Physics 3041 (Spring 2021) Solutions to Homework Set 6

1. Problem 9.5.11. (40 points)

$$
S_{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad S_{y}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right], \quad S_{z}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

(a) From the diagonal form of S_{z}, we know that its eigenvalues are $s_{z}=1,0,-1$ corresponding to eigenvectors

$$
\left|s_{z}=1\right\rangle=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left|s_{z}=0\right\rangle=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left|s_{z}=-1\right\rangle=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

So the possible measured values for S_{z} are $1,0,-1$.
(b) For S_{x},

$$
\begin{aligned}
& \left|\begin{array}{ccc}
-s_{x} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -s_{x} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & -s_{x}
\end{array}\right|=-s_{x}\left(s_{x}^{2}-\frac{1}{2}\right)-\frac{1}{\sqrt{2}} \frac{\left(-s_{x}\right)}{\sqrt{2}}=s_{x}\left(1-s_{x}^{2}\right)=s_{x}\left(1-s_{x}\right)\left(1+s_{x}\right) \\
& \Rightarrow s_{x}=1,0,-1 \text {. } \\
& {\left[\begin{array}{ccc}
-1 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -1 & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
-a_{1}+b_{1} / \sqrt{2} \\
\left(a_{1}+c_{1}\right) / \sqrt{2}-b_{1} \\
b_{1} / \sqrt{2}-c_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow\left|s_{x}=1\right\rangle=a_{1}\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
b_{2} / \sqrt{2} \\
\left(a_{2}+c_{2}\right) / \sqrt{2} \\
b_{2} / \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow\left|s_{x}=0\right\rangle=a_{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{3}+b_{3} / \sqrt{2} \\
\left(a_{3}+c_{3}\right) / \sqrt{2}+b_{3} \\
b_{3} / \sqrt{2}+c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow\left|s_{x}=-1\right\rangle=a_{3}\left[\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right]
\end{aligned}
$$

For S_{y},

$$
\begin{aligned}
\left|\begin{array}{ccc}
-s_{y} & \frac{-i}{\sqrt{2}} & 0 \\
\frac{i}{\sqrt{2}} & -s_{y} & \frac{-i}{\sqrt{2}} \\
0 & \frac{i}{\sqrt{2}} & -s_{y}
\end{array}\right| & =-s_{y}\left(s_{y}^{2}-\frac{1}{2}\right)+\frac{i}{\sqrt{2}} \frac{\left(-i s_{y}\right)}{\sqrt{2}}=s_{y}\left(1-s_{y}^{2}\right)=s_{y}\left(1-s_{y}\right)\left(1+s_{y}\right) \\
\Rightarrow s_{y} & =1,0,-1 .
\end{aligned}
$$

So for both S_{x} and S_{y}, the possible measured values are 1,0 , and -1 .
(c) After measuring the largest possible value of $s_{x}=1$, the state vector is

$$
\left|s_{x}=1\right\rangle=\frac{1}{2}\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

(d) If S_{z} is measured, the possible values are 1,0 , and -1 with probabilities of $(1 / 2)^{2}=1 / 4$, $(1 / \sqrt{2})^{2}=1 / 2$, and $(1 / 2)^{2}=1 / 4$, respectively.

If the largest possible value of $s_{z}=1$ is measured, the state vector becomes

$$
\left|s_{z}=1\right\rangle=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Because $\left|s_{z}=1\right\rangle$ differs from $\left|s_{x}=1\right\rangle$, the probability of measuring $s_{x}=1$ is

$$
\left|\left\langle s_{x}=1 \mid s_{z}=1\right\rangle\right|^{2}=\left|\frac{1}{2}\left[\begin{array}{lll}
1 & \sqrt{2} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right|^{2}=\frac{1}{4} .
$$

(e) From

$$
\begin{aligned}
S^{2} & =S_{x}^{2}+S_{y}^{2}+S_{z}^{2} \\
& =\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right] \\
& +\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right],
\end{aligned}
$$

the measured S^{2} value is always 2 for any state vector because $S^{2}=2 I$.
(f) From the matrix representation and the results in (a) and (b), S_{x}, S_{y}, and S_{z} are Hermitian operators with non-degenerate eigenvalues. So if S_{z} commutes with S_{x} or S_{y}, they would share the same eigenvectors and be diagonal in the corresponding eigenbasis. However, because S_{x} and S_{y} are not diagonal in the basis where S_{z} is diagonal, we conclude S_{z} does not commute
with either S_{x} or S_{y}.
Although we did not solve for the eigenvectors of S_{y}, it is clear that they are distinct from those of S_{x} because S_{x} differs from S_{y} in the structure of matrix elements but both operators have the same eigenvalues. So S_{x} and S_{y} do not commute, either.

On the other hand, S^{2} commutes with S_{x}, S_{y}, and S_{z}. Therefore, the maximum number of commuting operators is 2 , which corresponds to S^{2} and any one of the other three (i.e., S_{x}, or S_{y}, or S_{z}).
(g) From

$$
|V\rangle=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \Rightarrow\langle V \mid V\rangle=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1+4+9=14
$$

the normalized state vector is

$$
\left|V^{\prime}\right\rangle=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{2}{\sqrt{14}}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\frac{3}{\sqrt{14}}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

So the probabilities for measuring $s_{z}=1,0$, and -1 are $1 / 14,2 / 7$, and $9 / 14$, respectively. The statistical average of the measured values is $\left\langle s_{z}\right\rangle=1 \times(1 / 14)+0 \times(2 / 7)+(-1) \times(9 / 14)=-4 / 7$, which is the same as

$$
\left\langle V^{\prime}\right| S_{z}\left|V^{\prime}\right\rangle=\frac{1}{14}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\frac{1}{14}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right]=-\frac{4}{7}
$$

(h) The probabilities for measuring $s_{x}=1,0$, and -1 are

$$
\begin{aligned}
& \left|\left\langle s_{x}=1 \mid V^{\prime}\right\rangle\right|^{2}=\frac{1}{4 \times 14}\left|\left[\begin{array}{lll}
1 & \sqrt{2} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right|^{2}=\frac{(1+2 \sqrt{2}+3)^{2}}{56}=\frac{3+2 \sqrt{2}}{7} \\
& \left|\left\langle s_{x}=0 \mid V^{\prime}\right\rangle\right|^{2}=\frac{1}{2 \times 14}\left|\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right|^{2}=\frac{(1-3)^{2}}{28}=\frac{1}{7} \\
& \left|\left\langle s_{x}=-1 \mid V^{\prime}\right\rangle\right|^{2}=\frac{1}{4 \times 14}\left|\left[\begin{array}{lll}
1 & -\sqrt{2} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right|^{2}=\frac{(1-2 \sqrt{2}+3)^{2}}{56}=\frac{3-2 \sqrt{2}}{7},
\end{aligned}
$$

respectively. The statistical average of the measured values is $\left\langle s_{x}\right\rangle=1 \times(3+2 \sqrt{2}) / 7+0 \times$ $(1 / 7)+(-1) \times(3-2 \sqrt{2}) / 7=4 \sqrt{2} / 7$, which is the same as

$$
\left\langle V^{\prime}\right| S_{s}\left|V^{\prime}\right\rangle=\frac{1}{14 \sqrt{2}}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\frac{1}{14 \sqrt{2}}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right]=\frac{4 \sqrt{2}}{7}
$$

2. Prove the following results on the commutators: $[A, B+C]=[A, B]+[A, C],[A+B, C]=$ $[A, C]+[B, C],[A, B C]=B[A, C]+[A, B] C,[A B, C]=A[B, C]+[A, C] B$. (10 points)

$$
\begin{aligned}
{[A, B+C] } & =A(B+C)-(B+C) A=A B+A C-B A-C A=[A, B]+[A, C] \\
{[A+B, C] } & =(A+B) C-C(A+B)=A C+B C-C A-C B=[A, C]+[B, C] \\
{[A, B C] } & =A B C-B C A=A B C-B A C+B A C-B C A=[A, B] C+B[A, C] \\
{[A B, C] } & =A B C-C A B=A B C-A C B+A C B-C A B=A[B, C]+[A, C] B
\end{aligned}
$$

3. Follow the discussion of $s_{+}=s_{x}+i s_{y}$ for the electron spin to derive the matrix representation of $s_{-}=s_{x}-i s_{y}$. (20 points)

$$
\begin{aligned}
{\left[s_{z}, s_{-}\right] } & =\left[s_{z}, s_{x}-i s_{y}\right]=\left[s_{z}, s_{x}\right]-i\left[s_{z}, s_{y}\right]=i \hbar s_{y}-i\left(-i \hbar s_{x}\right)=-\hbar\left(s_{x}-i s_{y}\right)=-\hbar s_{-} \\
{\left[s_{z}, s_{-}\right] } & =s_{z} s_{-}-s_{-} s_{z}=-\hbar s_{-} \Rightarrow s_{z} s_{-}=s_{-} s_{z}-\hbar s_{-} \\
s_{z}|1\rangle & =\frac{\hbar}{2}|1\rangle \Rightarrow s_{z} s_{-}|1\rangle=\left(s_{-} s_{z}-\hbar s_{-}\right)|1\rangle=\left(s_{-} \frac{\hbar}{2}-\hbar s_{-}\right)|1\rangle=-\frac{\hbar}{2} s_{-}|1\rangle \\
s_{z}|2\rangle & =-\frac{\hbar}{2}|2\rangle \Rightarrow s_{-}|1\rangle=c|2\rangle \\
\left(s_{-}|1\rangle\right)^{\dagger} & =\langle 1| s_{-}^{\dagger}=\langle 1|\left(s_{x}-i s_{y}\right)^{\dagger}=\langle 1|\left(s_{x}^{\dagger}+i s_{y}^{\dagger}\right)=\langle 1|\left(s_{x}+i s_{y}\right)=\langle 1| s_{+}=c^{*}\langle 2| \\
\langle 1| s_{+} s_{-}|1\rangle & =c^{*} c\langle 2 \mid 2\rangle=\mid c^{2} \\
\langle 1| s_{+} s_{-}|1\rangle & =\langle 1|\left(s_{x}+i s_{y}\right)\left(s_{x}-i s_{y}\right)|1\rangle=\langle 1| s_{x}^{2}+s_{y}^{2}-i\left(s_{x} s_{y}-s_{y} s_{x}\right)|1\rangle=\langle 1| s^{2}-s_{z}^{2}-i\left(i \hbar s_{z}\right)|1\rangle \\
& =\langle 1| s^{2}-s_{z}^{2}+\hbar s_{z}|1\rangle=\frac{3}{4} \hbar^{2}-\frac{\hbar}{2} \times \frac{\hbar}{2}+\frac{\hbar^{2}}{2}=\hbar^{2}=|c|^{2}
\end{aligned}
$$

pick $c=\hbar \Rightarrow s_{-}|1\rangle=\hbar|2\rangle,\langle 1| s_{-}|1\rangle=\langle 1| \hbar|2\rangle=0,\langle 2| s_{-}|1\rangle=\langle 2| \hbar|2\rangle=\hbar$

$$
s_{z}|2\rangle=-\frac{\hbar}{2}|2\rangle \Rightarrow s_{z} s_{-}|2\rangle=\left(s_{-} s_{z}-\hbar s_{-}\right)|2\rangle=\left[s_{-}\left(-\frac{\hbar}{2}\right)-\hbar s_{-}\right]|2\rangle=-\frac{3 \hbar}{2} s_{-}|2\rangle
$$

The above result appears to imply that $s_{-}|2\rangle$ is an eigenstate of s_{z} with an eigenvalue of $-3 \hbar / 2$, which is in conflict with experiments. So the only logical result is

$$
s_{-}|2\rangle=0|2\rangle \Rightarrow\langle 1| s_{-}|2\rangle=0,\langle 2| s_{-}|2\rangle=0 .
$$

Finally, we obtain

$$
s_{-}=\hbar\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

4. Problem 9.6.2, and find the solutions for $x_{1}(t)$ and $x_{2}(t)$ with the initial conditions $x_{1}(0)=$ $x_{2}(0)=0$ and $\dot{x}_{1}(0)=v_{1}$ and $\dot{x}_{2}(0)=v_{2} .(30$ points $)$

$$
\begin{aligned}
& m \ddot{x}_{1}=-k x_{1}+2 k\left(x_{2}-x_{1}\right)=-3 k x_{1}+2 k x_{2}, \ddot{x}_{1}=-\frac{3 k}{m} x_{1}+\frac{2 k}{m} x_{2} \\
& m \ddot{x}_{2}=-2 k\left(x_{2}-x_{1}\right)-k x_{2}=-3 k x_{2}+2 k x_{1}, \ddot{x}_{2}=-\frac{3 k}{m} x_{2}+\frac{2 k}{m} x_{1} \\
& \frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 k / m & 2 k / m \\
2 k / m & -3 k / m
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\Lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
&\left|\begin{array}{cc}
-3 k / m-\lambda & 2 k / m \\
2 k / m & -3 k / m-\lambda
\end{array}\right|=\left(-\frac{3 k}{m}-\lambda\right)^{2}-\left(\frac{2 k}{m}\right)^{2}=0 \Rightarrow \lambda_{I}=-\frac{k}{m}, \lambda_{I I}=-\frac{5 k}{m} \\
& {\left[\begin{array}{cc}
-2 k / m & 2 k / m \\
2 k / m & -2 k / m
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right] }=\frac{2 k}{m}\left[\begin{array}{c}
-a_{1}+b_{1} \\
a_{1}-b_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow|I\rangle=a_{1}\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
1
\end{array}\right] \\
&\left|\begin{array}{cc}
2 k / m & 2 k / m \\
2 k / m & 2 k / m
\end{array}\right|\left[\begin{array}{c}
a_{2} \\
b_{2}
\end{array}\right]=\frac{2 k}{m}\left[\begin{array}{c}
a_{2}+b_{2} \\
a_{2}+b_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow|I I\rangle=a_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
&|x(t)\rangle=x_{I}(t)|I\rangle+x_{I I}(t)|I I\rangle \\
& \Rightarrow \frac{d^{2}}{d t^{2}}\left[\begin{array}{c}
x_{I} \\
x_{I I}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{k}{m} & 0 \\
0 & -\frac{5 k}{m}
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
x_{I I}
\end{array}\right]=\left[\begin{array}{c}
-(k / m) x_{I} \\
-(5 k / m) x_{I I}
\end{array}\right]=\left[\begin{array}{c}
-\omega_{I}^{2} x_{I} \\
-\omega_{I I}^{2} x_{I I}
\end{array}\right]
\end{aligned}
$$

So the normal modes are

$$
\begin{aligned}
& x_{I}(t)=\langle I \mid x(t)\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\frac{x_{1}(t)+x_{2}(t)}{\sqrt{2}}, \\
& x_{I I}(t)=\langle I I \mid x(t)\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\frac{x_{1}(t)-x_{2}(t)}{\sqrt{2}},
\end{aligned}
$$

with eigenfrequencies $\omega_{I}=\sqrt{k / m}$ and $\omega_{I I}=\sqrt{5 k / m}$, respectively.
Applying the initial conditions $x_{1}(0)=x_{2}(0)=0, \dot{x}_{1}(0)=v_{1}$, and $\dot{x}_{2}(0)=v_{2}$, we obtain $x_{I}(0)=x_{\text {II }}(0)=0, \dot{x}_{I}(0)=\left(v_{1}+v_{2}\right) / \sqrt{2}, \dot{x}_{I I}(0)=\left(v_{1}-v_{2}\right) / \sqrt{2}$, and the solutions

$$
\left[\begin{array}{c}
x_{I}(t) \\
x_{I I}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\left(v_{1}+v_{2}\right) \omega_{I}^{-1} \sin \omega_{I} t \\
\left(v_{1}-v_{2}\right) \omega_{I I}^{-1} \sin \omega_{I I} t
\end{array}\right] .
$$

Going back to the original basis,

$$
\begin{aligned}
|x(t)\rangle=x_{I}(t)|I\rangle+x_{I I}(t)|I I\rangle=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] & =\frac{x_{I}(t)}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{x_{I I}(t)}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{c}
\left(v_{1}+v_{2}\right) \omega_{I}^{-1} \sin \omega_{I} t+\left(v_{1}-v_{2}\right) \omega_{I I}^{-1} \sin \omega_{I I} t \\
\left(v_{1}+v_{2}\right) \omega_{I}^{-1} \sin \omega_{I} t-\left(v_{1}-v_{2}\right) \omega_{I I}^{-1} \sin \omega_{I I} t
\end{array}\right] .
\end{aligned}
$$

