HW 2

Physics 3041 Mathematical Methods for Physicists

Spring 2021
University of Minnesota, Twin Cities

Nasser M. Abbasi

Contents

1 Problem 2.2.3 2
2 Problem 2.2.10 (or part a of problem 2) 4
3 Problem 2.2.11 (or part b of problem 2) 6
3.1 part (1) 6
3.2 part (2) 7
4 Problem 3 9
4.1 Part (a) 9
4.2 Part b 10
5 Problem 4 12
5.1 Part a 12
5.2 Part b 13

1 Problem 2.2.3

Evaluate $\int_{0}^{1} e^{\sqrt{x}} d x$. Show that $\int_{0}^{\infty} e^{-x^{4}} d x=\Gamma\left(\frac{5}{4}\right)$
Solution
Let $y=\sqrt{x}$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2} \frac{1}{\sqrt{x}} \\
& =\frac{1}{2} \frac{1}{y}
\end{aligned}
$$

And

$$
d x=2 y d y
$$

When $x=0, y=0$ and when $x=1, y=1$. Substituting this back into $\int_{0}^{1} e^{\sqrt{x}} d x$ gives $\int_{0}^{1} e^{y}(2 y d y)=2 \int_{0}^{1} y e^{y} d y$. This integral is evaluated using integration by parts.

$$
u d v=\left.u v\right|_{0} ^{1}-\int_{0}^{1} v d u
$$

Let $u=y$ and $d v=e^{y}$, then $d u=d y$ and $v=e^{y}$. The above becomes

$$
\begin{aligned}
2\left(\int_{0}^{1} y e^{y} d y\right) & =2\left(\left.u v\right|_{0} ^{1}-\int_{0}^{1} v d u\right) \\
& =2\left(\left.y e^{y}\right|_{0} ^{1}-\int_{0}^{1} e^{y} d y\right) \\
& =2\left(\left(e^{1}-0\right)-\left.e^{y}\right|_{0} ^{1}\right) \\
& =2(e-(e-1)) \\
& =2(e-e+1) \\
& =2
\end{aligned}
$$

Hence

$$
\int_{0}^{1} e^{\sqrt{x}} d x=2
$$

For the second part of the question asking to evaluate $\int_{0}^{\infty} e^{-x^{4}} d x$, let

$$
x=y^{\frac{1}{4}}
$$

Then

$$
\frac{d x}{d y}=\frac{1}{4} y^{\left(\frac{1}{4}-1\right)}
$$

When $x=0, y=0$ and when $x=\infty, y=\infty$. Hence the above integral becomes

$$
\begin{align*}
\int_{0}^{\infty} e^{-x^{4}} d x & =\int_{0}^{\infty} e^{-y}\left(\frac{1}{4} y^{\left(\frac{1}{4}-1\right)} d y\right) \\
& =\frac{1}{4} \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y \tag{1}
\end{align*}
$$

Comparing the above to integral (2.1.39) in the book which says

$$
\begin{align*}
& F(n)=\int_{0}^{\infty} y^{n} e^{-y} d y \tag{2}\\
& \Gamma(n)=F(n-1) \tag{3}
\end{align*}
$$

Then putting $n=\frac{1}{4}$ in (3) gives

$$
\begin{aligned}
\Gamma\left(\frac{1}{4}\right) & =F\left(\frac{1}{4}-1\right) \\
& =\int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y
\end{aligned}
$$

Which is (1). This means that

$$
\int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y=\Gamma\left(\frac{1}{4}\right)
$$

Hence

$$
\begin{equation*}
\frac{1}{4} \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y=\frac{1}{4} \Gamma\left(\frac{1}{4}\right) \tag{4}
\end{equation*}
$$

To obtain the final form, the following property of Gamma functions is used

$$
\Gamma(n+1)=n \Gamma(n)
$$

Which means that when $n=\frac{1}{4}$, the above becomes

$$
\begin{aligned}
\Gamma\left(\frac{1}{4}+1\right) & =\frac{1}{4} \Gamma\left(\frac{1}{4}\right) \\
\Gamma\left(\frac{5}{4}\right) & =\frac{1}{4} \Gamma\left(\frac{1}{4}\right)
\end{aligned}
$$

Using this in (4) shows that

$$
\frac{1}{4} \int_{0}^{\infty} y^{\left(\frac{1}{4}-1\right)} e^{-y} d y=\Gamma\left(\frac{5}{4}\right)
$$

Which implies

$$
\int_{0}^{\infty} e^{-x^{4}} d x=\Gamma\left(\frac{5}{4}\right)
$$

Which is what we are asked to show.

2 Problem 2.2.10 (or part a of problem 2)

Problem 2.2.10. Consider

$$
I=\int_{0}^{1} \frac{t-1}{\ln t} .
$$

Think of the t in $t-1$ as the $a=1$ limit of t^{a}. Let $I(a)$ be the corresponding integral. Take the a derivative of both sides (using $t^{a}=e^{a \ln t}$) and evaluate $d I / d a$ by evaluating the corresponding integral by inspection. Given $d I / d a$ obtain I by performing the indefinite integral of both sides with respect to a. Determine the constant of integration using your knowledge of $I(0)$. Show that the original integral equals $\ln 2$.

Figure 1: Problem statment

Solution

Let

$$
I(a)=\int_{0}^{1} \frac{t^{a}-1}{\ln t} d t
$$

Where $a=1$ for the specific integral in this problem. The above is the parametrized general form. Taking derivative w.r.t a gives

$$
\begin{align*}
\frac{d I(a)}{d a} & =\frac{d}{d a}\left(\int_{0}^{1} \frac{t^{a}-1}{\ln t} d t\right) \\
& =\int_{0}^{1} \frac{d}{d a}\left(\frac{t^{a}-1}{\ln t}\right) d t \\
& =\int_{0}^{1} \frac{1}{\ln t} \frac{d}{d a}\left(t^{a}-1\right) d t \tag{1}
\end{align*}
$$

But

$$
\begin{align*}
\frac{d}{d a}\left(t^{a}-1\right) & =\frac{d}{d a}\left(e^{a \ln t}-1\right) \\
& =\ln (t)\left(e^{a \ln t}\right) \tag{2}
\end{align*}
$$

Substituting (2) into (1) gives

$$
\begin{align*}
\frac{d I(a)}{d a} & =\int_{0}^{1} \frac{1}{\ln t}\left(\ln (t)\left(e^{a \ln t}\right)\right) d t \\
& =\int_{0}^{1} e^{a \ln t} d t \\
& =\int_{0}^{1} t^{a} d t \\
& =\left.\frac{t^{a+1}}{a+1}\right|_{0} ^{1} \\
& =\frac{1}{1+a} \quad a \neq-1 \tag{3}
\end{align*}
$$

Integrating the above is used to $I(a)$ gives

$$
\begin{aligned}
I(a) & =\int_{0}^{a} \frac{1}{1+\tau} d \tau \\
& =\left.\ln (1+\tau)\right|_{0} ^{a} \\
& =\ln (1+a)-\ln (1) \\
& =\ln (1+a) \quad a \neq-1
\end{aligned}
$$

When $a=1$ the above becomes

$$
\begin{aligned}
I(1) & =\int_{0}^{1} \frac{t-1}{\ln t} d t \\
& =\ln (1+1) \\
& =\ln (2)
\end{aligned}
$$

Hence

$$
\int_{0}^{1} \frac{t-1}{\ln t} d t=\ln (2)
$$

3 Problem 2.2.11 (or part b of problem 2)

Problem 2.2.11. Given

$$
\int_{0}^{\infty} e^{-a x} \sin k x d x=\frac{k}{a^{2}+k^{2}}
$$

evaluate $\int_{0}^{\infty} x e^{-a x} \sin k x d x$ and $\int_{0}^{\infty} x e^{-a x} \cos k x d x$.

Figure 2: Problem statment

Solution
3.1 part (1)

$$
I=\int_{0}^{\infty} e^{-a x} \sin k x d x
$$

Taking derivative w.r.t a gives

$$
\begin{aligned}
\frac{d I}{d a} & =\frac{d}{d a}\left(\int_{0}^{\infty} e^{-a x} \sin k x d x\right) \\
& =\int_{0}^{\infty} \frac{d}{d a}\left(e^{-a x} \sin k x\right) d x \\
& =\int_{0}^{\infty}-x e^{-a x} \sin k x d x \\
& =-\int_{0}^{\infty} x e^{-a x} \sin k x d x
\end{aligned}
$$

Which is the integral the problem is asking to find. Therefore, since I is also given as $\frac{k}{a^{2}+k^{2}}$ then

$$
\begin{aligned}
-\int_{0}^{\infty} x e^{-a x} \sin k x d x & =\frac{d}{d a}\left(\frac{k}{a^{2}+k^{2}}\right) \\
& =k \frac{d}{d a}\left(\frac{1}{a^{2}+k^{2}}\right) \\
& =k(-1)\left(a^{2}+k^{2}\right)^{-2}(2 a) \\
& =-\frac{2 a k}{\left(a^{2}+k^{2}\right)^{2}}
\end{aligned}
$$

Therefore

$$
\int_{0}^{\infty} x e^{-a x} \sin k x d x=\frac{2 a k}{\left(a^{2}+k^{2}\right)^{2}}
$$

3.2 part (2)

$$
I=\int_{0}^{\infty} e^{-a x} \sin k x d x
$$

Taking derivative w.r.t. k gives

$$
\begin{aligned}
\frac{d I}{d k} & =\frac{d}{d k}\left(\int_{0}^{\infty} e^{-a x} \sin k x d x\right) \\
& =\int_{0}^{\infty} \frac{d}{d k}\left(e^{-a x} \sin k x\right) d x \\
& =\int_{0}^{\infty} e^{-a x} \frac{d}{d k}(\sin k x) d x \\
& =\int_{0}^{\infty} x e^{-a x} \cos k x d x
\end{aligned}
$$

Which is the integral the problem is asking to find. Therefore, since I is also given as $\frac{k}{a^{2}+k^{2}}$ then

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-a x} \cos k x d x & =\frac{d}{d k}\left(\frac{k}{a^{2}+k^{2}}\right) \\
& =\frac{\left(a^{2}+k^{2}\right)-k(2 k)}{\left(a^{2}+k^{2}\right)^{2}} \\
& =\frac{a^{2}+k^{2}-2 k^{2}}{\left(a^{2}+k^{2}\right)^{2}} \\
& =\frac{a^{2}-k^{2}}{\left(a^{2}+k^{2}\right)^{2}}
\end{aligned}
$$

Hence

$$
\int_{0}^{\infty} x e^{-a x} \cos k x d x=\frac{a^{2}-k^{2}}{\left(a^{2}+k^{2}\right)^{2}}
$$

4 Problem 3

3. The probability to find a particle at position between x and $x+d x$ is

$$
P(x) d x=A \exp \left(-\alpha x^{2}+\beta x^{3}\right) d x,
$$

where A, α, and β are positive parameters. By the definition of probability,

$$
\int_{-\infty}^{\infty} P(x) d x=1 .
$$

Treat β as a small parameter, i.e., for any given x, you can view $P(x)$ as a function of β and expand it around $\beta=0$.
(a) Find A to the first order of β. (15 points)
(b) Find the average position

$$
\bar{x}=\int_{-\infty}^{\infty} x P(x) d x
$$

to the first order of β. (25 points)

Figure 3: Problem statment

Solution

4.1 Part (a)

$$
P(x, \beta)=A e^{-\alpha x^{2}+\beta x^{3}}
$$

Expanding around $\beta=0$ by fixing x, gives

$$
\begin{equation*}
P(x, \beta)=P(x, 0)+\left.\beta \frac{\partial P}{\partial \beta}\right|_{\beta=0}+\left.\frac{\beta^{2}}{2!} \frac{\partial^{2} P}{\partial \beta^{2}}\right|_{\beta=0}+\cdots \tag{1}
\end{equation*}
$$

But

$$
\begin{equation*}
P(x, 0)=A e^{-\alpha x^{2}} \tag{2}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{\partial P}{\partial \beta}=A x^{3} e^{-\alpha x^{2}+\beta x^{3}} \tag{3}
\end{equation*}
$$

No need to take more derivatives since the problem is asking for first order of β. Substituting $(2,3)$ into (1) gives

$$
\begin{align*}
P(x, \beta) & =A e^{-\alpha x^{2}}+\left.\beta A x^{3} e^{-\alpha x^{2}+\beta x^{3}}\right|_{\beta=0}+\cdots \\
& =A e^{-\alpha x^{2}}+\beta A x^{3} e^{-\alpha x^{2}}+\cdots \tag{4}
\end{align*}
$$

Using the above in the definition $\int_{-\infty}^{\infty} P(x) d x=1$ gives

$$
\begin{align*}
\int_{-\infty}^{\infty}\left(A e^{-\alpha x^{2}}+\beta A x^{3} e^{-\alpha x^{2}}\right) d x & =1 \\
A\left(\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x+\beta \int_{-\infty}^{\infty} x^{3} e^{-\alpha x^{2}} d x\right) & =1 \tag{5}
\end{align*}
$$

But

$$
\int_{-\infty}^{\infty} x^{3} e^{-\alpha x^{2}} d x=0
$$

This is because $e^{-\alpha x^{2}}$ is an even function over $(-\infty,+\infty)$ and x^{3} is odd. Eq (5) now simplifies to

$$
A \int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=1
$$

But $\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}(\alpha>0)$ because it is standard Gaussian integral. The above now becomes

$$
\begin{aligned}
A \sqrt{\frac{\pi}{\alpha}} & =1 \\
A & =\sqrt{\frac{\alpha}{\pi}} \quad \alpha>0
\end{aligned}
$$

4.2 Part b

$$
\bar{x}=\int_{-\infty}^{\infty} x P(x) d x
$$

Using Eq. (4) from part (a), the above becomes

$$
\begin{aligned}
\bar{x} & =\int_{-\infty}^{\infty} x\left(A e^{-\alpha x^{2}}+\beta A x^{3} e^{-\alpha x^{2}}\right) d x \\
& =A \int_{-\infty}^{\infty} x e^{-\alpha x^{2}} d x+A \int_{-\infty}^{\infty} \beta x^{4} e^{-\alpha x^{2}} d x
\end{aligned}
$$

But $\int_{-\infty}^{\infty} x e^{-\alpha x^{2}} d x=0$ since $e^{-\alpha x^{2}}$ is an even function over $(-\infty,+\infty)$ and x is an odd function. The above simplifies to

$$
\begin{equation*}
\bar{x}=A \beta \int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} d x \tag{6}
\end{equation*}
$$

To evaluate the above, starting from the standard Gaussian integral given by

$$
I(\alpha)=\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}
$$

Taking derivative w.r.t α of both sides of the above results in

$$
\begin{aligned}
I^{\prime}(\alpha) & =\int_{-\infty}^{\infty} \frac{d}{d \alpha} e^{-\alpha x^{2}} d x=\frac{d}{d \alpha} \sqrt{\frac{\pi}{\alpha}} \\
& =\int_{-\infty}^{\infty}-x^{2} e^{-\alpha x^{2}} d x=\sqrt{\pi}\left(-\frac{1}{2}\right) \alpha^{-\frac{3}{2}} \\
& =\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\frac{\sqrt{\pi}}{2} \alpha^{-\frac{3}{2}}
\end{aligned}
$$

Taking one more derivative w.r.t α gives

$$
\begin{aligned}
I^{\prime \prime}(\alpha) & =\int_{-\infty}^{\infty} \frac{d}{d \alpha} x^{2} e^{-\alpha x^{2}} d x=\frac{d}{d \alpha}\left(\frac{\sqrt{\pi}}{2} \alpha^{-\frac{3}{2}}\right) \\
& =\int_{-\infty}^{\infty}-x^{4} e^{-\alpha x^{2}} d x=\frac{\sqrt{\pi}}{2}\left(-\frac{3}{2} \alpha^{-\frac{5}{2}}\right) \\
& =\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} d x=\frac{\sqrt{\pi}}{2}\left(\frac{3}{2} \alpha^{-\frac{5}{2}}\right)
\end{aligned}
$$

Now the integrand is the one we want. This shows that

$$
\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} d x=\frac{3 \sqrt{\pi}}{4 \alpha^{\frac{5}{2}}}
$$

Using the above result in (6) gives

$$
\bar{x}=A \beta\left(\frac{3 \sqrt{\pi}}{4 \alpha^{\frac{5}{2}}}\right)
$$

But $A=\sqrt{\frac{\alpha}{\pi}}$ from $\operatorname{part}(\mathrm{a})$. Hence the above becomes

$$
\begin{aligned}
\bar{x} & =\sqrt{\frac{\alpha}{\pi}} \beta\left(\frac{3 \sqrt{\pi}}{4 \alpha^{\frac{5}{2}}}\right) \\
& =\alpha^{\frac{1}{2}} \beta \frac{3}{4 \alpha^{\frac{5}{2}}} \\
& =\beta \frac{3}{4 \alpha^{\frac{5}{2}-\frac{1}{2}}} \\
& =\frac{3}{4} \frac{\beta}{\alpha^{2}} \quad \alpha>0
\end{aligned}
$$

5 Problem 4

4. A container of volume V encloses a neutrino gas of temperature T. The number of neutrinos with energy between E and $E+d E$ is

$$
d N=\left(\frac{4 \pi V}{h^{3} c^{3}}\right) \frac{E^{2}}{\exp [E /(k T)]+1} d E
$$

where h is the Planck constant, c is the speed of light, and k is the Boltzmann constant.
(a) Express the total energy density of the neutrino gas in terms of a dimensional factor multiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).
(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).

Figure 4: Problem statment

Solution

5.1 Part a

$$
d N=\left(\frac{4 \pi V}{h^{3} c^{3}}\right) \frac{E^{2}}{1+e^{\frac{E}{k T}}} d E
$$

The total energy is therefore

$$
E_{\text {total }}=\int E d N
$$

Hence the energy density ρ is

$$
\begin{align*}
\rho & =\frac{1}{V} \int E d N \\
& =\frac{1}{V} \int_{0}^{\infty}\left(\frac{4 \pi V}{h^{3} c^{3}}\right) \frac{E E^{2}}{1+e^{\frac{E}{k T}}} d E \\
& =\left(\frac{1}{V}\right)\left(\frac{4 \pi V}{h^{3} c^{3}}\right) \int_{0}^{\infty} \frac{E^{3}}{1+e^{\frac{E}{k T}}} d E \\
& =\frac{4 \pi}{h^{3} c^{3}} \int_{0}^{\infty} \frac{E^{3}}{1+e^{\frac{E}{k T}}} d E \tag{1}
\end{align*}
$$

k (Boltzmann constant) has units of $\frac{[J]}{[K]}$ where J is joule and K is temperature in Kelvin. Hence units of $\frac{E}{k T}$ is $\frac{[J]}{\frac{[J}{[K]}[K]}$ which is dimensionless. Let

$$
x=\frac{E}{k T}
$$

Therefore $\frac{d x}{d E}=\frac{1}{k T}$ When $E=0, x=0$ and when $E=\infty, x=\infty$. Substituting this into the integral in (1) gives

$$
\begin{align*}
\int_{0}^{\infty} \frac{E^{3}}{1+e^{\frac{E}{k T}}} d E & =\int_{0}^{\infty} \frac{(x k T)^{3}}{1+e^{x}}(k T d x) \\
& =(k T)^{4} \int_{0}^{\infty} \frac{x^{3}}{1+e^{x}} d x \tag{2}
\end{align*}
$$

Substituting (2) into (1) gives

$$
\begin{equation*}
\rho=\left(\frac{4 \pi}{h^{3} c^{3}}\right)(k T)^{4} \int_{0}^{\infty} \frac{x^{3}}{1+e^{x}} d x \tag{3}
\end{equation*}
$$

Units of c (speed of light) is $\frac{[L]}{[T]}$ where [L] is length in meters and $[T]$ is time in seconds. Units for Planck constant h is $[J][T]$ (Joule-second). Therefore the factor $\left(\frac{4 \pi}{h^{3} c^{3}}\right)(k T)^{4}$ above in (3) in front of the integral has units

$$
\begin{aligned}
\left(\frac{4 \pi}{h^{3} c^{3}}\right)(k T)^{4} & =\frac{1}{([J][T])^{3}\left(\frac{[L]}{[T]}\right)^{3}}\left(\frac{[J]}{[K]}[K]\right)^{4} \\
& =\frac{1}{[J]^{3}[L]^{3}}([J])^{4} \\
& =\frac{[J]}{[L]^{3}}
\end{aligned}
$$

Which has the correct units of energy density. Let this factor be called $\Phi=\left(\frac{4 \pi}{h^{3} c^{3}}\right)(k T)^{4}$. Then (3) can be written as

$$
\rho=\Phi \int_{0}^{\infty} \frac{x^{3}}{1+e^{x}} d x
$$

5.2 Part b

The dimensionless integral found in part (a) is

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{x^{3}}{e^{x}+1} d x \tag{1}
\end{equation*}
$$

But

$$
\frac{1}{e^{x}+1}=\frac{1}{e^{x}-1}-2 \frac{1}{e^{2 x}-1}
$$

We did the above, to make the denominator has the form $e^{x}-1$, which is easier to work with following the lecture notes than working with $e^{x}+1$. Eq (1) now becomes

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x-2 \int_{0}^{\infty} \frac{x^{3}}{e^{2 x}-1} d x \tag{2}
\end{equation*}
$$

The first integral has the standard form $\int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x$. Hence

$$
\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1}=(3!) \xi(4)
$$

(Derivations of the above is given at the end of this problem). Now we evaluate on the second integral in (2). Let $y=2 x$, then $\frac{d y}{d x}=2$. The limits do not change. The integral becomes

$$
\int_{0}^{\infty} \frac{\frac{y^{3}}{8}}{e^{y}-1} \frac{d y}{2}=\frac{1}{16} \int_{0}^{\infty} \frac{y^{3}}{e^{y}-1} d y
$$

We see that $\int_{0}^{\infty} \frac{y^{3}}{e^{y-1}} d y$ now has the same form as the first integral. Hence $\int_{0}^{\infty} \frac{y^{3}}{e^{y}-1} d y=$ (3!) $\xi(4)$. Putting these two results back into (2) gives the final result

$$
\begin{aligned}
I & =(3!) \xi(4)-2\left(\frac{1}{16}(3!) \xi(4)\right) \\
& =(3!) \xi(4)\left(1-2\left(\frac{1}{16}\right)\right) \\
& =(6) \xi(4)\left(1-\frac{1}{8}\right) \\
& =(6) \xi(4) \frac{7}{8} \\
& =\frac{21}{4} \xi(4)
\end{aligned}
$$

But from class handout, $\xi(4)=\frac{\pi^{4}}{90}$. Hence

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{3}}{e^{x}+1} d x & =\frac{21}{4}\left(\frac{\pi^{4}}{90}\right) \\
& =\frac{7}{4}\left(\frac{\pi^{4}}{30}\right) \\
& =\frac{7}{120} \pi^{4} \\
& \approx 5.6822
\end{aligned}
$$

Using this in the result obtained in part (a) gives the energy density as

$$
\begin{aligned}
\rho & =\Phi \int_{0}^{\infty} \frac{x^{3}}{1+e^{x}} d x \\
& =\left(\frac{7 \pi^{4}}{120}\right)\left(\frac{4 \pi}{h^{3} c^{3}}\right)(k T)^{4}
\end{aligned}
$$

Derivation of the integral

In the above, we used the result that $\int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x=(n!) \xi(n+1)$. For $n=3$ this becomes (3!) $\xi(4)$.

To show how this came above, we start by multiplying the numerator and denominator of the integrand by e^{-x}. This gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n} e^{-x}}{1-e^{-x}} d x \tag{3}
\end{equation*}
$$

Let $y=e^{-x}$ then

$$
\begin{aligned}
\frac{e^{-x}}{1-e^{-x}} & =\frac{y}{1-y} \\
& =y\left(1+y+y^{2}+y^{3}+\cdots\right) \\
& =y+y^{2}+y^{3}+\cdots \\
& =\sum_{k=1}^{\infty} y^{k} \\
& =\sum_{k=1}^{\infty} e^{-k x}
\end{aligned}
$$

Using the above sum in Eq (3) gives

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{n} e^{-x}}{1-e^{-x}} d x & =\int_{0}^{\infty} x^{n} \sum_{k=1}^{\infty} e^{-k x} d x \\
& =\sum_{k=1}^{\infty} \int_{0}^{\infty} x^{n} e^{-k x} d x
\end{aligned}
$$

Let $z=k x$. Then $\frac{d z}{d x}=k$. When $x=0, z=0$ and when $x=\infty, z=\infty$. The above becomes

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{n} e^{-x}}{1-e^{-x}} d x & =\sum_{k=1}^{\infty} \int_{0}^{\infty}\left(\frac{z}{k}\right)^{n} e^{-z}\left(\frac{d z}{k}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{n+1}} \int_{0}^{\infty} z^{n} e^{-z} d z \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{n+1}}\left(\int_{0}^{\infty} x^{n} e^{-x} d x\right)
\end{aligned}
$$

But $\int_{0}^{\infty} x^{n} e^{-x} d x=n!$, which can be shown by integration by parts repeatedly n times. The above integral now becomes

$$
\int_{0}^{\infty} \frac{x^{n} e^{-x}}{1-e^{-x}} d x=(n!) \sum_{k=1}^{\infty} \frac{1}{k^{n+1}}
$$

The sum $\sum_{k=1}^{\infty} \frac{1}{k^{n+1}}$ is called the Zeta function $\zeta(n+1)$. When $n=3$ the above result becomes

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x & =(3!) \sum_{k=1}^{\infty} \frac{1}{k^{4}} \\
& =(3!) \zeta(4)
\end{aligned}
$$

Which is the result used earlier.

