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1 Problem 1.6.1

Expand the function 𝑓(𝑥) = sin(𝑥)
cosh(𝑥)+2 in Taylor series around the origin going up to 𝑥3.

Calculate 𝑓(0.1) from this series and compare to the exact answer obtained by using a
calculator

Solution

The Taylor series of function 𝑓(𝑥) around origin is given by (1.3.16) (≈ is used throughout
this HW to mean that the left side is the Taylor series approximation of 𝑓(𝑥)).

𝑓(𝑥) ≈
∞
�
𝑛=0

𝑥𝑛

𝑛!
𝑓(𝑛)(0)

Where 𝑓(𝑛)(0) is the 𝑛𝑡ℎ derivative of 𝑓(𝑥) evaluated at 𝑥 = 0.

For 𝑛 = 0, 𝑓(0)(𝑥) = 𝑓(𝑥) = sin(𝑥)
cosh(𝑥)+2 , therefore 𝑓(0) = 0.

For 𝑛 = 1

𝑓(1)(𝑥) =
𝑑
𝑑𝑥�

sin(𝑥)
cosh(𝑥) + 2�

=
cos(𝑥)(cosh(𝑥) + 2) − sin(𝑥) sinh(𝑥)

(cosh(𝑥) + 2)2

=
cos(𝑥)(cosh(𝑥) + 2)
(cosh(𝑥) + 2)2

−
sin(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

=
cos(𝑥)

cosh(𝑥) + 2
−

sin(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

The above evaluated at 𝑥 = 0 becomes

𝑓(1)(0) =
1

1 + 2
−

0
(1 + 2)2

=
1
3

For 𝑛 = 2

𝑓(2)(𝑥) =
𝑑
𝑑𝑥�

𝑑
𝑑𝑥�

sin(𝑥)
cosh(𝑥) + 2��

=
𝑑
𝑑𝑥�

cos(𝑥)
cosh(𝑥) + 2

−
sin(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

�

=
− sin(𝑥)(cosh(𝑥) + 2) − cos(𝑥) sinh(𝑥)

(cosh(𝑥) + 2)2

−
(cos(𝑥) sinh(𝑥) + sin(𝑥) cosh(𝑥))(cosh(𝑥) + 2)2 − sin(𝑥) sinh(𝑥)(2(cosh(𝑥) + 2) sinh(𝑥))

(cosh(𝑥) + 2)4

=
− sin(𝑥)(cosh(𝑥) + 2)

(cosh(𝑥) + 2)2
−
cos(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

−
cos(𝑥) sinh(𝑥)(cosh(𝑥) + 2)2

(cosh(𝑥) + 2)4

−
sin(𝑥) cosh(𝑥)(cosh(𝑥) + 2)2

(cosh(𝑥) + 2)4
+
sin(𝑥) sinh(𝑥)(2(cosh(𝑥) + 2) sinh(𝑥))

(cosh(𝑥) + 2)4

=
− sin(𝑥)

cosh(𝑥) + 2
−
cos(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

−
cos(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

−
sin(𝑥) cosh(𝑥)
(cosh(𝑥) + 2)2

+
2 sin(𝑥) sinh(𝑥) sinh(𝑥)

(cosh(𝑥) + 2)3

=
− sin(𝑥)

cosh(𝑥) + 2
− 2

cos(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

−
sin(𝑥) cosh(𝑥)
(cosh(𝑥) + 2)2

+
2 sin(𝑥) sinh2(𝑥)
(cosh(𝑥) + 2)3

The above evaluated at 𝑥 = 0 becomes

𝑓(2)(0) =
−0
1 + 2

− 2
0

(1 + 2)2
−

0
(1 + 2)2

+
0

(1 + 2)3

= 0
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For 𝑛 = 3

𝑓(3)(𝑥) =
𝑑
𝑑𝑥�

𝑑2

𝑑𝑥2 �
sin(𝑥)

cosh(𝑥) + 2��

=
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎝
− sin(𝑥)

cosh(𝑥) + 2
− 2

cos(𝑥) sinh(𝑥)
(cosh(𝑥) + 2)2

−
sin(𝑥) cosh(𝑥)
(cosh(𝑥) + 2)2

+
2 sin(𝑥) sinh2(𝑥)
(cosh(𝑥) + 2)3

⎞
⎟⎟⎟⎠

=
− cos(𝑥)(cosh(𝑥) + 2) + sin(𝑥) sinh(𝑥)

(cosh(𝑥) + 2)2

− 2
(− sin(𝑥) sinh(𝑥) + cos(𝑥) cosh(𝑥))(cosh(𝑥) + 2)2 − cos(𝑥) sinh(𝑥)(2(cosh(𝑥) + 2) sinh(𝑥))

(cosh(𝑥) + 2)4

−
(cos(𝑥) cosh(𝑥) + sin(𝑥) sinh(𝑥))(cosh(𝑥) + 2)2 − sin(𝑥) cosh(𝑥)(2(cosh(𝑥) + 2) sinh(𝑥))

(cosh(𝑥) + 2)4

+ 2
�cos(𝑥) sinh2(𝑥) + 2 sin(𝑥) cosh(𝑥)�(cosh(𝑥) + 2)3 − �sin(𝑥) sinh2(𝑥)��3(cosh(𝑥) + 2)2 sinh(𝑥)�

(cosh(𝑥) + 2)6

The above evaluated at 𝑥 = 0 gives

𝑓(3)(0) =
−1(1 + 2) + 0
(1 + 2)2

− 2
(−0 + 1)(1 + 2)2 − 0

(1 + 2)4
−
(1 + 0)(1 + 2)2 − 0

(1 + 2)4
+ 2

(0 + 0)(1 + 2)3 − (0)�3(1 + 2)20�

(1 + 2)6

=
−(3)
(3)2

− 2
(1)(3)2

(3)4
−
(1)(3)2

(3)4
+ 2

0
(3)6

=
−1
3
− 2

1
32
−
1
32

= −
2
3

The process stops here, because the problem is asking for 𝑛 = 3. Substituting all the
derivatives 𝑓(𝑛)(0) values above into

𝑓(𝑥) ≈
∞
�
𝑛=0

𝑥𝑛

𝑛!
𝑓(𝑛)(0)

For up to 𝑛 = 3 gives the following

𝑓(𝑥) ≈ 𝑓(0) + 𝑥𝑓(1)(0) +
𝑥2

2
𝑓(2)(0) +

𝑥3

3!
𝑓(3)(0) +⋯

≈ 0 + 𝑥
1
3
+
𝑥2

2
(0) +

𝑥3

3! �
−
2
3�

≈ 𝑥
1
3
−
2
3
𝑥3

6

≈
𝑥
3
−
𝑥3

9

When 𝑥 = 1
10 the above becomes

𝑓𝑛=3�
1
10�

≈
1
30
−

1
(1000)9

≈
1
30
−

1
9000

≈
300 − 1
9000

≈
299
9000

From the calculator
299
9000

≈ 0.0332222
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And from the exact expression

sin(𝑥)
cosh(𝑥) + 2

=
sin(0.1)

cosh(0.1) + 2
= 0.0332224

The error is about 1.67 × 10−7.
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2 Problem 2

Consider 𝑓(𝑥) = (1 + 𝑥)𝑝 for (a) 𝑝 = 1
3 and (b) 𝑝 = −2 , respectively. (1) Find the Taylor

series of 𝑓(𝑥) around 𝑥 = 0. (2) From the form of the general term, find the interval of
convergence of the series. (3) How many terms in the series do you need to estimate
𝑓(0.1) to within 1% ? Check that the difference between your estimate and the actual
result has approximately the same magnitude as the next term in the series.

Solution

2.1 Case 𝑝 = 1
3

𝑓(𝑥) = (1 + 𝑥)
1
3

Part (1) The Taylor series is given by

𝑓(𝑥) ≈ 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(𝑥) +

𝑥3

3!
𝑓′′′(𝑥) +⋯ (1)

Where 𝑓(0) = 1 and 𝑓′(𝑥) = 1
3
(1 + 𝑥)−

2
3 . Hence 𝑓′(0) = 1

3 and 𝑓′′(𝑥) = 1
3
�−2

3
�(1 + 𝑥)−

5
3 .

Hence 𝑓′′(0) = − (2)
32 , and 𝑓

′′′(𝑥) = 1
3
�−2

3
��−5

3
�(1 + 𝑥)−

8
3 , hence 𝑓′′′(0) = 1

3
�−2

3
��−5

3
� = (2)(5)

33 ,

and 𝑓(4)(𝑥) = 1
3
�−2

3
��−5

3
��−8

3
�(1 + 𝑥)−

11
3 , hence 𝑓(4)(0) = 1

3
�−2

3
��−5

3
��−8

3
� = − 1

34
((2)(5)(8))

and on. The series in (1) becomes

𝑓(𝑥) ≈ 1 +
1
3
𝑥 −

(2)
32
𝑥2

2!
+
(2)(5)
33

𝑥3

3!
−
(2)(5)(8)
34

𝑥4

4!
+
(2)(5)(8)(11)

35
𝑥5

5!
−
(2)(5)(8)(11)(14)

36
𝑥6

6!
−⋯

≈ 1 +
1
3
𝑥 −

1
32
𝑥2 +

5
34
𝑥3 −

10
35
𝑥4 +

22
36
𝑥5 −

154
38
𝑥6 +⋯ (2)

The general term is found by comparing the above to the general term obtained from
binomial expansion. Since

(1 + 𝑥)𝑝 =

⎛
⎜⎜⎜⎜⎜⎝
𝑝

0

⎞
⎟⎟⎟⎟⎟⎠𝑥

0 +

⎛
⎜⎜⎜⎜⎜⎝
𝑝

1

⎞
⎟⎟⎟⎟⎟⎠𝑥 +

⎛
⎜⎜⎜⎜⎜⎝
𝑝

2

⎞
⎟⎟⎟⎟⎟⎠𝑥

2 +⋯ (3)

Comparing (2,3) shows that the general term is the binomial coefficient

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3

𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. Therefore

the Taylor series for (1 + 𝑥)
1
3 can be written as

𝑓(𝑥) ≈
∞
�
𝑛=0

⎛
⎜⎜⎜⎜⎜⎝
𝑝

𝑛

⎞
⎟⎟⎟⎟⎟⎠𝑥

𝑛

For 𝑝 = 1
3 the above becomes

𝑓(𝑥) ≈
∞
�
𝑛=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3

𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑥𝑛

Part(2)

𝑅 = lim
𝑛→∞

�
𝑎𝑛
𝑎𝑛+1

�

= lim
𝑛→∞

�
�
�
�

⎛
⎜⎜⎜⎜⎜⎝
𝑝

𝑛

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑝

𝑛 + 1

⎞
⎟⎟⎟⎟⎟⎠

�
�
�
�
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The Binomial coefficient

⎛
⎜⎜⎜⎜⎜⎝
𝑝

𝑛

⎞
⎟⎟⎟⎟⎟⎠ =

𝑝!
𝑛!�𝑝−𝑛�!

, for when 𝑝 is integer. This is not the case here.

For non-integer 𝑝 The Binomial coefficient becomes

⎛
⎜⎜⎜⎜⎜⎝
𝑝

𝑛

⎞
⎟⎟⎟⎟⎟⎠ =

Γ�𝑝+1�

Γ(𝑛+1)Γ�𝑝−𝑛+1�
where Γ(𝑝) is the

Gamma function. The above ratio now becomes

𝑅 = lim
𝑛→∞

�
�
�

Γ�𝑝+1�

Γ(𝑛+1)Γ�𝑝−𝑛+1�

Γ�𝑝+1�

Γ(𝑛+2)Γ�𝑝−𝑛�

�
�
�

= lim
𝑛→∞�

Γ(𝑛 + 2)Γ�𝑝 − 𝑛�

Γ(𝑛 + 1)Γ�𝑝 − 𝑛 + 1�
�

= lim
𝑛→∞�

𝑛Γ�𝑝 − 𝑛�

Γ�𝑝 − 𝑛 + 1�
�

= lim
𝑛→∞

�
𝑛

𝑝 − 𝑛
�

But 𝑝 = 1
3 , hence the above becomes

𝑅 = lim
𝑛→∞

�
�
𝑛

1
3 − 𝑛

�
�

= lim
𝑛→∞

�
�
𝑛

𝑛 − 1
3

�
�

= 1

Therefore the radius of convergence is 1. This means the Taylor series found above con-
verges to 𝑓(𝑥) for |𝑥| < 1.

Part 3

𝑓(𝑥) = (1 + 𝑥)
1
3

When 𝑥 = 0.1

𝑓(0.1) = (1.1)
1
3

= 1.032280115

one percent of the above is

1
100

(1.032280115) = 0.01032280115

The value 𝑛 is now found such that

|𝑅𝑛(𝑥)| ≤ 𝑀
(0.1)𝑛+1

(𝑛 + 1)!
≤ 0.01032280115

Where 𝑅𝑛(𝑥) is the Taylor series remainder using 𝑛 terms. 𝑀 is the upper bound for
the 𝑛 + 1 derivative of 𝑓(𝑥) any where between [0, 0.1]. Instead of trying to find𝑀, few
calculations are used to find how many terms are needed.

For 𝑛 = 0, ̃𝑓(0.1) = 1 and the error is 1.032280115 − 1 = 032280115.
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For 𝑛 = 1, ̃𝑓(0.1) = 1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
0.1 = 1.0333333, and the error is |1.032280115 − 1.0333333| =

0.001053218. Because this is smaller than 𝑅𝑛(𝑥) then only two terms are needed in the
Taylor series to obtained the required accuracy. Therefore

𝑓(𝑥) ≈ 1 +
1
3
𝑥

2.2 Case 𝑝 = −2

𝑓(𝑥) = (1 + 𝑥)−2

Part (1) The Taylor series is

𝑓(𝑥) ≈ 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(𝑥) +

𝑥3

3!
𝑓′′′(𝑥) +⋯

But 𝑓(0) = 1 and 𝑓′(𝑥) = (−2)(1 + 𝑥)−3. Hence 𝑓′(0) = −2 and 𝑓′′(𝑥) = (−2)(−3)(1 + 𝑥)−4.
Hence 𝑓′′(0) = (−2)(−3), and 𝑓′′′(𝑥) = −2(−3)(−4)(1 + 𝑥)−5, hence 𝑓′′′(0) = (−2)(−3)(−4)(−5)
and so on. The above becomes

𝑓(𝑥) ≈ 1 + (−2)𝑥 − (−2)(−3)
𝑥2

2!
+ (−2)(−3)(−4)

𝑥3

3!
+⋯

≈ 1 − 2𝑥 + (2)(3)
𝑥2

2!
− (2)(3)(4)

𝑥3

3!
+⋯

≈ 1 − 2𝑥 + 3𝑥2 − 4𝑥3 +⋯

The general term is therefore

𝑓(𝑥) ≈
∞
�
𝑛=0
(−1)𝑛(𝑛 + 1)𝑥𝑛

Part(2)

𝑅 = lim
𝑛→∞

�
𝑎𝑛
𝑎𝑛+1

�

= lim
𝑛→∞

�
(𝑛 + 1)
(𝑛 + 2)

�

= 1

Hence the series converges to 𝑓(𝑥) for |𝑥| < 1.

Part 3

𝑓(𝑥) = (1 + 𝑥)−2

For 𝑥 = 0.1

𝑓(0.1) = (1.1)−2

=
1
1.12

= 0.82644628

One percent of the above is

1
100

(0.8264462810) = 0.0082644628

The value 𝑛 is now found such that

|𝑅𝑛(𝑥)| ≤ 𝑀
(0.1)𝑛+1

(𝑛 + 1)!
≤ 0.0082644628
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Where 𝑅𝑛(𝑥) is the Taylor series remainder using 𝑛 terms. 𝑀 is the upper bound for the
𝑛 + 1 derivative of 𝑓(𝑥) any where between [0, 0.1]. Doing few calculations gives

For 𝑛 = 0, ̃𝑓(0.1) = 1, the error is |0.82644628 − 1| = 0.1735537190.

For 𝑛 = 1, ̃𝑓(0.1) = 0.8, the error is |0.82644628 − 0.8| = 0.02644628.

For 𝑛 = 2, ̃𝑓(0.1) = 0.83, the error is |0.82644628 − 0.83| = 0.0035537190. Because this is
within 1% then only three terms are needed. Therefore

𝑓(𝑥) ≈ 1 − 2𝑥 + 3𝑥2
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3 Problem 3

Expand 𝑓(𝑥) = tan�𝑥2� to order 𝑥6 using (a) direct Taylor expansion. (b) The Taylor
series for sin(𝑥) and cos 𝑥with appropriate substitution.

Solution

3.1 Part a
Using Taylor series

𝑓(𝑥) ≈
∞
�
𝑛=0

𝑥𝑛

𝑛!
𝑓(𝑛)(0)

Where 𝑓(𝑥) = tan�𝑥2� and the expansion is around 𝑥 = 0. The Taylor series for 𝑓(𝑢) =
tan(𝑢) is found instead of tan�𝑥2�, and then at the end 𝑢 is replaced by 𝑥2 . This is called
the substitution method. This simplifies the derivations. Therefore 𝑓(0) = 0. The first
derivative is

𝑓′(𝑢) =
𝑑
𝑑𝑢

tan(𝑢)

=
𝑑
𝑑𝑢
�
sin 𝑢
cos 𝑢

�

=
cos2 𝑢 + cos2 𝑢

cos2 𝑢

=
1

cos2 𝑢

At 𝑢 = 0 this gives 𝑓′(0) = 1.

The next derivative using the above result gives

𝑓′′(𝑢) =
𝑑
𝑑𝑢�

1
cos2 𝑢�

=
2 cos 𝑢 sin 𝑢

cos4 𝑢

=
2 sin 𝑢
cos3 𝑢

At 𝑢 = 0 this gives 𝑓(2)(0) = 0. The next derivative gives

𝑓(3)(𝑢) = 2
𝑑
𝑑𝑢
�
sin 𝑢
cos3 𝑢

�

= 2
cos 𝑢 cos3 𝑢 − sin 𝑢�3 cos2 𝑢(− sin 𝑢)�

cos6 𝑢

= 2
cos4 𝑢 + 3 sin2 𝑢 cos2 𝑢

cos6 𝑢

=
2 cos4 𝑢
cos6 𝑢

+
6 sin2 𝑢 cos2 𝑢

cos6 𝑢

=
2

cos2 𝑢
+
6 sin2 𝑢
cos4 𝑢

=
2

cos2 𝑢
+
6�1 − cos2 𝑢�

cos4 𝑢

=
2

cos2 𝑢
+

6
cos4 𝑢

−
6

cos2 𝑢

= −
4

cos2 𝑢
+

6
cos4 𝑢

At 𝑢 = 0 this gives 𝑓(3)(0) = −4
1 +

6
1 = 2. Since the problem is asking for order 𝑥6 the

process stops here, as this is the same as order 𝑢3 when 𝑢 is replaced by 𝑥2.
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Therefore the Taylor series for tan(𝑢) is (for up to 𝑛 = 3)

𝑓(𝑢) ≈ 𝑓(0) + 𝑢𝑓′(0) +
𝑢2

2!
𝑓(2)(0) +

𝑢3

3!
𝑓(3)(0) +⋯

≈ 0 + 𝑢 + 0 + 2
𝑢3

3!

≈ 𝑢 +
1
3
𝑢3

Replacing 𝑢 = 𝑥2, gives the Taylor series for tan�𝑥2� for up to 𝑥6 term as

tan�𝑥2� ≈ 𝑥2 +
1
3
𝑥6

3.2 Part b

To obtain the above result using the Taylor series for sin�𝑥2�, cos�𝑥2�, the Taylor series
for sin�𝑥2� and cos�𝑥2� is found, and long division is applied using the definition of

tan�𝑥2� =
sin�𝑥2�

cos�𝑥2�
. Terms with order larger than 𝑥6 are ignored. The Taylor series for sin(𝑥)

is
sin(𝑥) ≈ 𝑥 −

𝑥3

3!
+
𝑥5

5!
−⋯

Using the substitution method, the Taylor series for sin�𝑥2� becomes

sin�𝑥2� ≈ 𝑥2 −
𝑥6

3!
+
𝑥10

5!
−⋯

≈ 𝑥2 −
𝑥6

6
+
𝑥10

120
−⋯ (1)

The Taylor series for cos(𝑥) is

cos(𝑥) ≈ 1 −
𝑥2

2!
+
𝑥4

4!
−⋯

Using the substitution method, the Taylor series for cos�𝑥2� becomes

cos�𝑥2� ≈ 1 −
𝑥4

2!
+
𝑥8

4!
−⋯

≈ 1 −
𝑥4

2
+
𝑥8

24
−⋯ (2)

Since tan�𝑥2� =
sin�𝑥2�

cos�𝑥2�
then the Taylor series for tan�𝑥2� is

tan�𝑥2� ≈
𝑥2 − 𝑥6

3! +
𝑥10

5! −⋯

1 − 𝑥4

2! +
𝑥8

4! −⋯

Performing long division and stopping when the remainder has powers larger than 𝑥6
gives

tan�𝑥2� ≈ 𝑥2 +
1
3
𝑥6 +⋯

Which is same result as part(a).
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Figure 1: Polynomals long division
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4 Problem 4
A particle of mass 𝑚moves along the +𝑥 axis (i.e. 𝑥 > 0) with potential energy

𝑉(𝑥) =
𝑎
2𝑥2

−
𝑏
𝑥

Where 𝑎 and 𝑏 are positive parameters. (a) Find the equilibrium position 𝑥0. (b) Show
that the particle executes harmonic oscillations near 𝑥 = 𝑥0. (c) Find the angular fre-
quency of oscillations.

Solution

4.1 Part a
Equilibrium position is where the slope of the potential energy is zero. This position 𝑥0
is found by solving for 𝑥 from

𝑑𝑉
𝑑𝑥

= 0

But
𝑑𝑉
𝑑𝑥

=
𝑎
2
�−2𝑥−3� − 𝑏�−𝑥−2�

=
−𝑎
𝑥3
+
𝑏
𝑥2

=
−𝑎 + 𝑏𝑥
𝑥3

Hence
−𝑎 + 𝑏𝑥
𝑥3

= 0

𝑏𝑥 = 𝑎

Therefore
𝑥0 =

𝑎
𝑏

4.2 Part b
Approximating 𝑉(𝑥) around 𝑥0 using Taylor series gives

𝑉(𝑥) ≈ 𝑉(𝑥0) + (𝑥 − 𝑥0)𝑉′(𝑥0) +
(𝑥 − 𝑥0)

2

2!
𝑉′′(𝑥0) +⋯

But 𝑑𝑉
𝑑𝑥 evaluated at 𝑥0 is zero, since this the equilibrium point. The above simplifies to

𝑉(𝑥) ≈ 𝑉(𝑥0) +
(𝑥 − 𝑥0)

2

2!
𝑉′′(𝑥0) +⋯ (A)

Higher terms are ignored, because (𝑥 − 𝑥0) is assumed small and mass remain close to
𝑥0. But

𝑉(𝑥0) =
𝑎
2𝑥20

−
𝑏
𝑥0

And since 𝑥0 =
𝑎
𝑏 from part (a), the above simplifies to

𝑉(𝑥0) =
𝑎

2�𝑎𝑏�
2 −

𝑏
�𝑎
𝑏
�

=
𝑎𝑏2

2𝑎2
−
𝑏2

𝑎

=
𝑏2

2𝑎
−
𝑏2

𝑎

= −
1
2
𝑏2

𝑎
(A1)
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And

𝑑2𝑉
𝑑𝑥2

=
𝑑
𝑑𝑥�

−𝑎
𝑥3
+
𝑏
𝑥2 �

=
3𝑎
𝑥4
−
𝑏
𝑥3

At 𝑥 = 𝑥0 the above becomes

𝑉′′(𝑥0) =
3𝑎

�𝑎
𝑏
�
4 −

𝑏

�𝑎
𝑏
�
3

=
𝑏4

𝑎3
(A2)

Using (A1,A2) into A gives

𝑉(𝑥) ≈ −
1
2
𝑏2

𝑎
+
(𝑥 − 𝑥0)

2

2!
𝑏4

𝑎3
+⋯

≈ −
1
2
𝑏2

𝑎
+
�𝑥 − 𝑎

𝑏
�
2

2
𝑏4

𝑎3
+⋯

≈ −
1
2
𝑏2

𝑎
+
1
2�
𝑥2 +

𝑎2

𝑏2
− 2𝑥

𝑎
𝑏�
𝑏4

𝑎3
+⋯

≈ −
1
2
𝑏2

𝑎
+
1
2𝑎
𝑏2 +

1
2𝑎3

𝑏4𝑥2 −
1
𝑎2
𝑏3𝑥 +⋯

≈
𝑏4

2𝑎3
𝑥2 −

𝑏3

𝑎2
𝑥 +⋯

Therefore near 𝑥0 the potential energy is approximated as

𝑉(𝑥) ≈
𝑏4

2𝑎3
𝑥2 −

𝑏3

𝑎2
𝑥 (1)

The force on the mass is given by

𝐹 = −
𝑑𝑉
𝑑𝑥

Using 𝑉(𝑥) in (1) the force becomes

𝐹 = −
𝑏4

𝑎3
𝑥 −

𝑏3

𝑎2

But 𝐹 = 𝑚𝑑2𝑥
𝑑𝑡2 . Hence we obtain the equation of motion as

𝑚
𝑑2𝑥
𝑑𝑡2

= 𝐹

= −
𝑏4

𝑎3
𝑥 −

𝑏3

𝑎2

Therefore

𝑚
𝑑2𝑥(𝑡)
𝑑𝑡2

+
𝑏4

𝑎3
𝑥(𝑡) = −

𝑏3

𝑎2
𝑑2𝑥(𝑡)
𝑑𝑡2

+ �
𝑏4

𝑚𝑎3 �
𝑥(𝑡) = −

𝑏3

𝑚𝑎2
(B)

Let
𝑏4

𝑚𝑎3
= 𝜔2

The equation of motion (B) becomes

𝑑2𝑥(𝑡)
𝑑𝑡2

+ 𝜔2𝑥(𝑡) = −
𝑏3

𝑚𝑎2
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But this is standard second order ode whose solution is

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) + 𝑥𝑝(𝑡)

Where 𝑥𝑝(𝑡) is the particular solution due to the forcing function − 𝑏3

𝑚𝑎2 and 𝐴,𝐵 are
constants of integrations found from initial conditions. Since the forcing function is just
constant, and not function function of time, the above becomes

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) + 𝐹𝑝
= 𝐴 cos�𝜔𝑡 + 𝜙� + 𝐹𝑝

Therefore the motion is simple harmonic motion since cos�𝜔𝑡 + 𝜙� is harmonic. The
forcing function 𝐹𝑝 has no effect on the nature of the harmonicmotion, other than adding
an extra constant displacement shift to 𝑥(𝑡) for all time. Since there is no damping, the
particle will continue this motion forever.

The following is a plot of the solution for 10 seconds using arbitrary values for 𝑎, 𝑏, 𝑚
andwith initial conditions 𝑥(0) = 1, 𝑥′(0) = 0. The solution shows themotion is harmonic
as expected.

In[ ]:= ClearAll[x, t, w, a, b, m];

ode = x''[t] + w x[t] ⩵
-b3

m a2
;

ic = {x[0] ⩵ 0, x'[0] ⩵ 0};

sol = x[t] /. First@DSolve[{ode, ic}, x[t], t]

Out[ ]=

-b3 + b3 Cost w 

a2 m w

In[ ]:= parms = m → 1, a → 1, b → 3, w → Sqrt
b4

m a3
;

sol //. parms

Out[ ]=
1

9
(-27 + 27 Cos[3 t])

In[ ]:= Plot[sol //. parms, {t, 0, 10}, AxesLabel → {"t", "x(t)"}, BaseStyle → 14, PlotStyle → Blue]

Out[ ]=

2 4 6 8 10
t

-6

-5

-4

-3

-2

-1

x(t)

Figure 2: Plot of solution

4.3 Part c
The angular frequency of oscillation is

𝜔 =
�

𝑏4

𝑚𝑎3

In radians per second. The quantity 𝑏4

𝑎3 can be called the stiffness 𝑘 (Newton per meter).

Hence 𝜔 = �
𝑘
𝑚 .
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4.4 Appendix
An easier way to do part b, is to keep (𝑥 − 𝑥0) intact and replace this with 𝑦 at the end.
Like this

Using (A1,A2) into A gives

𝑉(𝑥) ≈ −
1
2
𝑏2

𝑎
+
(𝑥 − 𝑥0)

2

2!
𝑏4

𝑎3
+⋯

The force on the mass is given by

𝐹 = −
𝑑𝑉
𝑑𝑥

= −(𝑥 − 𝑥0)
𝑏4

𝑎3

But 𝐹 = 𝑚𝑑2𝑥
𝑑𝑡2 . Hence we obtain the equation of motion as

𝑚
𝑑2𝑥
𝑑𝑡2

= 𝐹

= −(𝑥 − 𝑥0)
𝑏4

𝑎3

Now let 𝑦 = 𝑥 − 𝑥0. the above becomes

𝑚
𝑑2𝑦
𝑑𝑡2

= −𝑦
𝑏4

𝑎3

𝑚
𝑑2𝑦
𝑑𝑡2

+ 𝑦
𝑏4

𝑎3
= 0

𝑑2𝑦
𝑑𝑡2

+ 𝑦
𝑏4

𝑚𝑎3
= 0

Which is SHM. Using this method, it is faster to show.
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