law, Stokes

The gradient ∇ is vector operator. In Cartessian

$$
\begin{aligned}
\nabla & =\hat{e}_{x} \frac{\partial}{\partial x}+\hat{e}_{y} \frac{\partial}{\partial y}+\hat{e}_{z} \frac{\partial}{\partial z} \\
\nabla f & =\left(\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right)
\end{aligned}
$$

In Cylindrical

$$
\begin{aligned}
\nabla & =\hat{e}_{\rho} \frac{\partial}{\partial \rho}+\hat{e}_{\phi} \rho \frac{\partial}{\partial \phi}+\hat{e}_{z} \frac{\partial}{\partial z} \\
\nabla f & =\left(\begin{array}{l}
\frac{\partial f}{\partial \rho} \\
\rho \frac{\partial f}{\partial \phi} \\
\frac{\partial f}{\partial z}
\end{array}\right)
\end{aligned}
$$

In spherical

$$
\begin{aligned}
\nabla & =\hat{e}_{\rho} \frac{\partial}{\partial \rho}+\hat{e}_{\theta} \frac{1}{\rho} \frac{\partial}{\partial \theta}+\hat{e}_{\phi} \frac{1}{\rho \sin \theta} \frac{\partial}{\partial \phi} \\
\nabla f & =\left(\begin{array}{c}
\frac{\partial f}{\partial \rho} \\
\frac{1}{\rho} \frac{\partial f}{\partial \theta} \\
\frac{1}{\rho \sin \theta} \frac{\partial f}{\partial \phi}
\end{array}\right)
\end{aligned}
$$

For conservative force

$$
F=-\nabla V
$$

Notice that $-\int \bar{F} \cdot d \bar{r}=\int \nabla V \cdot d \bar{r}=\int_{\text {from }}^{\text {to }} d V=V(t o)-V($ from $)$ also $\oint \bar{F} \cdot d \bar{r}=0$ for conservative force.

The curl in Cartessian

$$
\nabla \times \bar{F}=\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

In Cylinderical

$$
\nabla \times \bar{F}=\left|\begin{array}{ccc}
\hat{e}_{\rho} & \hat{e}_{\phi} & \hat{e}_{z} \\
\frac{\partial}{\partial \rho} & \frac{1}{\rho} \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
F_{\rho} & F_{\phi} & F_{z}
\end{array}\right|
$$

In Spherical

$$
\nabla \times \bar{F}=\left|\begin{array}{ccc}
\hat{e}_{\rho} & \hat{e}_{\phi} & \hat{e}_{\theta} \\
\frac{\partial}{\partial \rho} & \frac{1}{\rho \sin \theta} \frac{\partial}{\partial \phi} & \frac{1}{\rho} \frac{\partial}{\partial \theta} \\
F_{\rho} & F_{\phi} & F_{\theta}
\end{array}\right|
$$

Divergence This is scalar. see cha7b.pdf

$$
\nabla \cdot \bar{F}
$$

Gauss law

From Wiki

It states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface.

Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

$$
\overbrace{\iint \bar{F} \cdot d \bar{s}}^{\text {surface integral }}=\int_{V}(\nabla \cdot \bar{F}) d V
$$

Stoke's theorem

$$
\overbrace{\oint \bar{F} \cdot d \bar{r}}^{\text {line integral }}=\int_{S}(\nabla \times \bar{F}) \cdot d \bar{s}
$$

Also divergence of the curl is zero.

$$
\nabla \cdot(\nabla \times \bar{F})=0
$$

From the net
The characteristic of a conservative field is that the line integral around every simple closed contour is zero. Since the curl is defined as a particular closed contour line integral, it follows that curl (gradF) equals zero.

And curl of a gradient is the zero vector.

$$
\nabla \times(\nabla \bar{F})=\overline{0}
$$

21 Gas pressure

average speed of gas particles is $v_{r m s}$ or take avergae of the squares of each particle velocity and then take the square root at end. Or

$$
\bar{v}=\sqrt{\frac{3 R T}{m}}
$$

Where R is the gas constant, T is gas absolute temperature and m is molar mass of each gas particle in $\mathrm{kg} / \mathrm{mol}$.
$\underline{d n}$

$$
d n=f(v) d v_{x} d v_{y} d v_{z}
$$

Where $d n$ is the number denity of gas particles (how many particles per unit volume with velocity between v and $v+d v$)
$\underline{\text { Average speed of particles }}$

$$
\begin{aligned}
\bar{v} & =\frac{\int v d n}{\int d n} \\
& =\frac{\iiint v f(v) d v_{x} d v_{y} d v_{z}}{n} \\
& =\frac{1}{n} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v f(v) d v_{x} d v_{y} d v_{z} \\
& =\frac{1}{n} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{v=0}^{\infty} v f(v)\left(v^{2} \sin \theta\right) d v d \theta d \phi \\
& =\frac{1}{n} \int_{\phi=0}^{2 \pi} d \phi \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{v=0}^{\infty} f(v) v^{3} d v \\
& =\frac{1}{n}(2 \pi)(-\cos \theta)_{0}^{\pi} \int_{v=0}^{\infty} f(v) v^{3} d v \\
& =-\frac{1}{n}(2 \pi)(-1-1) \int_{v=0}^{\infty} f(v) v^{3} d v \\
& =\frac{4 \pi}{n} \int_{v=0}^{\infty} f(v) v^{3} d v
\end{aligned}
$$

Pressure

$$
\begin{aligned}
d F & =F_{1} d N \\
& =\left(\frac{2 m v_{z}}{\Delta t}\right) d n \Delta A v_{z} \Delta t \\
& =2 m v_{z}^{2} d n \Delta A
\end{aligned}
$$

Hence

$$
\begin{aligned}
P & =\frac{\int d F}{\Delta A} \\
& =2 m \int v_{z}^{2} d n \\
& =2 m \int d v_{x} \int d v_{y} \int f(v) v_{z}^{2} d v_{z}
\end{aligned}
$$

This integral can be evaluated in spherical coordinates.
net energy density of gas

$$
\begin{aligned}
E & =\int \frac{1}{2} m v^{2} d n \\
& =\frac{1}{2} m \iiint v^{2} d n \\
& =\frac{1}{2} m \iiint\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) d n \\
& =\frac{3}{2} m \iiint v_{z}^{2} d n \\
& =\frac{3}{2} m \int_{-\infty}^{\infty} d v_{x} \int_{-\infty}^{\infty} d v_{y} \int_{-\infty}^{\infty} v_{z}^{2} f(v) d v_{z} \\
& =3 m \int_{-\infty}^{\infty} d v_{x} \int_{-\infty}^{\infty} d v_{y} \int_{0}^{\infty} v_{z}^{2} f(v) d v_{z}
\end{aligned}
$$

Hence

$$
P=\frac{2}{3} E
$$

And $E=\frac{3}{2} n K T \rightarrow P=n K T$ for ideal gas.

22 Table of study guide

chapter	topics
ch7c.pdf	PDE's, seperation of variables, Lagrangian method
ch7b.pdf	Position, velocity and acc in different coordinates. Gradient, Curl and Div.
ch7a.pdf	Multivariable calculus. Jacobian. Gravitional field for shell, Pressure and energy of gas
ch6b.pdf	First order ODE's. Second order Constant coefficients. under,over and critical damping
ch6a.pdf	Second order ODE's. Variable coefficient. Power series methods. Her- mite ODE.
ch5c.pdf	Function spaces. Hermitian operators. Complex Fourier series. Fourier transform. Deep well probem

ch5b.pdf	Linear vector spaces and QM. Probability when making measure- ments. Commutation. Schrodinger equation. Spin operators S_{x}, S_{y}, S_{z}. Pauli matrices. Time evolution of spin state. Solving mass/spring prob- lem using normal modes.
ch5a.pdf	Linear vector spaces. Linear independence. Gram-Schmidt. Linear operators. Finding eigenvalues and eigenvectors for matrices. Coordi- nates transformation between orthonormal basis.
ch4.pdf	Matrices and Determinants. 2D rotation matrix. Lorentz transforma- tion. Pauli matrices. Levi-civita. Properties of determinants. Solution to linear equations. Cramer rule. Dimensional analysis.
ch3.pdf	Complex numbers. Taylor series expansion. Solving $x^{n}=1$. Integrals. Completing the squares for $\int_{-\infty}^{\infty} e^{(x+i a)^{2}} d x$. Gaussian integral, N slit in- tererence. Single slit diffraction.
ch2.pdf	Gaussian and exponential integrals. Evaluating Gaussian integral. Evaluating $\int_{0}^{\infty} x^{n} e^{-x} d x=n!. ~ Z e t a ~ f u n c t i o n . ~ G a m m a ~ f u n c t i o n . ~ S t e r-~$
ling formula.	

23 Questions

1. Do all spin matrices always have same eigenvalues? this is the case for S_{x}, S_{y}, S_{z} for electron. NO. depends spin number.
2. How do we get the probability of measuring $S_{y}=-\frac{h}{2}$ or $S_{y}=\frac{h}{2}$ to be $\frac{1}{2}$? is it because there are two eigenvalues, and it is 50% each? see class notes lecture 5 b. page 9 . Answer: Current state vector is $\left|S_{x}=\frac{h}{2}\right\rangle$.
3. Does the order matter? In page 5, lecture 5B, could we do $C_{+}=\left\langle\left. S_{x}=\frac{h}{2} \right\rvert\, S_{z}=\frac{h}{2}\right\rangle$ or $C_{+}=\left\langle\left. S_{z}=\frac{h}{2} \right\rvert\, S_{x}=\frac{h}{2}\right\rangle$? Resolved.
4. Why is $\langle V| S_{x}|V\rangle$ gives the The statistical average of measuring S_{x} given current state vector is $|V\rangle$? Resolved.
5. Can we just move the H operator to RHS, as in $x^{\prime \prime}+M x=0$ instead of $x^{\prime \prime}=-M x$. This way no need to work with negative eigenvalues? Yes.
6. HW 5, last problem, I do not see how M, N share all the 3 eigenvectors. I get only one common eigenvector. I also do not understand the comment in my solution to refer to set of vectors as basis? What does this mean? Also, we know M, N commute, and so they share a common basis, but the question is asking which ones they share? Resolved.
7. For Pauli matrices, $\left[\sigma_{i}, \sigma_{j}\right]=2 i \sum \epsilon_{i j k} \sigma_{k}$. and for spin $\frac{1}{2}$ it is $\left[S_{i}, S_{j}\right]=i \hbar \Sigma_{k} \epsilon_{i j k} S_{k}$. So what is it for spin 1 ? is it still $\left[S_{i}, S_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} S_{k}$? Yes.
8. I think $\Psi(x, t)$ is just the eigenfunction corresponding to the eigenvalue just measured. So if the operator used is the position operator X, then it is called $\Psi(x)$. If the operator used is momentum operator P , we call it $\phi_{p}(x)$, but should it be really be $\Psi_{p}(x)$? If the operator is Hamiltonian \hat{H}, then the eigenvalue is the energy level E and the Ψ is called $\Psi_{E}(x)$. Any of these are also called the wave function $\Psi(x)$. Is this correct? I think so.

24 Appendix

$$
\begin{equation*}
\sin 30^{\circ}=\frac{1}{2} \tag{1}
\end{equation*}
$$

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
& \sin 30=2 \\
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \cos 60^{\circ}=\frac{1}{2} \\
& \hline
\end{aligned}
$$

$$
\tan 30^{\circ}=\frac{1}{\sqrt{3}} \quad \tan 60^{\circ}=\frac{1}{\sqrt{3}}
$$

Tayles Series $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots$?

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\cdots \quad|x|<1 \\
& \text { toremembu: Thik of exply) bnt with sisn flip and } \\
& \text { tin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { toremembu: Thin of explx } \\
& \text { no extra }=x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\cdots \\
& \tan (x)=10
\end{aligned}
$$

tocherk convergene vse ratiot test $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \Rightarrow$ yes.
to find R :

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \Rightarrow|x|<R \text { is radies } \text { convergen }_{n}
$$

convesuente.

For invexsetrig
os use this ramer
of ansk $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.
so inversenis unighe.
To Find deriuctius binvesetriss 1 et $y=\arcsin (x)$ then

$$
x=\sin (y) \Rightarrow \frac{d x}{d y}=\cos (y)=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}}
$$

hence $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ hewe $\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}$
$y=\operatorname{arcos}(x), x=\cos (y) \Rightarrow \frac{d x}{d y}=-\sin (y)=-\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$

$$
\text { So } \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \Rightarrow \frac{d x}{\frac{d}{d x} \operatorname{arcos}(x)=\frac{-1}{\sqrt{1-x^{2}}}}
$$

$y=\arctan (x) \quad x=\tan (y) \Rightarrow \frac{d x}{d y}=\frac{1}{\cos ^{2} y} \cdot \cos _{x}+\cos ^{2} y+\sin ^{2} y=1 \Rightarrow 1+\tan ^{2} 2=\frac{1}{c^{2} y}$ but $\tan ^{2} y=x^{2}$. hence $\frac{d x}{d y}=1+x^{2} \Rightarrow \frac{d y}{d x}=\frac{1}{1+x^{2}}$
exponendel and interest rato
(1)

$$
\begin{aligned}
& e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}, e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{11}+\cdots{ }_{l}^{n t} \\
& \int_{1}^{y} \frac{d t}{t}=x \Rightarrow y=e^{x} \cdot \lim _{n \rightarrow \infty}\left(1+\frac{r}{N}\right)^{N}=e^{r} ; \lim _{n \rightarrow \infty}\left(1+\frac{r}{N}\right)^{n+}=e^{r t}
\end{aligned}
$$

armpound interet forming $\quad A=P\left(1+\frac{r}{n}\right)^{n}$
who P is principle, r isinfaneot rate, n is number of timesintenest is applied par year, t is number of years.
here is the connection to exp as $n \rightarrow \infty$ Then (2) berms

$$
\begin{aligned}
& \text { Connection to exp as } n \rightarrow \infty \text { Then ser } e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!} \\
& \lim _{n \rightarrow \infty}
\end{aligned}
$$

now we can use exp. to find A. Fo example.

$$
\begin{aligned}
& \text { vc can use exp. to find } A . \\
& A=p\left(1+(r t)+\frac{(r t)^{2}}{2!}+\cdots\right) \text { at is in interest } \\
& \text { ate as in } 0 \cdot 01 .
\end{aligned}
$$

e^{-x} when multiplial by any x^{n} and $m x \rightarrow \infty$ will bring react to pere so e^{-x} will subdue $\operatorname{lin}_{x \rightarrow \infty}$ pow n of $x x_{x \rightarrow \infty}^{n} \lim _{x \rightarrow \infty} \frac{x^{4}}{e^{+x}} \cdot$ apps L Lhopitls n-times, $\frac{\ln (x) \text { is weaker than position pars of } x^{n} \text {. To proof. }}{i \text { ie as } n \rightarrow d i} x^{n}$. To proud the above use $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{n}}$ and vie Lahapital.

Implicit differentation:
Siven $3 x^{2}+4 y^{2}=R^{2}$, problem ak to fiol
slope $a^{-t}\left(x_{0}, y,\right)$. Ther do

$$
\frac{d}{d x}\left(3 x^{2}+4 y^{2}\right)=0 \Rightarrow 6 x+8 y \frac{d y}{d x}=0
$$

Differential. $\quad \Delta f=\left.\frac{d f}{d x}\right|_{x_{0}} \Delta x+\left.\frac{d^{2} f}{d x^{2}}\right|_{x_{0}} x^{2} x+\cdots$ but df callenl defferentil

$$
d f=\left.\frac{d f}{d x}\right|_{x_{0}} d x
$$

so efferextio is almays to Rirst order in $2 x$. Atangent Picture to see differerca
so df is chaye in $f(x)$
when moving a lons tangent distance $d x$

as $d x \rightarrow 0, d f \rightarrow \Delta f$
propentics to complex Variables

$$
\begin{aligned}
& \frac{z+\omega}{\bar{z}}=\bar{z}+\bar{\omega} \\
& \frac{\bar{\omega}}{\bar{\omega}} \\
&=\frac{\bar{z}}{\bar{\omega}} \\
&\text { inner } \left.\frac{z}{\omega}\right) \\
& \operatorname{pin}^{\omega}|\bar{z}|=|z| \\
&\left\langle z_{1}, z_{2}\right\rangle=z_{1} \bar{z}_{2}=r_{1} r_{2} e^{i\left(\theta_{1}-\theta_{2}\right) \mid}
\end{aligned}
$$

$$
\begin{aligned}
& \ln (z)=\overline{\ln (z)} \\
& |z|=\sqrt{x^{2}+y^{2}} \\
& \operatorname{ta} z=x+i y \\
& |\operatorname{Re} z| \leq|z| \\
& \left|I z_{1}\right| \leq|z| \\
& \left|z_{1}+z_{2}\right|=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2} \\
& +2 \operatorname{Re}\left(z_{1} \mid\right. \\
& \left|z_{2}\right|+z_{2}\left|\leq\left|z_{1}\right|+\left|z_{2}\right|\right. \\
& \left|z_{1}\right| z_{2}\left|=\left|z_{1}\right|\right| z_{2} \mid
\end{aligned}
$$

more complex

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& (\cos \theta+i \sin \theta)^{n}=\cos \theta+i \sin n \theta \\
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \\
& \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
\end{aligned}
$$

costs to wily

$$
\begin{align*}
& z^{N}=1 \tag{3}\\
& z=1^{\frac{1}{N}}=\left(e^{i(2 \pi)}\right)^{\frac{1}{N}} \\
& =(\cos (2 \pi+n 2 \pi)+i \sin \cdot \\
& =\ln \left(\frac{2 \pi}{N}+\frac{n}{N} 2 \pi n\right)+i \cdots \\
& n=0,1, \cdots-1
\end{align*}
$$

$$
\left(1-z^{N}\right)=(1-z)\left(1+z+z^{2}+\cdots+z^{N-1}\right)
$$

Integrals Gaussian $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \quad a>0$

$$
\begin{aligned}
& \text { cot: } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d x \stackrel{\operatorname{drc}}{\Rightarrow} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{\infty} e^{-r^{2}} r d r \\
& =2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r \cdot \operatorname{let} r^{2}=u \cdot \frac{d u}{d r}=2 r \cdot \Rightarrow 2 \pi \int_{0}^{\infty} e^{-u} r \frac{d u}{2 r}=\pi \int_{0}^{\infty} e^{-u} d u \\
& =-u 7^{\infty}-\pi[0+1]=\pi \cdot \Rightarrow \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r \cdot \operatorname{let} r^{2}=u \cdot \frac{d n}{d r}=21 \\
& =\pi\left[-e^{-u}\right]_{0}^{\infty}=\pi[0+1]=\pi \cdot \Rightarrow \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
\end{aligned}
$$

$\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x$. Far add $n \Rightarrow 0$. sine ont have to do
even n. fr $n=2 \quad I=\int x^{2} e^{-a x^{2}} d x \Rightarrow I_{1}=\int_{\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$.
Then $I^{\prime}(\alpha)=\int_{-\infty}^{\infty} x^{2} e^{-a x^{2}} d x=\frac{1}{2} \frac{\sqrt{\pi}}{a^{3 / 2}}$ QED.
for $n=Y I_{1}^{\prime \prime}(\alpha)$ etc...
$\int_{-\infty}^{\infty} e^{-a x^{2}} d x$. Start by wis $y=\sqrt{a} x \Rightarrow \frac{d y}{d x}=\sqrt{a}$. The int gal bewares

$$
\frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-y^{2}} d y=\frac{1}{\sqrt{a}} \sqrt{\pi}
$$

$$
\int_{6}^{\infty} x^{n} e^{-x} \operatorname{dox}=n!\quad n \geqslant 0
$$

Watch out shuts at 0 .

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=n!\frac{1}{a^{n+1}} \text { (use } y=a \times \text { substatalin). }
$$

$$
\int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x=n!\xi(n+1) \cdot \begin{aligned}
& \xi(z)=\frac{\pi^{2}}{6} \\
& \xi(4)=\frac{\pi^{4}}{90}
\end{aligned}
$$

works orff for odd n. Sine $\xi(n)$ in thru uh for even.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{3}}{e^{x-1}} d x=3!\xi(4) . \xi(p)=\sum_{n=1}^{\infty} \frac{1}{n^{p}} \\
& \approx \xi(54)=\frac{1}{1}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots=\frac{\pi^{4}}{90}
\end{aligned}
$$

Gamma $\Gamma(n)=\int_{0}^{\infty} t^{n-1} e^{-t} d t$

$$
\begin{aligned}
\Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty} \frac{1}{\sqrt{t}} e^{-t} d t . \quad \text { let } u=\sqrt{t} \cdot \frac{d u}{d t}=\frac{1}{2} \frac{1}{\sqrt{t}} \text {. the internal besoms } \\
& =2 \int_{0}^{\infty} e^{-u^{2}} d u=2\left(\frac{1}{2} \int_{-\infty}^{\infty} e^{-u^{2}} d u\right)=\sqrt{\pi} .
\end{aligned}
$$

for n integer $\Gamma(n)=(n-1)$! al $P(n+1)=n$!

$$
s_{0} \Gamma(n+1)=n(n-1)!=n \Gamma(n)
$$

sterling $\neq n \geqslant 1, \quad \Gamma(n+1)=n!\approx \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}$

spherial.
Volume

$$
\begin{aligned}
& \quad h_{r}=1, h_{\theta}=r, h_{\phi}=r \sin \theta \\
& \text { si Jacobian }=h_{r} h_{\theta} h \phi=r^{2} \sin \theta \\
& V=\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} f\left(\sum_{\text {Jandian. }}^{2} \sin \theta d \theta d \phi d r\right.
\end{aligned}
$$

$$
\text { Volume of sphew }=\frac{4}{3} \pi r^{3}, f=1
$$

area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& \quad \frac{\text { Iqy }}{}\left(x_{0}+\Delta x_{,}, y+\Delta y\right)-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x} \Delta x+\frac{\partial t}{\partial y} \Delta y+ \\
& \quad \frac{1}{2}\left[f_{x x} \Delta_{x}^{2}+f_{y y} \Delta_{y}^{2}+f_{x y} \Delta x \Delta y+f_{y x} \Delta y \Delta x+\cdots\right. \\
& f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=\frac{\partial x}{\partial x}+\frac{1}{2} f_{x x} \Delta^{2} x+\frac{1}{3!} f_{x s e x} \Delta_{x}^{3}+\cdots \\
& f(x)=f\left(x_{0}\right)+x f^{\prime}\left(x_{0}\right)+\frac{x^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{x^{3}}{3!} f^{\prime \prime}\left(x_{0}\right)+\cdots \\
& \text { geometric sering }
\end{aligned}
$$

geometric serics eachterm is some poitine ratio r flactteren

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \quad s \quad r=\frac{1}{2} \\
& \approx S_{N}=1+r+r^{2}+r^{3}+\cdots+r N \\
& r S_{N}=r+r^{2}+\cdots \quad+r_{N+1} \\
& S_{N}-r S_{N}=1-r^{N+1} \Rightarrow S_{N}=\frac{1-r}{1-r} \\
& \text { in } r<1 \text { the } 1 \mathrm{lim}=\frac{1}{1}
\end{aligned}
$$

if $r<1$ the $\left[l_{N \rightarrow \infty}=\frac{1}{1-r}\right.$ so $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} \quad 1 r<1$ geometic
if serive conreno aboblutely, them it convenges.
so absohte comergince is strongur.
power serien $S=\sum_{n=\infty}^{\infty} a_{n} x^{n}$

$$
\begin{align*}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \quad|x|<1 \tag{6}\\
& \exp (x)=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad|x|<1
\end{align*}
$$

takederti

$$
\frac{\text { He devli }}{1+x}=1-x+x^{2}-x^{3}+\cdot \quad|x|<1
$$

Trig
$\sin (x)$ domain 0.2π, Ranse $-1 \cdots+1$
$\operatorname{Cos}(x)$, Rage $-1 \cdots+1$
tam $0.2 \pi,-\infty \cdots+\infty$
arcsin domain Ranse

$$
\text { domain }-90^{\circ}-+90^{\circ}
$$

arcos domain 0.180°
arctan $-\infty .+\infty \quad-90^{\circ} \cdots+90^{\circ}$

$$
|x|<1, \frac{e^{2 x}+e^{-i x}}{2}
$$

$\cos x$

$$
\frac{\sinh x}{e^{x}-e^{x}} 2
$$

tanhx

integrals
Gausiin $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$

$$
\begin{aligned}
& \Gamma(n)= \int_{0}^{\infty} x^{n-1} e^{-x} d x=(n-1)! \\
& \int_{0}^{\infty} x^{n} e^{-x} d x=n!n>0 \\
& \int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x=n!(n+1) \\
& \text { starlin }(n+1)=\int_{0}^{\infty} x^{n} e^{-x} d x=n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} \\
& n \gg!
\end{aligned}
$$

tricks $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}$ чие $x=a \sin \theta \cdot \frac{b x}{d \theta}=a \cos \theta$.

$$
\frac{\int \frac{a \cos \theta d \theta}{a \sqrt{1-\sin ^{2} \theta}}=\int d \theta .}{\int_{-\infty}^{\infty} x^{2} e^{-a x^{2}} d x=\frac{d}{d a}\left(\sqrt{\frac{\pi}{a}}\right), \int_{-\infty}^{\infty} x^{4} e^{-a x^{2}} d x=\frac{d^{2}}{d x} \sqrt{\frac{\pi}{a}} .}
$$

integrals $\int_{0}^{\infty} x^{3} e^{-x} d x=(3!)$.

$$
\begin{aligned}
& \Rightarrow(3!) \sum_{n=1}^{n} \frac{1}{n^{4}}=(3!) \xi(4) \text {. } \\
& \int_{0}^{\infty} e^{-x^{4}} d x \text { use } x^{4}-y \text { or } x=y^{\frac{1}{4}} \Rightarrow \frac{d x}{d y}=\frac{1}{y} y^{\left(\frac{1}{4}-1\right.} \text { this. } \\
& \cos ^{x} \Rightarrow \frac{1}{4} \int_{0}^{\infty} e^{-y} y^{\left(1-\frac{1}{4}\right)} d y \text { ar } \frac{1}{4} \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y \text {. now compore to } \\
& \pm \int_{0}^{\infty} y^{(s-1)} e^{-y} d y=\Gamma(s) \text { so } \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y=\Gamma\left(\frac{1}{4}\right) \\
& \int_{0}^{\infty} e^{-\sqrt{x}} d x \text {. Similar babove. 1t } y=x^{\frac{1}{2}} \Rightarrow x y^{2} \Rightarrow \frac{d x}{d y}=2 y^{(2-1)} \\
& \therefore I=2 \int_{0}^{\alpha} y^{(2-1)} e^{-y} d y=2 \Gamma(2) \cdot \text { bt } \Gamma(n)=(n-1)!\Rightarrow F=2 \\
& \int_{\text {a }}^{j}(s) \Gamma(s)=\int_{\theta}^{\infty} \frac{x^{(s-1)}}{e^{x-1}} d x \text {. note } s>1 \\
& \text { Zeto } \xi(s)=\sum_{n=1}^{\infty} \frac{e_{1}}{n^{s}} \\
& \text { so Siven } \begin{aligned}
\int_{0}^{\infty} \frac{x^{3}}{e^{x-1}} d x \text {, witeas } \int_{0}^{\infty} \frac{x^{(4-1)}}{e^{x}-1} d x & =\Gamma(4)\}(4) \\
& =(31)\}(4)
\end{aligned} \\
& =(31) \xi(4) \\
& \int_{0}^{\infty} x^{n} e^{-x} d x=n!\quad \int_{0}^{\infty} x^{1-n} e^{-x} d x=\Gamma(n)=(n-1)!
\end{aligned}
$$

$\int \frac{d x}{\sqrt{a^{2}-x^{2}}} d x$. use $x=a \sin \theta$.
$\int \frac{d x}{x^{2}+a^{2}}$. use $x=a \tan \theta$.
$\int_{0}^{\infty} x e^{-a x^{2}} d x$. use $u=x^{2}$.

$$
\begin{aligned}
& \int_{0}^{\infty} x e^{-a x^{2}} d x \text { use } u=x^{2} \\
& \int_{0}^{\infty} e^{-a x^{2}} d x \text {. . . Gere } I=\frac{1}{2} \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\frac{1}{\frac{1}{2} \sqrt{\frac{\pi}{a}}}
\end{aligned}
$$

$\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x$ or $\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x$ These are done by
knowing that $I(a)=\int_{0}^{x} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{T}{a}}$, and then dig repeated I' (a). on both side. This works on's for even n
Exuple $\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x$. let $I(A)=\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}$.
Then $I^{\prime}(a)=-\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=\frac{1}{2} \frac{d}{d a}\left(\sqrt{\pi} a^{-\frac{1}{2}}\right)=-\frac{1}{4} \sqrt{\pi} a^{-\frac{3}{2}}$.

$$
\left\{\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=\frac{1}{4} \sqrt{\pi} d^{-\frac{3}{2}}\right.
$$

for odd n $\int_{0}^{\infty} x^{3} e^{-a x^{2}} d x$ why fox. we kowntrit $I(a)=\int_{0}^{\infty} x e^{-a x^{2}} d x$ $=\frac{1^{\circ}}{2 a}$.

$$
\text { Then } I^{\prime}(a)=\int_{0}^{\infty}-x^{3} e^{-a x^{2}} d x=\frac{d}{d a} \frac{1}{2 a}
$$

a $\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x$. An be dree for both odd ail seen n
int grots 6 form $\int_{\infty}^{\infty} x e^{-a x} \sin k x d x, \int_{0}^{\infty} x e^{-a x} c d t i d x \mid(3)$
 Then evaluate $I^{\prime}(a)$.

Gavsian mintage $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{x}$.

