1. (a) Problem 5.2.3. (5 points)
(b) Problem 5.2.4.(iv). (5 points)
(c) Problem 5.2.5. (10 points)
(d) Problem 5.3.2. (20 points)
2. (a) Problem 5.3.5. (10 points)
(b) Problem 5.3.6. (10 points)
(c) Find $\int_{0}^{\infty} x e^{-a x} \cos k x d x$ using Euler's formula. (10 points)
3. Given the intensity pattern for the N-slit interference with separation d between adjacent slits, show that the pattern becomes that for the single-slit diffraction with slit width a when d goes to zero but with a fixed value of $N d=a$. (10 points)
4. (1) Find the roots $z_{n}(n=1,2, \cdots, N)$ of the complex equation $z^{N}=1$. (5 points)
(2) Find $S_{N}=\sum_{n=1}^{N} z_{n}$ and give a geometric interpretation of the result. (10 points)
(3) Note that $1-z^{N}=(1-z)\left(1+z+z^{2}+\cdots+z^{N-1}\right)$. Relate this result and the roots z_{n} to the conditions for destructive interference among N slits. (5 points)
