
MATH 5525- MIDTERM EXAMINATION II

April 4, 2020

Problem 1.

1. State the Bendixon criterion of non-existence of periodic orbits of a
differential equation.

2. Consider the differential equation

ẍ + f(x)ẋ + x = 0,

where f(x) = x2 + x + a, a ∈ R. Determine the range of values of a
for which the equation does not have any periodic orbits.

Solution 1. Let

ẋ = f(x, y), ẏ = g(x, y), (x, y) ∈ D ⊂ R2.

1. Criterion of Bendixon. Suppose that D is simply connected and (f, g)
continuously differentiable in D. The equation can only have periodic
solutions if ∇ · (f, g) changes sign in D or if ∇ · (f, g) = 0 in D.

2. For the given second order equation, which written as a system takes
the form ẋ = y, ẏ = −f(x)y − x,

the divergence of the vector field is

∇ · (y, −f(x)y − x) = −f(x) = −(x2 + x + a).

Note that the zeros of the quadratic polynomial f(x) are −1
2 ±

1
2

√
1− 4a.

Therefore, for f(x) not to change sign, we must require its zeros to be
complex, that is,

1− 4a < 0, a >
1

4
.

1



Problem 2. Consider the system of differential equations that models the
growth of two competing species with populations x ≥ 0 and y ≥ 0:

ẋ = x(2− x− y), ẏ = y(3− 2x− y).

1. Find all equilibrium points and determine their stability type.

2. Determine the nullclines of the system.

3. Find the invariant regions of the xy-plane.

4. Draw the phase-plane using your favorite software (Matlab, Mathe-
matica, ...).

5. Explain why these equations make it mathematically possible, but
extremely unlikely, for both species to survive.

Solution 2.

1. (0, 0), (0, 3), (2, 0), (1, 1).

• (0, 0): associated matrix A =

[
2 0
0 3

]
; eigenvalues: (2, 3). Unsta-

ble node.

• (0, 3): associated matrix A =

[
−1 0
−6 −3

]
; eigenvalues: (−3,−1).

Stable node.

• (2, 0): associated matrix A =

[
−2 −2
0 −1

]
; eigenvalues: (−2,−1).

Stable node.

• (1, 1): associated matrix A =

[
−1 −1
−2 −1

]
; eigenvalues: (0.4142,−2.4142).

Saddle point.

2. The nullclines of the system are the lines

x = 0; on this line ẏ = y(3− y). (1)

x + y = 2; on this line ẏ = (−1 + y). (2)

y = 0; on this line ẋ = x(2− x). (3)

2x + y = 3; on this line ẋ = (−1 + x). (4)

The vector field of the system is f := (x(2− x− y), y(3− 2x− y)).
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Figure 1: Part 4. The left figure shows vector field and the nullclines (2
green) and (4 red). The equilibrium points are (0, 0), (3, 0), (1, 1), (2, 0).
The right figure shows some orbit plots.

• On the points of the nullcline (2), we have f = (0, y(1− y)). There-
fore, the vector field is vertical and points up for 0 < y < 1, and down
for y > 1.

• On the points of the nullcline (4), we have f = (−1 + 3x, 0). There-
fore, the vector field is horizontal and points to the left for 0 < x < 1,
and to the right for x > 1.

3. Note that the lines x = 0 and y = 0, that is the axes, are invariant.

The first quadrant is also invariant, since, ẋ < 0 for x+y > 2 and ẏ < 0
for 2x + y > 3. That is, the vector field points down and towards the
left above the nullcline (4), for 0 < x < 1; the vector field also points
down and towards the left above the nullcline (2), for 1 < x.

Within the first quadrant there are two invariant regions, the triangle
with vertices (1, 1), (0, 2) and (0, 3), and the triangle (2, 0), (32 , 0) and
(1, 1). (You only need to verify that the vector field on the sides of the
triangles always points towards the interior.)

The consequence of the previous statements is that, for sufficiently
large times, the solutions will either enter the top triangle or the lower
one. Moreover, at t → ∞, the former of will tend to the stable node
(0, 3) and the latter tend to the other stable node (2, 0).

4. Phase-plane, nullclines and vector field. Figure1.

5. We have shown that, as t→∞, the solutions either converge to (0, 3)
or (2, 0). So, in each case, only one of the two species survives.
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